
Lecture 15
Page 1 CS 236 Online

Application Review
•  Reviewing a mature (possibly complete)

application
•  A daunting task if the system is large
•  And often you know little about it

– Maybe you performed a design review
– Maybe you read design review docs
– Maybe less than that

•  How do you get started?

Lecture 15
Page 2 CS 236 Online

Need to Define a Process
•  Don’t just dive into the code
•  Process should be:

– Pragmatic
– Flexible
– Results oriented

•  Will require code review
– Which is a skill one must develop

Lecture 15
Page 3 CS 236 Online

Review Process Outline
1.  Preassessment

– Get high level view of system
2.  Application review

– Design review, code review, maybe live
testing

3.  Documentation and analysis
4.  Remediation support

– Help them fix the problems
•  May need to iterate

Lecture 15
Page 4 CS 236 Online

Reviewing the Application
•  You start off knowing little about the code
•  You end up knowing a lot more
•  You’ll probably find the deepest problems

related to logic after you understand things
•  A design review gets you deeper quicker

– So worth doing, if not already done
•  The application review will be an iterative

process

Lecture 15
Page 5 CS 236 Online

General Approaches To Design
Reviews

•  Top-down
– Start with high level knowledge,

gradually go deeper
•  Bottom-up

– Look at code details first, build model of
overall system as you go

•  Hybrid
– Switch back and forth, as useful

Lecture 15
Page 6 CS 236 Online

Code Auditing Strategies
•  Code comprehension (CC) strategies

– Analyze source code to find vulnerabilities and
increase understanding

•  Candidate point (CP) strategies
– Create list of potential issues and look for them

in code
•  Design generalization (DG) strategies

– Flexibly build model of design to look for high
and medium level flaws

Lecture 15
Page 7 CS 236 Online

 Some Example Strategies
•  Trace malicious input (CC)

– Trace paths of data/control from points where
attackers can inject bad stuff

•  Analyze a module (CC)
– Choose one module and understand it

•  Simple lexical candidate points (CP)
– Look for text patterns (e.g., strcpy())

•  Design conformity check (DG)
– Determine how well code matches design

Lecture 15
Page 8 CS 236 Online

Guidelines for Auditing Code

•  Perform flow analysis carefully within
functions you examine

•  Re-read code you’ve examined
•  Desk check important algorithms
•  Use test cases for important algorithms

– Using real system or desk checking
– Choosing inputs carefully

Lecture 15
Page 9 CS 236 Online

Useful Auditing Tools

•  Source code navigators
•  Debuggers
•  Binary navigation tools
•  Fuzz-testing tools

– Automates testing of range of
important values

