
Lecture 8
Page 1 CS 236 Online

Protecting Memory

•  What is there to protect in memory?
•  Page tables and virtual memory

protection
•  Special security issues for memory
•  Buffer overflows

Lecture 8
Page 2 CS 236 Online

What Is In Memory?

•  Executable code
– Integrity required to ensure secure

operations
•  Copies of permanently stored data

– Secrecy and integrity issues
•  Temporary process data

– Mostly integrity issues

Lecture 8
Page 3 CS 236 Online

Mechanisms for Memory
Protection

•  Most general purpose systems provide some
memory protection
– Logical separation of processes that run

concurrently
•  Usually through virtual memory methods
•  Originally arose mostly for error

containment, not security

Lecture 8
Page 4 CS 236 Online

Paging and Security

•  Main memory is divided into page frames
•  Every process has an address space divided

into logical pages
•  For a process to use a page, it must reside in

a page frame
•  If multiple processes are running, how do

we protect their frames?

Lecture 8
Page 5 CS 236 Online

Protection of Pages

•  Each process is given a page table
– Translation of logical addresses into

physical locations
•  All addressing goes through page table

– At unavoidable hardware level
•  If the OS is careful about filling in the page

tables, a process can’t even name other
processes’ pages

Lecture 8
Page 6 CS 236 Online

Page Tables and Physical Pages

Process A

Process B

Process Page Tables Physical Page Frames
Any address
Process A
names goes
through the
green table

Any address
Process B
names goes
through the
blue table
They can’t
even name
each other’s
pages

Lecture 8
Page 7 CS 236 Online

Security Issues of Page Frame
Reuse

•  A common set of page frames is shared by
all processes

•  The OS switches ownership of page frames
as necessary

•  When a process acquires a new page frame,
it used to belong to another process
– Can the new process read the old data?

Lecture 8
Page 8 CS 236 Online

Reusing Pages

Process A

Process B

Process Page Tables Physical Page Frames
What

happens now
if Process A
requests a

page?

Can Process
A now read
Process B’s
deallocated

data?

Process B
deallocates

a page

Lecture 8
Page 9 CS 236 Online

Strategies for Cleaning Pages

•  Don’t bother
– Basic Linux strategy

•  Zero on deallocation
•  Zero on reallocation
•  Zero on use
•  Clean pages in the background

– Windows strategy

Lecture 8
Page 10 CS 236 Online

Special Interfaces to Memory
•  Some systems provide a special interface to

memory
•  If the interface accesses physical memory,

– And doesn’t go through page table
protections,

– Then attackers can read the physical
memory

– Letting them figure out what’s there and
find what they’re looking for

Lecture 8
Page 11 CS 236 Online

Buffer Overflows

•  One of the most common causes for
compromises of operating systems

•  Due to a flaw in how operating systems
handle process inputs
– Or a flaw in programming languages
– Or a flaw in programmer training
– Depending on how you look at it

Lecture 8
Page 12 CS 236 Online

What Is a Buffer Overflow?

•  A program requests input from a user
•  It allocates a temporary buffer to hold

the input data
•  It then reads all the data the user

provides into the buffer, but . . .
•  It doesn’t check how much data was

provided

Lecture 8
Page 13 CS 236 Online

For Example,
int main(){
 char name[32];
 printf(“Please type your name: “);
 gets(name);
 printf(“Hello, %s”, name);
 return (0);
}

•  What if the user enters more than 32 characters?

Lecture 8
Page 14 CS 236 Online

Well, What If the User Does?
•  Code continues reading data into memory
•  The first 32 bytes go into name buffer

– Allocated on the stack
– Close to record of current function

•  The remaining bytes go onto the stack
– Right after name buffer
– Overwriting current function record
– Including the instruction pointer

Lecture 8
Page 15 CS 236 Online

Why Is This a Security Problem?
•  The attacker can cause the function to

“return” to an arbitrary address
•  But all attacker can do is run different code

than was expected
•  He hasn’t gotten into anyone else’s

processes
– Or data

•  So he can only fiddle around with his own
stuff, right?

Lecture 8
Page 16 CS 236 Online

Is That So Bad?

•  Well, yes
•  That’s why a media player can write

configuration and data files
•  Unless roles and access permissions set

up very carefully, a typical program
can write all its user’s files

Lecture 8
Page 17 CS 236 Online

The Core Buffer Overflow
Security Issue

•  Programs often run on behalf of others
– But using your identity

•  Maybe OK for you to access some data
•  But is it OK for someone who you’re

running a program for to access it?
– Downloaded programs
– Users of web servers
– Many other cases

Lecture 8
Page 18 CS 236 Online

Using Buffer Overflows to
Compromise Security

•  Carefully choose what gets written into
the instruction pointer

•  So that the program jumps to
something you want to do
– Under the identity of the program

that’s running
•  Such as, execute a command shell
•  Usually attacker provides this code

Lecture 8
Page 19 CS 236 Online

Effects of Buffer Overflows

•  A remote or unprivileged local user runs a
program with greater privileges

•  If buffer overflow is in a root program, it
gets all privileges, essentially

•  Can also overwrite other stuff
– Such as heap variables

•  Common mechanism to allow attackers to
break into machines

Lecture 8
Page 20 CS 236 Online

Stack Overflows

•  The most common kind of buffer overflow
•  Intended to alter the contents of the stack
•  Usually by overflowing a dynamic variable
•  Usually with intention of jumping to exploit

code
– Though it could instead alter parameters

or variables in other frames
– Or even variables in current frame

Lecture 8
Page 21 CS 236 Online

Heap Overflows

•  Heap is used to store dynamically
allocated memory

•  Buffers kept there can also overflow
•  Generally doesn’t offer direct ability to

jump to arbitrary code
•  But potentially quite dangerous

Lecture 8
Page 22 CS 236 Online

What Can You Do With Heap
Overflows?

•  Alter variable values
•  “Edit” linked lists or other data structures
•  If heap contains list of function pointers,

can execute arbitrary code
•  Generally, heap overflows are harder to

exploit than stack overflows
•  But they exist

– E.g., one discovered in Google Chrome in
February 2012

Lecture 8
Page 23 CS 236 Online

Some Recent Buffer Overflows
•  RealNetworks Real Player
•  Apple Quicktime
•  Watchguard Firewall
•  IBM SPSS SamplePower

– A heap overflow
•  HP DataProtector
•  Not as common as they used to be, but

still a real danger

Lecture 8
Page 24 CS 236 Online

Fixing Buffer Overflows
•  Write better code (check input lengths, etc.)
•  Use programming languages that prevent them
•  Add OS controls that prevent overwriting the stack
•  Put things in different places on the stack, making it hard

to find the return pointer (e.g., Microsoft ASLR)
•  Don’t allow execution from places in memory where

buffer overflows occur (e.g., Windows DEP)
–  Or don’t allow execution of writable pages

•  Why aren’t these things commonly done?
–  Sometimes they are, but not always effective

•  When not, presumably because programmers and
designers neither know nor care about security

