
Atom-LEAP 
User-space Measurement Tutorial 

 

1 Introduction 
The Atom-LEAP platform is a highly-instrumented Intel Atom based motherboard along side a 
USB-enabled National Instruments data acquisition module (DAQ). It allows researchers to 
acquire power measurements at a high granularity, in both kernel and user-level code. This 
brief tutorial will describe how to use the Atom-LEAP to acquire user-level data using the core 
LEAP tools as well as the more user-friendly LEAPfrog (LEAP For Repetitive, Organized 
Gathering) package. 
There are three main steps in the data gathering process on the Atom-LEAP. First, data 
acquisition involves starting the sampling device and directing output to a log file. Workload 
execution begins once sampling has started properly.  Finally, reporting takes the raw data 
and timestamps generated in the first two steps and generates useful reports.  We will first 
describe the use of the core tools in acquiring and processing data from the Atom-LEAP, and 
then go on to describe use of the more user-friendly LEAPfrog. 

2 What does it measure? 
The Atom-LEAP samples data during the runtime of a specified process. The sampling 
hardware observes the watts (W) consumed by a component or components on a particular 
circuit during a sampling interval. This interval is typically 1/10000th of a second, or 100 
microseconds. Because we have the watts and the run time, we can calculate the total joules 
(J) during the observed task. 
The Atom-LEAP samples data for 5 components by default, although it can be configured to 
acquire more. Those components are: CPU, hard disk, bridge (experimental), RAM, and USB. 
In all cases, the measurement is taken on the pins or wires responsible for powering the 
device. This means, for example, that the hard disk power measurement is on the power 
leads to the disk itself, not to the disk controller. Likewise, the RAM power is measured 
directly at the DIMM, the CPU at its power converter, and the USB on the USB cable. The 
bridge measurement is currently experimental. 
When the sampling is finished for a task, the raw data exists as rows of watt measurements 
per component, per sampling interval. Synchronization is performed to identify the system 
time when sampling began and ended, as well as to identify the specific segments of samples 
observed relevant to the workload or workloads under investigation. 

3 Core process 

3.1 Data acquisition 
Experimental data is acquired by a USB-enabled National Instruments data acquisition 
module (DAQ). The DAQ is connected to current-sensing leads which are attached to various 
components of the LEAP node. Typically, the DAQ samples data at 10 kHz, or 10,000 times 



per second. In order to acquire any data, the DAQ must be instructed to start gathering data, 
and must be given an output location. Finally, the sampling process must be run at real-time 
priority, so that it is not interrupted by other processes. 

3.1.1 Load kernel module 'probe.ko' 
The kernel requires a module in order to interact with the DAQ. This probe must be loaded 
the first time the Atom LEAP is booted (or when the DAQ is connected to the machine). To 
load the kernel probe, run: 

$	
 sudo	
 insmod	
 /usr/atom_LEAP/code/sync/probe.ko	
 

The probe will add messages to /var/log/messages which will enable us to measure the 
amount of time which passed during the sampled workload(s). 

3.1.2 Start the sampling process 
If the kernel module is loaded, you can start the sampler by opening a terminal and executing: 

$	
 sudo	
 chrt	
 99	
 start_sampling	
 2>	
 data.txt	
 

Sampling is started using sudo for two reasons. First, the sampling process must interact with 
the kernel probe module, which requires root privileges. Second, the sampler must be set to 
run at real-time priority so that the sampler program (start_sampling) does not fall too far 
behind the physical DAQ device. When the sampler first starts, it attempts to synchronize with 
the system. It is important to wait for synchronization before starting your workload. (The 
accuracy of your data will not be affected by this time gap due to the synchronization code.) 
Either of the two following messages indicates that the sampler is ready: 
[45177.536016]	
 Synchronized!	
 Core	
 =	
 0	
 TSC	
 =	
 NNNNNNNNNNNNN	
 

[45177.577051]	
 Probe	
 Unregistered	
 

...or 
[32383.559476]	
 KProbe	
 address	
 set	
 to	
 c025d560	
 

[32383.681772]	
 Probe	
 Registered	
 

 
Once you see this output, you're set to run your workload! 

3.1.3 Sampling tips 

3.1.3.1 Don't run the sampler until your workload is ready. 
You generally don't want to run the sampler until you are ready to run your workload. This is 
because the sampler generates a large amount of data. The longer the sampler runs, the 
longer it will take to synchronize the data and generate reports. If you've started the sampler 
early and you want to quit, press ^C to stop it. 

3.1.3.2 What if the sampler doesn't become ready? 
Sometimes the sampler never prints either of the two lines of data, or prints some errors. In 



this case, just press ^C to kill the sampler, wait a few seconds, and try again. 

3.2 Preparing and executing your workload 
The workload process is simply a task from which you would like to obtain power readings. 
This workload can be in the form of a compiled program, a shell script, or some combination 
of the two. We'll use a compiled C program as an example for the core tools, and discuss 
more complex workloads later. 

Before your code can be profiled, you must identify the portions of code for which you want to 
collect data. For each such section, you'll need to insert a small amount of instrumentation 
code into your program. 

3.2.1 Energy Calipers 

3.2.1.1 A familiar example 
Suppose you wanted to monitor the power consumption of the following somewhat familiar 
program: 
#include	
 <stdio.h>	
 

main()	
 

{	
 

	
 int	
 a	
 =	
 0;	
 

	
 for	
 (a;	
 a	
 <	
 100000;	
 a++)	
 {	
 

	
 	
 printf(“hello,	
 world	
 “);	
 

	
 }	
 

}	
 

 
In order to acquire accurate data, we need to know precisely when our workload begins and 
ends. 

3.2.1.2 Using getticks() to mark your workload 
If the measurement is to be accurate, we need to know exactly when the workload process 
starts, and when it ends. To do that, we read the value of the Atom CPU's timestamp counter 
(TSC). This is done by adding a function named getticks(). getticks() simply runs some in-
line assembly code to read the timestamp counter and return it. 

After we read the TSC with getticks(), we are ready to execute our workload. This workload 
could be any C code, or external programs executed with the system() library call. After the 
work to be measured is complete, we read the TSC with another call to getticks(). These 
start and end timestamps become the workload’s bookends, or “energy calipers” -- marking 
the points in the sampled data that correspond to the workload code we just executed.  
 
In order to use this data after the program completes, we need to log this information in a 
control file that the data processing tools can read. The control file format is: 

MULTIWORD_DESCRIPTION,	
 TAG,	
 START_TIME,	
 END_TIME	
 	
 

The multi-word description is meant to be short, human-readable description of the workload. 



The “tag” is a one-word identifier for the portion of code being measured (see “tabular output” 
below), and the start and end times are values from getticks(). Putting it all together, this 
looks like: 
 
#include	
 <stdio.h>	
 

#include	
 <stdlib.h>	
 

	
 

typedef	
 unsigned	
 long	
 long	
 ticks;	
 	
 

	
 

/*	
 time	
 stamp	
 function	
 */	
 

static	
 __inline__	
 ticks	
 getticks(void)	
 	
 

{	
 	
 

	
 	
 	
 	
 	
 	
 	
 	
 unsigned	
 a	
 ,d;	
 	
 

	
 	
 	
 	
 	
 	
 	
 	
 asm("cpuid");	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 Serialize	
 */	
 	
 

	
 	
 	
 	
 	
 	
 	
 	
 asm	
 volatile	
 ("rdtsc":	
 "=a"	
 (a),	
 "=d"	
 (d));	
 	
 	
 	
 	
 /*	
 Read	
 TSC	
 */	
 	
 

	
 

	
 	
 	
 	
 	
 	
 	
 	
 return	
 (((ticks)a)	
 ¦	
 (((ticks)d)	
 <<	
 32));	
 	
 	
 	
 	
 	
 	
 /*	
 64-bit	
 TSC	
 */	
 	
 

};	
 	
 

	
 

	
 

main()	
 

{	
 

	
 ticks	
 TSC_start,	
 TSC_end;	
 

	
 int	
 a	
 =	
 0;	
 

	
 char	
 *label	
 =	
 “hello”;	
 

	
 	
 

	
 TSC_start	
 =	
 getticks();	
 //	
 get	
 start	
 time	
 

	
 

	
 for	
 (a;	
 a	
 <	
 100000;	
 a++)	
 {	
 

	
 	
 printf(“hello,	
 world	
 ”);	
 

	
 }	
 

	
 

	
 TSC_end	
 =	
 getticks();	
 	
 //	
 get	
 end	
 time	
 

	
 	
 

	
 //	
 write	
 out	
 timestamps	
 and	
 labels	
 

	
 FILE	
 *caliper_file	
 =	
 fopen("/ramdisk/Energy_Caliper_Control_File","w");	
 	
 

	
 fprintf(caliper_file,	
 "This	
 is	
 a	
 test!,%s,%llu,%llu\n",	
 label,	
 TSC_start,	
 TSC_end);	
 

	
 close(FILE);	
 

	
 

}	
 

	
 

	
 

As you can see, the program is essentially the same – we’ve simply added the getticks() 
function, read the TSC before and after the workload, and wrote a log-line out to a control file 
when everything was finished. The control file is written to a ramdisk so as not to induce extra 
workload on the hard disk. 

3.2.1.3 Using multiple calipers to measure workload components 
What if we want to measure discrete parts of code within a larger task? For example, when 
profiling a hypothetical compression utility, we might want to separately measure the power 
consumption associated with reading the file, compressing the file, and writing the file. This 
can be done trivially by adding “energy calipers” around all three sections of code. It is easier 
to analyze the data if the calipers do not overlap, but that is not strictly necessary. The only 
requirement is that the energy caliper control file has a line for each measured section of 
code. 



3.2.1.4 Beware of optimization! 
As anyone who has spent much time profiling C code can tell you, both your instrumentation 
and your workload code can be unexpectedly re-ordered or optimized by the compiler in such 
a way that it no longer measures what you intend. In particular, if your calls to getticks() are 
both placed after your workload, you won't collect the correct data. It's probably a good idea 
to test your workloads with different levels of optimization as a sanity check. 

3.2.2 Executing your workload 
Once your workload is prepared, start the sampler as described above. When it the sampler 
is ready, run your workload executable in a different terminal like so: 

$	
 sudo	
 chrt	
 99	
 ./megahello	
 

Remember that the Atom LEAP is not simply measuring runtime – it is measuring the energy 
dissipated by discrete components. Your workload may affect this in unexpected ways. 
Consider what you are trying to measure, and how you could best execute that workload in 
isolation – you may want to redirect the output of your program to a file, use a ramdisk instead 
of a disk for output, or send output to /dev/null. 

3.2.3 Stopping the sampler 
Once your workload has completed, you should wait 15 seconds in order to let the sampler 
collect all relevant data. Then, stop the sampling process by pressing ^C once (or twice) in the 
terminal where the sampler is running.  You have just created two artifacts: the sample file 
data.txt, and the control file holding your timestamps, which should be located in 
/ramdisk/Energy_Caliper_Control_File. Additionally, the kernel log /var/log/messages 
contains important information for synchronization. 

3.3 Processing your data 
Processing collected data consists of two main steps. First, the sampled data in the file 
data.txt must be synchronized with the kernel timestamps in /var/log/messages. Second, 
the control file and synchronized data file are examined, and summaries are generated for 
each set of energy calipers listed in the control file. 

3.3.1 Synchronizing the data 
To synchronize the data, simply run: 

$	
 sync.py	
 data.txt	
 >	
 sync-data.txt	
 

This will synchronize kernel events with the timestamps listed in your data.txt file. Now, all 
we need to do is generate a report from the synchronized data. 

3.3.2 Generating a report 
In the simplest case, a report can be generated from your synchronized data by running:  



$	
 user_caliper_report.py	
 sync-data.txt	
 

The reporting tool will automatically open /ramdisk/Energy_Caliper_Control_File	
 and use it 
to extract and summarize average statistics for each time span listed in the control file. The 
statistics are printed in this format: 
 
print	
 hello	
 world	
 100k	
 times	
 (hello)	
 

	
 

CPU_Energy	
 (J)	
 =	
 8.669092	
 

HDD_Energy	
 (J)	
 =	
 6.065411	
 

Bridge_Energy(J)	
 =	
 1.179657	
 

RAM_Energy	
 (J)	
 =	
 2.988264	
 

CPU_Average_Power	
 (W)	
 =	
 2.665445	
 

HDD_Average_Power	
 (W)	
 =	
 1.864903	
 

Bridge_Average_Power(W)	
 =	
 0.362703	
 

RAM_Average_Power	
 (W)	
 =	
 0.918787	
 

	
 

	
 

In the above example, “print hello world 100k times” is the message in the control file. The 
word “hello” is the tag associated with this timespan, and while we do not see the TSC_start 
and TSC_end, we see the average energy (in joules) and power (in watts) consumed during 
the time between those timestamp values. If you included multiple sets of timestamps, you 
would see one stanza for each set of timestamps. Congratulations – you just acquired high-
granularity power data from the Atom LEAP! 
 

3.4 Data Analysis and Workload Design 

3.4.1 Watts vs. Joules 
Data is printed in both watts and joules. The watts value shows the average instantaneous 
power being consumed by each component over the entire workload. The joules values show 
the amount of power consumed over the runtime of the workload for each component. For 
example, in the “hello, world” example, we see that the CPU consumed 2.67 watts (on 
average), while the hard disk consumed 1.86 watts. However, the CPU is said to have 
consumed 8.67 joules during the workload while the disk consumed 6.06 joules. By 
comparing the ratio of joules to watts for each workload, we can see that: 

8.67/2.67 ~= 6.06/1.86 ~= 3.25 seconds 
It is important to remember that the same functional workload – that is, code which 
accomplishes the same result – will not necessarily have the same runtime, nor will it 
necssarily draw the same amount of power from the components depending on the operation 
of the components under the implementation of the workload. Additionally, the runtime and 
reported data will vary slightly due to noise and interference. All these issues highlight the 
importance of careful workload design. 

3.4.2 Workload Design 
Any reasonable testing framework makes it straightforward to compare the performance of 
program A using  algorithm X versus  algorithm Y. However, systems testing is rarely that 
simple. While sshfs and Samba over an encrypted tunnel may accomplish the same outcome, 



the code they execute – and how they execute it – is very different. It is not simply a matter of 
pulling out one algorithm and sticking in another. 

As a simple example, sshfs essentially invokes sftp processes for each file operation. In 
contrast, Samba is a fully-featured networked file system managed by several kernel 
components. In addition, the use of an ssh tunnel makes Samba dependent on a separate 
user-level process – meaning that packets sent over the tunnel have an additional penalty 
associated with the context switch and execution of that process.  
For reasons like these, it is absolutely critical that you consider all the components of your 
testing environment, and make sure that you have streamlined your workload as much as 
possible.  

4 LEAPfrog 
With this background material behind us, we are ready to discuss the LEAPfrog package, 
which automates the core process and makes it easier to acquire and process data in a 
format suitable for statistical analysis. 
 
LEAPfrog is a package of bash shell scripts meant to automate interactions with the core 
Atom LEAP tools. LEAPfrog aims to do several things: 

1.Facilitate instrumenting shell scripts and interpreted code 
2.Modularize workloads and testing software 
3.Automate repetitions of workloads 
4.Automate starting and stopping the sampler 
5.Automate generating reports 
6.Generate output in an analysis and backup-friendly format 

We'll talk about each of these topics in the following sections, and show you how to use the 
LEAPfrog package to create your own workloads without compiling C code. 

4.1 Workloads 

4.1.1 Instrumenting modular shell scripts  
While compiled C code is perfect for measuring the power consumption of algorithms, it is not 
convenient for testing higher level tasks, especially the sequential, interrelated tasks common 
in systems testing. For example, suppose we would like to measure the power consumption 
involved in decompressing a tar file and then deleting the results of the decompression. We 
could do this in C, using multiple system() calls, but this requires recompilation for any 
changes. However, the C example above gives us a format we can translate to bash with the 
addition of a getticks binary. 



#!/bin/bash	
 

	
 

MESSAGE=”untar	
 linux”	
 

TAG=”untar”	
 

TSC_START=`getticks`	
 

tar	
 xvjf	
 linux.tar.bz2	
 

TSC_END=`getticks`	
 

echo	
 “$MESSAGE,	
 $TAG,	
 $TSC_START,	
 $TSC_END”	
 >	
 /ramdisk/Energy_Caliper_Control_File	
 

	
 

MESSAGE=”remove	
 linux”	
 

TAG=”remove”	
 

TSC_START=`getticks`	
 

rm	
 -rf	
 linux-2.6/	
 

TSC_END=`getticks`	
 

echo	
 “$MESSAGE,	
 $TAG,	
 $TSC_START,	
 $TSC_END”	
 >>	
 /ramdisk/Energy_Caliper_Control_File	
 

	
 

 
Bash scripts can also easily include “setup” and “teardown” portions to ensure that the 
experimental environment always starts in the same state. (That isn't shown here, although 
the example /usr/atom_LEAP/code/frog/ext2untar-workload includes code to do this.)  
 
The Atom LEAP system provides a getticks binary, which prints the value of the TSC to 
standard out. With a getticks binary, we can perform the steps from the core process section 
using flexible interpreted code such as bash scripts to run our workloads (and add necessary 
lines to the control file). While we may lose some accuracy due to process startup costs, this 
should be insignificant for higher-level workloads like filesystem benchmarks and the like. 
 

4.1.2 Automating repetitions 
The performance characteristics of modern computer systems is probabilistic. Cache 
behavior, networking, process interference, pipelining, and hard disk behavior (just to name a 
few) all conspire to cast doubt on the representativity of any single measurement. Thus, when 
measuring systems, it is necessary to take several measurements of the same process and 
analyze them in order to make sure that the results are accurate. 
We can do this very easily by enclosing the workload in a for loop: 



#!/bin/bash	
 

	
 

REPS=$1	
 	
 #	
 the	
 first	
 parameter	
 is	
 the	
 number	
 of	
 repetitions	
 

	
 

sudo	
 chrt	
 -p	
 $$	
 99	
 #	
 set	
 the	
 priority	
 of	
 this	
 process	
 

	
 

source	
 /usr/atom_LEAP/code/frog/frogscripts.sh	
 #	
 load	
 the	
 control_append	
 function	
 

	
 

for	
 REP	
 in	
 $REPS	
 

do	
 

	
 

	
 MESSAGE=”untar	
 linux	
 #$REP”	
 

	
 TAG=”untar”	
 

	
 TSC_START=`getticks`	
 

	
 tar	
 xvjf	
 linux.tar.bz2	
 

	
 TSC_END=`getticks`	
 

	
 control_append	
 $TSC_START	
 $TSC_END	
 $TAG	
 $MESSAGE	
 

	
 	
 

	
 MESSAGE=”remove	
 linux	
 #$REP”	
 

	
 TAG=”remove”	
 

	
 TSC_START=`getticks`	
 

	
 rm	
 -rf	
 linux-2.6/	
 

	
 TSC_END=`getticks`	
 

	
 control_append	
 $TSC_START	
 $TSC_END	
 $TAG	
 $MESSAGE	
 

done	
 

	
 

 

4.1.3 Enhancing the workload 
You may have noticed that we made a few small changes to this file. First, we added the line: 

sudo	
 chrt	
 -p	
 $$	
 99	
 	
 

... which sets the process id (PID) of the workload process (and its children) to real time 
priority in order to minimize preemptions. This requires sudo access with the NOPASSWD 
option set. (See “sudo settings” below.) 
 
The next change is that we've sourced the frogscripts.sh package in order to load the 
control_append bash function.  As you can see, control_append is simply a shortcut for 
echoing the test information to the control file. Bash parameters are positional; it is the order 
of the arguments to control_append, not the variable names, that matter. Note that 
control_append reads the parameters in a different order; this is to simplify the code. 
 
Thanks to these changes, executing: 

$	
 workload	
 10	
 

... will run the workload 10 times in a row at real-time priority, and the MESSAGE variables 
will be updated for each repetition with the $REP counter variable. While the MESSAGE 
variable is updated for each REP, the TAG variable is not. That is so that the data associated 
with each TAG can be separated for easier analysis. 



4.2 Automating the sampler and reporting 
As you read in the previous sections, starting and stopping the sampler requires a second 
terminal and patience, both while waiting for it to synchronize and to finish collecting data. 
LEAPfrog provides a tool, leapfrog, which takes all the hard work out of collecting data. 
leapfrog also sources frogscripts.sh, which includes a number of helper functions to: 

start the sampler in a subshell and wait for the appropriate messages 
run a given workload a number of repetitions 
stop the sampler when the workload is complete 
run the synchronization tool on the output 
run the reporting tools on the synchronized data 
back up the data 
attempt to behave intelligently when something goes wrong 

leapfrog starts the sampler, calls the given workload with any arguments, and cleans up 
when finished. With a workload script like the example above, simply execute: 

$	
 leapfrog	
 workload	
 10	
 

This will start the sampler, run the workload 10 times, stop the sampler, and perform the post-
run data processing steps automatically, saving the data out into files. 

4.3 LEAPfrog backup behavior 
While the Atom LEAP is not suitable for multiple simultaneous experiments, researchers will 
want to run multiple, identical, tests in sequence to establish statistical confidence. It's 
common for users to reuse the same names for input and output files, but this can facilitate 
accidentally overwriting important information. For this reason, LEAPfrog copies all the 
relevant data files to /tmp/UNIXDATE-workload/FILENAME	
 where UNIXDATE is the number of 
seconds since the UNIX epoch and the value of  FILENAME is one of data.txt, sync.txt, 
Energy_Caliper_Control_File, or reports (a directory which containing the tabular output for 
each tagged workload subcomponent). 
 

4.4 LEAPfrog tabular output format 
LEAPfrog prints output to the console in a manner similar to the “core process” just described. 
However, because of the necessity of running multiple repetitions for statistical confidence, 
LEAPfrog also prints results in a tab-separated file named after the workload file  and the 
TAG variable included in the control file. For example, after running: 

$	
 leapfrog	
 sshfs-disk-workload	
 5	
 

We find that the output has been backed up in /tmp/1291266494-sshfs-disk-workload/.  
1291266494 was the UNIX time when the test began; this ensures that no subsequent test 
will overwrite data from a previous test. More importantly, in /tmp/1291266494-sshfs-disk-



workload/reports/, we find three files, copy.tsv, remove.tsv, and untar.tsv. Each of these 
files contains aggregate data (one row per repetition) corresponding to a workload tag that 
was present in the control file. The reporting tool prints the data in a tab-separated format, in 
addition to the human-friendly format printed to the console. This conveniently and 
automatically separates data from multiple repetitions into a format which is ready to be 
imported into a tool such as R, Open Office Calc, gnuplot, or Excel for analysis. 
 
For example, copy.tsv contains the following information: 
 
# CPU (J) HDD (J) BR (J)  RAM (J) CPU (W) HDD (W) BR (W)  RAM (W) 
8.669092        6.065411        1.179657        2.988264        2.665445        1.864903        0.362703       0.918787 
8.002690        5.107588        1.225798        2.701306        2.671481        1.705030        0.409200       0.901758 
7.937569        5.246586        1.133595        2.783591        2.659865        1.758121        0.379866       0.932776 
8.083968        5.213154        1.228385        2.837290        2.669827        1.721706        0.405689       0.937049 
7.245004        4.713862        1.074891        2.629322        2.665368        1.734185        0.395442       0.967303 

 

4.5 Manually selecting tabular reporting 
By default, user_caliper_report.py does not print tabular output. However, Leapscripts 
invokes user_caliper_report.py	
 with options to enable this feature. You can manually select 
this style of reporting even if you are not using Leapscripts. For example, to write TSV files to 
/tmp/reports (in addition to the human-readable console output), execute: 

$	
 user_caliper_report.py	
 -t	
 /tmp/reports	
 sync-data.txt	
 

4.6 Remote data processing 
Data processing on the LEAP platform typically takes much longer than the actual 
experiments, and uses the full processing power of the LEAP platform. This reduces the 
number of experiments that can be tested, because running experiments while processing 
data would produce innacurate experimental results. Some users may wish to collect data on 
the LEAP platform, and transfer it to another system for processing.  

Three files are needed to fully process the data. First, you need the raw data itself (data.txt 
in our examples). Then,for synchronization, you need the kernel message file 
(/var/log/messages), and the energy caliper control file 
(/ramdisk/Energy_Caliper_Control_File).  

4.6.1 Remote synchronization 
To perform the synchronization step on a remote server, users must provide the raw data and 
the location of the kernel log containing synchronization messages to the synchronization 
script. This is done by specifying the log file as the second argument to sync.py, like so: 

$	
 sync.py	
 data-copy.txt	
 messages-copy.log	
 >	
 sync-data.txt	
 

If  no second argument is specified, the script assumes the kernel log is at 
/var/log/messages. 



4.6.2 Remote reporting 
Running the reporting tools on a remote server requires you to provide the control file 
containing the “energy caliper” time stamps for the experimental data. Specify this path with 
the -e switch, typically used with the -t switch described above. For example: 

$	
 user_caliper_report.py	
 -t	
 /tmp/123123123-workload/reports	
 -e	
 /tmp/123123123-

workload/Energy_Caliper_Control_File	
 sync-data.txt	
 

This command manually specifies the synchronized data file and control file to use, and 
specifies an output directory for tabular data. 

4.7 See also... 
 
For more information on LEAPfrog, see the code in 
/usr/atom_LEAP/code/frog/frogscripts.sh is a set of functions for managing the processes, 
leapfrog is the launcher, and the *-workload files are sample workloads. 
 
Please report bugs in the LEAPfrog tools to Peter A. H. Peterson <pahp@cs.ucla.edu> 


