
Lecture 16
Page 1 CS 236 Online

Cross-Site Scripting
•  XSS
•  Many sites allow users to upload information

– Blogs, photo sharing, Facebook, etc.
– Which gets permanently stored
– And displayed

•  Attack based on uploading a script
•  Other users inadvertently download it

– And run it . . .

Lecture 16
Page 2 CS 236 Online

The Effect of XSS

•  Arbitrary malicious script executes on
user’s machine

•  In context of his web browser
– At best, runs with privileges of the

site storing the script
– Often likely to run at full user

privileges

Lecture 16
Page 3 CS 236 Online

Non-Persistent XSS

•  Embed a small script in a link pointing
to a legitimate web page

•  Following the link causes part of it to
be echoed back to the user’s browser

•  Where it gets executed as a script
•  Never permanently stored at the server

Lecture 16
Page 4 CS 236 Online

Persistent XSS

•  Upload of data to a web site that stores
it permanently

•  Generally in a database somewhere
•  When other users request the

associated web page,
•  They get the bad script

Lecture 16
Page 5 CS 236 Online

Some Examples

•  Twitter had a bug allowing XSS in 2010
•  Other XSS vulnerabilities discovered on

sites run by eBay, Symantec, PayPal,
Facebook, Amazon, Adobe, Microsoft,
Google Gmail, LinkedIn, the Scientology
website, thousands of others

•  D-Link router flaw exploitable through XSS

Lecture 16
Page 6 CS 236 Online

Why Is XSS Common?
•  Use of scripting languages widespread

– For legitimate purposes
•  Most users leave them enabled in their

browsers
•  Sites allowing user upload are very

popular
•  Only a question of getting user to run

your script

Lecture 16
Page 7 CS 236 Online

Typical Effects of XSS Attack

•  Most commonly used to steal personal
information
– That is available to legit web site
– User IDs, passwords, credit card

numbers, etc.
•  Such information often stored in

cookies at client side

Lecture 16
Page 8 CS 236 Online

Solution Approaches

•  Don’t allow uploading of anything
•  Don’t allow uploading of scripts
•  Provide some form of protection in

browser

Lecture 16
Page 9 CS 236 Online

Disallowing Data Uploading

•  Does your web site really need to allow
users to upload stuff?

•  Even if it does, must you show it to
other users?

•  If not, just don’t take any user input
•  Problem: Not possible for many

important web sites

Lecture 16
Page 10 CS 236 Online

Don’t Allow Script Uploading
•  A no-brainer for most sites

– Few web sites want users to upload
scripts, after all

•  So validate user input to detect and
remove scripts

•  Problem: Rich forms of data encoding
make it hard to detect all scripts

•  Good tools can make it easier

Lecture 16
Page 11 CS 236 Online

Protect the User’s Web Browser

•  Basically, the same solutions as for any
form of protecting from malicious
scripts

•  With the same problems:
– Best solutions cripple functionality

Lecture 16
Page 12 CS 236 Online

Cross-Site Request Forgery

•  CSRF
•  Works the other way around
•  An authenticated and trusted user

attacks a web server
– Usually someone posing as that user

•  Generally to fool server into believing
that the trusted user made a request

Lecture 16
Page 13 CS 236 Online

CSRF in Action
•  Attacker puts link to (say) a bank on

his web page
•  Unsuspecting user clicks on the link
•  His authentication cookie goes with the

HTTP request
– Since it’s for the proper domain

•  Bank authenticates him and transfers
his funds to the attacker

Lecture 16
Page 14 CS 236 Online

Issues for CSRF Attacks
•  Not always possible or easy
•  Attacks sites that don’t check referrer header

– Indicating that request came from another
web page

•  Attacked site must allow use of web page to
allow something useful (e.g., bank withdrawal)

•  Must not require secrets from user
•  Victim must click link on attacker’s web site
•  And attacker doesn’t see responses

