
Lecture 16
Page 1 CS 236 Online

SQL Injection Attacks

•  Many web servers have backing
databases
– Much of their information stored in a

database
•  Web pages are built (in part) based on

queries to a database
– Possibly using some client input . . .

Lecture 16
Page 2 CS 236 Online

SQL Injection Mechanics

•  Server plans to build a SQL query
•  Needs some data from client to build it

– E.g., client’s user name
•  Server asks client for data
•  Client, instead, provides a SQL fragment
•  Server inserts it into planned query

– Leading to a “somewhat different” query

Lecture 16
Page 3 CS 236 Online

An Example

“select * from mysql.user

where username = ‘ “ . $uid . “ ‘ and
password=password(‘ “. $pwd “ ‘);”

•  Intent is that user fills in his ID and
password

•  What if he fills in something else?
‘or 1=1; -- ‘

Lecture 16
Page 4 CS 236 Online

What Happens Then?
• $uid has the string substituted, yielding
“select * from mysql.user

where username = ‘ ‘ or 1=1; -- ‘ ‘ and

password=password(‘ “. $pwd “ ‘);”

•  This evaluates to true
– Since 1 does indeed equal 1
– And -- comments out rest of line

•  If script uses truth of statement to determine
valid login, attacker has logged in

Lecture 16
Page 5 CS 236 Online

Basis of SQL Injection Problem
•  Unvalidated input
•  Server expected plain data
•  Got back SQL commands
•  Didn’t recognize the difference and went

ahead
•  Resulting in arbitrary SQL query being sent

to its database
– With its privileges

Lecture 16
Page 6 CS 236 Online

Some Example Attacks
•  130 million credit card numbers stolen in

2009 with SQL injection attack
•  Used to steal 1 million Sony passwords
•  Yahoo lost 450,000 passwords to a SQL

injection in 2012
•  Successful SQL injections on Bit9, British

Royal Navy, PBS
•  Ruby on Rails had built-in SQL injection

vulnerability in 2012

Lecture 16
Page 7 CS 236 Online

Solution Approaches

•  Carefully examine all input
•  Use database access controls
•  Randomization of SQL keywords
•  Avoid using SQL in web interfaces
•  Parameterized variables

Lecture 16
Page 8 CS 236 Online

Examining Input for SQL
•  SQL is a well defined language
•  Generally web input shouldn’t be SQL
•  So look for it and filter it out
•  Problem: proliferation of different

input codings makes the problem hard
•  Problem: some SQL control characters

are widely used in real data
– E.g., apostrophe in names

Lecture 16
Page 9 CS 236 Online

Using Database Access Controls
•  SQL is used to access a database
•  Most databases have decent access

control mechanisms
•  Proper use of them limits damage of

SQL injections
•  Problem: may be hard to set access

controls to prohibit all dangerous
queries

Lecture 16
Page 10 CS 236 Online

Randomization of SQL
Keywords

•  Change all SQL keywords into something
random

•  Then translate all your internal queries to
that new “language”

•  Those trying SQL injection need to inject
your language, not standard SQL

•  Problem: security is based on a secret
•  Problem: could cause unexpected errors

from otherwise correct behavior

Lecture 16
Page 11 CS 236 Online

Avoid SQL in Web Interfaces
•  Never build a SQL query based on user

input to web interface
•  Instead, use predefined queries that

users can’t influence
•  Typically wrapped by query-specific

application code
•  Problem: may complicate

development

Lecture 16
Page 12 CS 236 Online

Use Parameterized Variables

•  SQL allows you to set up code so
variables are bound parameters

•  Parameters of this kind aren’t
interpreted as SQL

•  Pretty much solves the problem, and is
probably the best solution

Lecture 16
Page 13 CS 236 Online

Malicious Downloaded Code
•  The web relies heavily on downloaded code

– Full language and scripting language
– Mostly scripts

•  Instructions downloaded from server to
client
– Run by client on his machine
– Using his privileges

•  Without defense, script could do anything

Lecture 16
Page 14 CS 236 Online

Types of Downloaded Code

•  Java
– Full programming language

•  Scripting languages
– JavaScript
– VB Script
– ECMAScript
– XSLT

Lecture 16
Page 15 CS 236 Online

Drive-By Downloads
•  Often, user must request that

something be downloaded
•  But not always

– Sometimes visiting a page or moving
a cursor causes downloads

•  These are called drive-by downloads
– Since the user is screwed just by

visiting the page

Lecture 16
Page 16 CS 236 Online

Solution Approaches
•  Disable scripts in your browser
•  Use secure scripting languages
•  Isolation mechanisms
•  Vista mandatory access control
•  Virus protection and blacklist

approaches

Lecture 16
Page 17 CS 236 Online

Disabling Scripts

•  Browsers (or plug-ins) can disable
scripts
– Selectively, based on web site

•  The bad script is thus not executed
•  Problem: Cripples much good web

functionality
– So users re-enable scripting

Lecture 16
Page 18 CS 236 Online

Use Secure Scripting Languages
•  Some scripting languages are less

prone to problems than others
•  Write your script in those
•  Problem: secure ones aren’t popular
•  Problem: many bad things can still be

done with “secure” languages
•  Problem: can’t force others to write

their scripts in these languages

Lecture 16
Page 19 CS 236 Online

Isolation Mechanisms

•  Architecturally arrange for all
downloaded scripts to run in clean VM
– Limiting the harm they can do

•  Problem: they might be able to escape
the VM

•  Problem: what if a legitimate script
needs to do something outside its VM?

Lecture 16
Page 20 CS 236 Online

Vista Mandatory Access Control

•  In Vista, browser ran at low privilege
level

•  So scripts it downloaded did, too
•  Limiting damage they could do
•  Problem: also limited desirable things

good scripts could do

Lecture 16
Page 21 CS 236 Online

Signatures and Blacklists

•  Identify known bad scripts
•  Develop signatures for them
•  Put them on a blacklist and distribute it

to others
•  Before running downloaded script,

automatically check blacklist
•  Problem: same as for virus protection

