Security Protocols CS 236 On-Line MS Program Networks and Systems Security Peter Reiher

Outline

- Designing secure protocols
- Key exchange protocols
- Common security problems in protocols

Basics of Security Protocols

- Assume (usually) that your encryption is sufficiently strong
- Given that, how do you design a message exchange to achieve a given result securely?
- Not nearly as easy as you probably think
- Many of the concepts are important in many areas of computer/network security

Security Protocols

- A series of steps involving two or more parties designed to accomplish a task with suitable security
- Sequence is important
- Cryptographic protocols use cryptography
- Different protocols assume different levels of trust between participants

Types of Security Protocols

- Arbitrated protocols
 - –Involving a trusted third party
- Adjudicated protocols
 - -Trusted third party, after the fact
- Self-enforcing protocols
 - -No trusted third party

Participants in Security Protocols

Alice

Bob

Lecture 6 Page 6

CS 236 Online

And the Bad Guys

Eve

And sometimes Alice or Bob might cheat

Mallory

Who only listens passively

Who is actively malicious

CS 236 Online

Trusted Arbitrator

Trent

A disinterested third party trusted by all legitimate participants

Arbitrators often simplify protocols, but add overhead and may limit applicability

CS 236 Online

Goals of Security Protocols

• Each protocol is intended to achieve some very particular goal

- Like setting up a key between two parties

- Protocols may only be suitable for that particular purpose
- Important secondary goal is minimalism
 - Fewest possible messages
 - -Least possible data
 - Least possible encryption

Key Exchange Protocols

- Often we want a different encryption key for each communication session
- How do we get those keys to the participants?
 - Securely
 - -Quickly
 - Even if they've never communicated before

Key Exchange With Symmetric Encryption and an Arbitrator

- Alice and Bob want to talk securely with a new key
- They both trust Trent
 - Assume Alice & Bob each share a key with Trent
- How do Alice and Bob get a shared key?

What Has the Protocol Achieved?

- Alice and Bob both have a new session key
- The session key was transmitted using keys known only to Alice and Bob
- Both Alice and Bob know that Trent participated
- But there are vulnerabilities

Problems With the Protocol

- What if the initial request was grabbed by Mallory?
- Could he do something bad that ends up causing us problems?
- Yes!

The Man-in-the-Middle Attack

- A class of attacks where an active attacker interposes himself secretly in a protocol
- Allowing alteration of the effects of the protocol
- Without necessarily attacking the encryption

Defeating the Man In the Middle

- Problems:
- 1). Trent doesn't really know what he's supposed to do
- 2). Alice doesn't verify he did the right thing
- Minor changes can fix that
 - 1). Encrypt request with K_A
 - 2). Include identity of other participant in response $E_{K_A}(K_S, Bob)$

But There's Another Problem

- A replay attack
- Replay attacks occur when Mallory copies down a bunch of protocol messages
- And then plays them again
- In some cases, this can wreak havoc
- Why does it here?

