-

CS 236 Online

[Race Conditions}

A common cause of security bugs

» Usually involve multiprogramming or

multithreaded programs

Caused by different threads of control
operating 1n unpredictable fashion

—When programmer thought they’d
work 1n a particular order

\

Lecture 14

Page 1

4 N

What Is a Race Condition?

* A situation in which two (or more)
threads of control are cooperating or
sharing something

* If their events happen 1n one order, one
thing happens

» [f their events happen 1n another order,
something else happens

k Often the results are unforeseen /

Lecture 14
CS 236 Online Page 2

/ Security Implications of Race \
Conditions

» Usually you checked privileges at one
point

* You thought the next lines of code
would run next
—So privileges still apply

* But multiprogramming allows things to
happen 1n between)

Lecture 14
CS 236 Online Page 3

4 N

The TOCTOU Issue

e Time of Check to Time of Use

* Have security conditions changed
between when you checked?

* And when you used 1t?

* Multiprogramming 1ssues can make
that happen

e Sometimes under attacker control /

Lecture 14
CS 236 Online Page 4

-

IDs

o Effective
purposes

A Short Detour

* In Unix, processes can have two associated user

— Effective 1D
— Real ID
* Real ID 1s the ID of the user who actually ran 1t

1s current ID for access control

* Setuid programs run this way

» System calls allow you to manipulate 1t

\

/

Lecture 14

CS 236 Online

Page 5

/ Effective UID and Access \
Permissions

» Unix checks accesses against effective
UID, not real UID

* So setuid program uses permissions for
the program’s owner

—Unless relinquished

« Remember, root has universal access
privileges /

Lecture 14
CS 236 Online Page 6

4 N

An Example

* Code from Unix involving a temporary
file

* Runs setuid root
res = access (“/tmp/userfile”, R OK);
If (res != 0)

die (Yaccess”) ;

fd = open (“/tmp/userfile”, O RDONLY) ;

CS 236 Online

/

Lecture 14
Page 7

/ What’s (Supposed to Be) Going\
on Here?

 Checked accesson /tmp/userfile to make
sure user was allowed to read 1t

— User can use links to control what this file 1s
e access () checksreal user ID, not effective one

— So checks access permissions not as root, but as
actual user

* So 1f user can read it, open file for read
— Which root is definitely allowed to do
* Otherwise exit /

Lecture 14
CS 236 Online Page 8

-

CS 236 Online

What’s Really Going On Here?

This program might not run
uninterrupted

* OS might schedule something else 1n

the middle

* In particular, between those two lines

of code

\

Lecture 14

Page 9

-

How the Attack Works

Attacker puts innocuous file 1n
/tmp/userfile
Calls the program

* Quickly deletes file and replaces it

with link to sensitive file
—One only readable by root

\

o If timing works, he gets secret contents /

CS 236 Online

Lecture 14

Page 10

/ The Dynamics of the Attack \
Datesrioye

Success!

/etc/secretfile /tmp/userfile

_——@

_ 1. Runprogram
2. Change file

res = access (“/tmp/userfile”, R OK);
1f (res != 0)

die (“access”); :St

fd = open(“/tmp/userfile”, 0 RDONLY) ;.

1

/

Lecture 14
CS 236 Online Page 11

4 N

How Likely Was That?

Not very
— The timing had to be just right
But the attacker can try it many times

— And may be able to influence system to make 1t
more likely

And he only needs to get it right once
Timing attacks of this kind can work

The longer between check and use, the more
dangerous /

Lecture 14
CS 236 Online Page 12

4 N

Some Types of Race Conditions

 File races

— Which file you access gets changed
* Permissions races

— File permissions are changed
* Ownership races

— Who owns a file changes

* Directory races
— Directory hierarchy structure changes /

Lecture
CS 236 Online Page 13

14

-

CS 236 Online

Preventing Race Conditions
Minimize time between security
checks and when action 1s taken

Be especially careful with files that
users can change

» Use locking and features that prevent

interruption, when possible

Avoid designs that require actions
where races can occur

\

Lecture 14

Page 14

-

CS 236 Online

{Randomness and Determinism]

Many pieces of code require some
randomness 1n behavior

Where do they get 1t?

» As earlier key generation discussion

showed, 1t’s not that easy to get

\

Lecture 14

Page 15

/ Pseudorandom Number \
(Generators

« PRNG

» Mathematical methods designed to
produce strings of random-like
numbers

» Actually deterministic

—But share many properties with true
random streams of numbers)

Lecture 14
CS 236 Online Page 16

-

CS 236 Online

Attacks on PRNGs

» Cryptographic attacks

—QObserve stream of numbers and try
to deduce the function

e State attacks

— Attackers gain knowledge of or

influence the internal state of the
PRNG

\

Lecture 14

Page 17

4 N

An Example

 ASF Software’s Texas Hold’Em Poker

* Flaw 1n PRNG allowed cheater to
determine everyone’s cards

—Flaw 1n card shuffling algorithm

—Seeded with a clock value that can
be easily obtained

Lecture 14
CS 236 Online Page 18

-

Another Example

» Netscape’s early SSL implementation
* Another guessable seed problem

—Based on knowing time of day,
process ID, and parent process ID

—Process IDs readily available by
other processes on same box

* Broke keys 1n 30 seconds

CS 236 Online

\

Lecture 14

Page 19

4 N

A Recent Case

* The chip-and-pin system 1s used to secure
smart ATM cards

» Uses cryptographic techniques that require
pseudo-random numbers

* Cambridge found weaknesses in the PRNG

 Allows attackers to withdraw cash without
your card

« Seems to be 1n real use in the wild

Lecture 14
CS 236 Online Page 20

4 N

How to Do Better?

e Use hardware randomness, where
available

» Use high quality PRNGs

—Preferably based on entropy
collection methods

 Don’t use seed values obtainable
outside the program)

Lecture 14
CS 236 Online Page 21

