
Lecture 14
Page 1 CS 236 Online

Race Conditions
•  A common cause of security bugs
•  Usually involve multiprogramming or

multithreaded programs
•  Caused by different threads of control

operating in unpredictable fashion
– When programmer thought they’d

work in a particular order

Lecture 14
Page 2 CS 236 Online

What Is a Race Condition?
•  A situation in which two (or more)

threads of control are cooperating or
sharing something

•  If their events happen in one order, one
thing happens

•  If their events happen in another order,
something else happens

•  Often the results are unforeseen

Lecture 14
Page 3 CS 236 Online

Security Implications of Race
Conditions

•  Usually you checked privileges at one
point

•  You thought the next lines of code
would run next
– So privileges still apply

•  But multiprogramming allows things to
happen in between

Lecture 14
Page 4 CS 236 Online

The TOCTOU Issue

•  Time of Check to Time of Use
•  Have security conditions changed

between when you checked?
•  And when you used it?
•  Multiprogramming issues can make

that happen
•  Sometimes under attacker control

Lecture 14
Page 5 CS 236 Online

A Short Detour
•  In Unix, processes can have two associated user

IDs
– Effective ID
– Real ID

•  Real ID is the ID of the user who actually ran it
•  Effective ID is current ID for access control

purposes
•  Setuid programs run this way
•  System calls allow you to manipulate it

Lecture 14
Page 6 CS 236 Online

Effective UID and Access
Permissions

•  Unix checks accesses against effective
UID, not real UID

•  So setuid program uses permissions for
the program’s owner
– Unless relinquished

•  Remember, root has universal access
privileges

Lecture 14
Page 7 CS 236 Online

An Example

•  Code from Unix involving a temporary
file

•  Runs setuid root
res = access(“/tmp/userfile”, R_OK);

If (res != 0)
 die(“access”);

fd = open(“/tmp/userfile”,O_RDONLY);

Lecture 14
Page 8 CS 236 Online

What’s (Supposed to Be) Going
on Here?

•  Checked access on /tmp/userfile to make
sure user was allowed to read it
– User can use links to control what this file is

•  access() checks real user ID, not effective one
– So checks access permissions not as root, but as

actual user
•  So if user can read it, open file for read

– Which root is definitely allowed to do
•  Otherwise exit

Lecture 14
Page 9 CS 236 Online

What’s Really Going On Here?

•  This program might not run
uninterrupted

•  OS might schedule something else in
the middle

•  In particular, between those two lines
of code

Lecture 14
Page 10 CS 236 Online

How the Attack Works

•  Attacker puts innocuous file in
 /tmp/userfile

•  Calls the program
•  Quickly deletes file and replaces it

with link to sensitive file
– One only readable by root

•  If timing works, he gets secret contents

Lecture 14
Page 11 CS 236 Online

The Dynamics of the Attack

 /tmp/userfile

 res = access(“/tmp/userfile”, R_OK);
 if (res != 0)
 die(“access”);
 fd = open(“/tmp/userfile”,O_RDONLY);

/etc/secretfile

1.  Run program

2. Change file

Let’s try
that again!
One more
time!

Success!

Lecture 14
Page 12 CS 236 Online

How Likely Was That?
•  Not very

– The timing had to be just right
•  But the attacker can try it many times

– And may be able to influence system to make it
more likely

•  And he only needs to get it right once
•  Timing attacks of this kind can work
•  The longer between check and use, the more

dangerous

Lecture 14
Page 13 CS 236 Online

Some Types of Race Conditions
•  File races

– Which file you access gets changed
•  Permissions races

– File permissions are changed
•  Ownership races

– Who owns a file changes
•  Directory races

– Directory hierarchy structure changes

Lecture 14
Page 14 CS 236 Online

Preventing Race Conditions
•  Minimize time between security

checks and when action is taken
•  Be especially careful with files that

users can change
•  Use locking and features that prevent

interruption, when possible
•  Avoid designs that require actions

where races can occur

Lecture 14
Page 15 CS 236 Online

Randomness and Determinism

•  Many pieces of code require some
randomness in behavior

•  Where do they get it?
•  As earlier key generation discussion

showed, it’s not that easy to get

Lecture 14
Page 16 CS 236 Online

Pseudorandom Number
Generators

•  PRNG
•  Mathematical methods designed to

produce strings of random-like
numbers

•  Actually deterministic
– But share many properties with true

random streams of numbers

Lecture 14
Page 17 CS 236 Online

Attacks on PRNGs

•  Cryptographic attacks
– Observe stream of numbers and try

to deduce the function
•  State attacks

– Attackers gain knowledge of or
influence the internal state of the
PRNG

Lecture 14
Page 18 CS 236 Online

An Example

•  ASF Software’s Texas Hold’Em Poker
•  Flaw in PRNG allowed cheater to

determine everyone’s cards
– Flaw in card shuffling algorithm
– Seeded with a clock value that can

be easily obtained

Lecture 14
Page 19 CS 236 Online

Another Example

•  Netscape’s early SSL implementation
•  Another guessable seed problem

– Based on knowing time of day,
process ID, and parent process ID

– Process IDs readily available by
other processes on same box

•  Broke keys in 30 seconds

Lecture 14
Page 20 CS 236 Online

A Recent Case
•  The chip-and-pin system is used to secure

smart ATM cards
•  Uses cryptographic techniques that require

pseudo-random numbers
•  Cambridge found weaknesses in the PRNG
•  Allows attackers to withdraw cash without

your card
•  Seems to be in real use in the wild

Lecture 14
Page 21 CS 236 Online

How to Do Better?

•  Use hardware randomness, where
available

•  Use high quality PRNGs
– Preferably based on entropy

collection methods
•  Don’t use seed values obtainable

outside the program

