Protecting Other Styles of Protocols

- Generally, how do you know you should believe another router?
- About distance to some address space
- About reachability to some address space
- About other characteristics of a path
- About what other nodes have told you

How Routing Protocols Pass Information

- Some protocols pass full information
 - -E.g., BGP
 - So they can pass signed information
- Others pass summary information
 - -E.g., RIP
 - They use other updates to create new summaries
 - How can we be sure they did so properly?

Who Are You Worried About?

- Random attackers?
 - -Generally solvable by encrypting/ authenticating routing updates
- Misbehaving insiders?
 - A much harder problem
 - They're supposed to make decisions
 - -How do you know they're lying?

Types of Attacks on Distance Vector Routing Protocols

- Blackhole attacks
 - Claim short route to target
- Claim longer distance
 - To avoid traffic going through you
- Inject routing loops
 - Which cause traffic to be dropped
- Inject lots of routing updates
 - Generally for denial of service

How To Secure a Distance Vector Protocol?

- Can't just sign the hop count
 - -Not tied to the path
- Instead, sign a length and a "second-to-last" router identity
- By iterating, you can verify path length

a routing table entry for 1.2.3.*

Should show hop count of 3 via G, 5 via E

One Way to Do It

H directly verifies
that it's one hop to E
H gets signed info that D is
2 hops through E
Then we iterate

Е	1	-	
D	2	Е	
C	3	D	
В	4	C	
A	5	В	

Now we can trust it's five hops to A

Who Does the Signing?

- The destination
 - −A in the example
- It only signs the unchanging part
 - -Not the hop count
- But an update eventually reaches H that was signed by A

What About That Hop Count?

- E could lie about the hop count
- But he can't lie that A is next to B
- Nor that B next to C, nor C next to D, nor D next to E
- Unless other nodes collude, E can't claim to be closer to A than he is

What If Someone Lies?

E	1	-	
D	2	Е	
С	3	D	
В	4	C	
A	5	В	

There's limited scope for effective lies

E can't claim to be closer to A

Since E can't produce a routing update signed by A that substantiates that

A Difficulty

- This approach relies on a PKI
- H must be able to check the various signatures
- Breaks down if someone doesn't sign
 - -That's a hole in the network, from the verification point of view
 - -Consider, in example, what happens if C doesn't sign

What If C Doesn't Sign?

A message coming through D tells us that it's three hops to C
But H can't verify that H knows C is next to B
And that B is next to A

E	1	-	
D	2	E	
C	3	D	
В	4	С	
A	5	В	

But how can he be sure D is next to C?

Other than trusting D . . .

What's the Problem?

For this graph, no problem

But how about for this one?

Е	1	ı	
D	2	E	
C	3	D	
В	4	С	
A	5	В	