-

CS 236 Online

{Protecting Memory}

* What 1s there to protect in memory?

Page tables and virtual memory
protection

Special security 1ssues for memory

Buftfer overtlows

\




-

 Executable code

What Is In Memory?

—Integrity required to ensure secure
operations

* Copies of permanently stored data

—Secrecy and integrity 1ssues

* Temporary process data
—Mostly integrity i1ssues

CS 236 Online




/ Mechanisms for Memory \
Protection
* Most general purpose systems provide some

memory protection

— Logical separation of processes that run
concurrently

* Usually through virtual memory methods

* Originally arose mostly for error
containment, not security

CS 236 Online Page 3



4 N

Paging and Security

Main memory 1s divided into page frames
Every process has an address space divided
into logical pages

For a process to use a page, it must reside 1n
a page frame

If multiple processes are running, how do
we protect their frames?

CS 236 Online Page 4



-

CS 236 Online

Protection of Pages

Each process 1s given a page table

— Translation of logical addresses into
physical locations

All addressing goes through page table
— At unavoidable hardware level

tables, a process can’t even name other
processes’ pages

\

 If the OS 1s careful about filling in the page




\

/Page Tables and Physical Pages

Process Page Tables Physical Page Frames
Any address

Process A

names goes
through the
green table

Any address
Process B
names goes
through the
blue table

They can’t
even name
cach other’s
Process B pages

Lecture 8
CS 236 Online Page 6




/ Security Issues of Page Frame \

Reuse
* A common set of page frames is shared by
all processes

* The OS switches ownership of page frames
as necessary

 When a process acquires a new page frame,
it used to belong to another process

— Can the new process read the old data?

CS 236 Online Page 7



/ Reusing Pages \

Process Page Tables Physical Page Frames
—_— —> What
NN N happens now
e if Process A
— >
o> @ requests a
— X age?
Process A page:
Z="5. ian Procesds
Process B = = now rea
9
deallocates — Process B’s
a page >< deallocated
z:\ data?
Process B /

Lecture 8
CS 236 Online Page 8




4 N

Strategies for Cleaning Pages

* Don’t bother
—Basic Linux strategy
» Zero on deallocation
» Zero on reallocation
e /€10 On use

* Clean pages 1n the background

—Windows strategy /

CS 236 Online Page 9




4 N

Special Interfaces to Memory

* Some systems provide a special interface to
memory

* [If the interface accesses physical memory,

— And doesn’t go through page table
protections,

— Then attackers can read the physical
memory

— Letting them figure out what’s there and
find what they’re looking for )

Lecture 8
CS 236 Online Page 10




-

CS 236 Online

[Buffer Overﬂows}

One of the most common causes for
compromises of operating systems

* Due to a flaw 1n how operating systems

handle process inputs

—Or a flaw 1n programming languages
—Or a flaw 1n programmer training
—Depending on how you look at 1t

\

Lecture 8
Page 11



-

CS 236 Online

What Is a Buffer Overtlow?

A program requests imnput from a user

It allocates a temporary buffer to hold
the input data

It then reads all the data the user
provides into the buffer, but . . .

It doesn’t check how much data was
provided

\

Lecture 8

Page 12



-

J

For Example,

int main () {

char name[32];

printf (“Please type your name:
gets (name) ;

printf (“Hello, %s”, name);
return (0);

* What if the user enters more than 32 characters?

\\).
’

/

Lecture 8
Page 13

CS 236 Online



/ Well, What If the User Does?

* Code continues reading data into memory
» The first 32 bytes go into name buffer

— Allocated on the stack

— Close to record of current function
* The remaining bytes go onto the stack

— Right after name buffer

— Overwriting current function record

— Including the instruction pointer

\

Lecture 8

CS 236 Online

Page 14



-~

CS 236 Online

Why Is This a Security Problem?

The attacker can cause the function to
“return” to an arbitrary address

 But all attacker can do 1s run different code

than was expected

He hasn’t gotten 1nto anyone else’s
processes

— Or data

* So he can only fiddle around with his own

stuff, right?

\

Lecture 8

Page 15



-

* Well, yes

» That’s why a media player can write
configuration and data files

Is That So Bad?

up very carefully, a typical program
can write all 1ts user’s files

* Unless roles and access permissions set

\

Lecture 8

CS 236 Online

Page 16



/ The Core Buftfer Overtlow \
Security Issue

* Programs often run on behalf of others
— But using your 1dentity
* Maybe OK for you to access some data

* But s it OK for someone who you’re
running a program for to access 1t?

— Downloaded programs
— Users of web servers
— Many other cases )

Lecture 8
CS 236 Online Page 17




/ Using Buffer Overtlows to \
Compromise Security

» Carefully choose what gets written into
the 1nstruction pointer

* So that the program jumps to
something you want to do

—Under the 1dentity of the program
that’s running

* Such as, execute a command shell

 Usually attacker provides this code /

Lecture 8
CS 236 Online Page 18




-

Eftects of Buffer Overtlows

A remote or unprivileged local user runs a
program with greater privileges

If buffer overflow 1s 1n a root program, 1t
gets all privileges, essentially

Can also overwrite other stuff
— Such as heap variables

Common mechanism to allow attackers to
break into machines

\

Lecture 8

CS 236 Online

Page 19



4 N

Stack Overflows

The most common kind of buffer overflow
Intended to alter the contents of the stack
Usually by overflowing a dynamic variable
Usually with intention of jumping to exploit
code

— Though 1t could 1nstead alter parameters
or variables 1n other frames

— Or even variables 1n current frame )

Lecture 8
CS 236 Online Page 20




4 N

Heap Overtlows

» Heap 1s used to store dynamically
allocated memory

» Buffers kept there can also overflow

* Generally doesn’t offer direct ability to
jump to arbitrary code

» But potentially quite dangerous

Lecture 8
CS 236 Online Page 21




/ What Can You Do With Heap \
Overflows?

e Alter variable values
e “Edit” linked lists or other data structures

* If heap contains list of function pointers,
can execute arbitrary code

* Generally, heap overflows are harder to
exploit than stack overtflows

* But they exist

—E.g., one discovered in Google Chrome 1n
February 2012 )

Lecture 8
CS 236 Online Page 22




4 N

Some Recent Bufter Overtlows

» RealNetworks Real Player

* Apple Quicktime

» Watchguard Firewall

* IBM SPSS SamplePower
—A heap overflow

* HP DataProtector

* Not as common as they used to be, but
still a real danger

Lecture 8
CS 236 Online Page 23




/ Fixing Buffer Overtlows

« Write better code (check input lengths, etc.)
« Use programming languages that prevent them
e Add OS controls that prevent overwriting the stack

 Put things in different places on the stack, making it hard
to find the return pointer (e.g., Microsoft ASLR)

 Don’t allow execution from places in memory where
buffer overflows occur (e.g., Windows DEP)

— Or don’t allow execution of writable pages
 Why aren’t these things commonly done?
— Sometimes they are, but not always effective

 When not, presumably because programmers and
designers neither know nor care about security

\

Lecture 8

CS 236 Online

Page 24



