
Atom-LEAP
User-space Measurement Tutorial

1 Introduction
The Atom-LEAP platform is a highly-instrumented Intel Atom based motherboard along side a
USB-enabled National Instruments data acquisition module (DAQ). It allows researchers to
acquire power measurements at a high granularity, in both kernel and user-level code. This
brief tutorial will describe how to use the Atom-LEAP to acquire user-level data using the core
LEAP tools as well as the more user-friendly LEAPfrog (LEAP For Repetitive, Organized
Gathering) package.
There are three main steps in the data gathering process on the Atom-LEAP. First, data
acquisition involves starting the sampling device and directing output to a log file. Workload
execution begins once sampling has started properly. Finally, reporting takes the raw data
and timestamps generated in the first two steps and generates useful reports. We will first
describe the use of the core tools in acquiring and processing data from the Atom-LEAP, and
then go on to describe use of the more user-friendly LEAPfrog.

2 What does it measure?
The Atom-LEAP samples data during the runtime of a specified process. The sampling
hardware observes the watts (W) consumed by a component or components on a particular
circuit during a sampling interval. This interval is typically 1/10000th of a second, or 100
microseconds. Because we have the watts and the run time, we can calculate the total joules
(J) during the observed task.
The Atom-LEAP samples data for 5 components by default, although it can be configured to
acquire more. Those components are: CPU, hard disk, bridge (experimental), RAM, and USB.
In all cases, the measurement is taken on the pins or wires responsible for powering the
device. This means, for example, that the hard disk power measurement is on the power
leads to the disk itself, not to the disk controller. Likewise, the RAM power is measured
directly at the DIMM, the CPU at its power converter, and the USB on the USB cable. The
bridge measurement is currently experimental.
When the sampling is finished for a task, the raw data exists as rows of watt measurements
per component, per sampling interval. Synchronization is performed to identify the system
time when sampling began and ended, as well as to identify the specific segments of samples
observed relevant to the workload or workloads under investigation.

3 Core process

3.1 Data acquisition
Experimental data is acquired by a USB-enabled National Instruments data acquisition
module (DAQ). The DAQ is connected to current-sensing leads which are attached to various
components of the LEAP node. Typically, the DAQ samples data at 10 kHz, or 10,000 times

per second. In order to acquire any data, the DAQ must be instructed to start gathering data,
and must be given an output location. Finally, the sampling process must be run at real-time
priority, so that it is not interrupted by other processes.

3.1.1 Load kernel module 'probe.ko'
The kernel requires a module in order to interact with the DAQ. This probe must be loaded
the first time the Atom LEAP is booted (or when the DAQ is connected to the machine). To
load the kernel probe, run:

$	
 sudo	
 insmod	
 /usr/atom_LEAP/code/sync/probe.ko	

The probe will add messages to /var/log/messages which will enable us to measure the
amount of time which passed during the sampled workload(s).

3.1.2 Start the sampling process
If the kernel module is loaded, you can start the sampler by opening a terminal and executing:

$	
 sudo	
 chrt	
 99	
 start_sampling	
 2>	
 data.txt	

Sampling is started using sudo for two reasons. First, the sampling process must interact with
the kernel probe module, which requires root privileges. Second, the sampler must be set to
run at real-time priority so that the sampler program (start_sampling) does not fall too far
behind the physical DAQ device. When the sampler first starts, it attempts to synchronize with
the system. It is important to wait for synchronization before starting your workload. (The
accuracy of your data will not be affected by this time gap due to the synchronization code.)
Either of the two following messages indicates that the sampler is ready:
[45177.536016]	
 Synchronized!	
 Core	
 =	
 0	
 TSC	
 =	
 NNNNNNNNNNNNN	

[45177.577051]	
 Probe	
 Unregistered	

...or
[32383.559476]	
 KProbe	
 address	
 set	
 to	
 c025d560	

[32383.681772]	
 Probe	
 Registered	

Once you see this output, you're set to run your workload!

3.1.3 Sampling tips

3.1.3.1 Don't run the sampler until your workload is ready.
You generally don't want to run the sampler until you are ready to run your workload. This is
because the sampler generates a large amount of data. The longer the sampler runs, the
longer it will take to synchronize the data and generate reports. If you've started the sampler
early and you want to quit, press ^C to stop it.

3.1.3.2 What if the sampler doesn't become ready?
Sometimes the sampler never prints either of the two lines of data, or prints some errors. In

this case, just press ^C to kill the sampler, wait a few seconds, and try again.

3.2 Preparing and executing your workload
The workload process is simply a task from which you would like to obtain power readings.
This workload can be in the form of a compiled program, a shell script, or some combination
of the two. We'll use a compiled C program as an example for the core tools, and discuss
more complex workloads later.

Before your code can be profiled, you must identify the portions of code for which you want to
collect data. For each such section, you'll need to insert a small amount of instrumentation
code into your program.

3.2.1 Energy Calipers

3.2.1.1 A familiar example
Suppose you wanted to monitor the power consumption of the following somewhat familiar
program:
#include	
 <stdio.h>	

main()	

{	

	
 int	
 a	
 =	
 0;	

	
 for	
 (a;	
 a	
 <	
 100000;	
 a++)	
 {	

	
 	
 printf(“hello,	
 world	
 “);	

	
 }	

}	

In order to acquire accurate data, we need to know precisely when our workload begins and
ends.

3.2.1.2 Using getticks() to mark your workload
If the measurement is to be accurate, we need to know exactly when the workload process
starts, and when it ends. To do that, we read the value of the Atom CPU's timestamp counter
(TSC). This is done by adding a function named getticks(). getticks() simply runs some in-
line assembly code to read the timestamp counter and return it.

After we read the TSC with getticks(), we are ready to execute our workload. This workload
could be any C code, or external programs executed with the system() library call. After the
work to be measured is complete, we read the TSC with another call to getticks(). These
start and end timestamps become the workload’s bookends, or “energy calipers” -- marking
the points in the sampled data that correspond to the workload code we just executed.

In order to use this data after the program completes, we need to log this information in a
control file that the data processing tools can read. The control file format is:

MULTIWORD_DESCRIPTION,	
 TAG,	
 START_TIME,	
 END_TIME	
 	

The multi-word description is meant to be short, human-readable description of the workload.

The “tag” is a one-word identifier for the portion of code being measured (see “tabular output”
below), and the start and end times are values from getticks(). Putting it all together, this
looks like:

#include	
 <stdio.h>	

#include	
 <stdlib.h>	

	

typedef	
 unsigned	
 long	
 long	
 ticks;	
 	

	

/*	
 time	
 stamp	
 function	
 */	

static	
 __inline__	
 ticks	
 getticks(void)	
 	

{	
 	

	
 	
 	
 	
 	
 	
 	
 	
 unsigned	
 a	
 ,d;	
 	

	
 	
 	
 	
 	
 	
 	
 	
 asm("cpuid");	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 /*	
 Serialize	
 */	
 	

	
 	
 	
 	
 	
 	
 	
 	
 asm	
 volatile	
 ("rdtsc":	
 "=a"	
 (a),	
 "=d"	
 (d));	
 	
 	
 	
 	
 /*	
 Read	
 TSC	
 */	
 	

	

	
 	
 	
 	
 	
 	
 	
 	
 return	
 (((ticks)a)	
 ¦	
 (((ticks)d)	
 <<	
 32));	
 	
 	
 	
 	
 	
 	
 /*	
 64-bit	
 TSC	
 */	
 	

};	
 	

	

	

main()	

{	

	
 ticks	
 TSC_start,	
 TSC_end;	

	
 int	
 a	
 =	
 0;	

	
 char	
 *label	
 =	
 “hello”;	

	
 	

	
 TSC_start	
 =	
 getticks();	
 //	
 get	
 start	
 time	

	

	
 for	
 (a;	
 a	
 <	
 100000;	
 a++)	
 {	

	
 	
 printf(“hello,	
 world	
 ”);	

	
 }	

	

	
 TSC_end	
 =	
 getticks();	
 	
 //	
 get	
 end	
 time	

	
 	

	
 //	
 write	
 out	
 timestamps	
 and	
 labels	

	
 FILE	
 *caliper_file	
 =	
 fopen("/ramdisk/Energy_Caliper_Control_File","w");	
 	

	
 fprintf(caliper_file,	
 "This	
 is	
 a	
 test!,%s,%llu,%llu\n",	
 label,	
 TSC_start,	
 TSC_end);	

	
 close(FILE);	

	

}	

	

	

As you can see, the program is essentially the same – we’ve simply added the getticks()
function, read the TSC before and after the workload, and wrote a log-line out to a control file
when everything was finished. The control file is written to a ramdisk so as not to induce extra
workload on the hard disk.

3.2.1.3 Using multiple calipers to measure workload components
What if we want to measure discrete parts of code within a larger task? For example, when
profiling a hypothetical compression utility, we might want to separately measure the power
consumption associated with reading the file, compressing the file, and writing the file. This
can be done trivially by adding “energy calipers” around all three sections of code. It is easier
to analyze the data if the calipers do not overlap, but that is not strictly necessary. The only
requirement is that the energy caliper control file has a line for each measured section of
code.

3.2.1.4 Beware of optimization!
As anyone who has spent much time profiling C code can tell you, both your instrumentation
and your workload code can be unexpectedly re-ordered or optimized by the compiler in such
a way that it no longer measures what you intend. In particular, if your calls to getticks() are
both placed after your workload, you won't collect the correct data. It's probably a good idea
to test your workloads with different levels of optimization as a sanity check.

3.2.2 Executing your workload
Once your workload is prepared, start the sampler as described above. When it the sampler
is ready, run your workload executable in a different terminal like so:

$	
 sudo	
 chrt	
 99	
 ./megahello	

Remember that the Atom LEAP is not simply measuring runtime – it is measuring the energy
dissipated by discrete components. Your workload may affect this in unexpected ways.
Consider what you are trying to measure, and how you could best execute that workload in
isolation – you may want to redirect the output of your program to a file, use a ramdisk instead
of a disk for output, or send output to /dev/null.

3.2.3 Stopping the sampler
Once your workload has completed, you should wait 15 seconds in order to let the sampler
collect all relevant data. Then, stop the sampling process by pressing ^C once (or twice) in the
terminal where the sampler is running. You have just created two artifacts: the sample file
data.txt, and the control file holding your timestamps, which should be located in
/ramdisk/Energy_Caliper_Control_File. Additionally, the kernel log /var/log/messages
contains important information for synchronization.

3.3 Processing your data
Processing collected data consists of two main steps. First, the sampled data in the file
data.txt must be synchronized with the kernel timestamps in /var/log/messages. Second,
the control file and synchronized data file are examined, and summaries are generated for
each set of energy calipers listed in the control file.

3.3.1 Synchronizing the data
To synchronize the data, simply run:

$	
 sync.py	
 data.txt	
 >	
 sync-data.txt	

This will synchronize kernel events with the timestamps listed in your data.txt file. Now, all
we need to do is generate a report from the synchronized data.

3.3.2 Generating a report
In the simplest case, a report can be generated from your synchronized data by running:

$	
 user_caliper_report.py	
 sync-data.txt	

The reporting tool will automatically open /ramdisk/Energy_Caliper_Control_File	
 and use it
to extract and summarize average statistics for each time span listed in the control file. The
statistics are printed in this format:

print	
 hello	
 world	
 100k	
 times	
 (hello)	

	

CPU_Energy	
 (J)	
 =	
 8.669092	

HDD_Energy	
 (J)	
 =	
 6.065411	

Bridge_Energy(J)	
 =	
 1.179657	

RAM_Energy	
 (J)	
 =	
 2.988264	

CPU_Average_Power	
 (W)	
 =	
 2.665445	

HDD_Average_Power	
 (W)	
 =	
 1.864903	

Bridge_Average_Power(W)	
 =	
 0.362703	

RAM_Average_Power	
 (W)	
 =	
 0.918787	

	

	

In the above example, “print hello world 100k times” is the message in the control file. The
word “hello” is the tag associated with this timespan, and while we do not see the TSC_start
and TSC_end, we see the average energy (in joules) and power (in watts) consumed during
the time between those timestamp values. If you included multiple sets of timestamps, you
would see one stanza for each set of timestamps. Congratulations – you just acquired high-
granularity power data from the Atom LEAP!

3.4 Data Analysis and Workload Design

3.4.1 Watts vs. Joules
Data is printed in both watts and joules. The watts value shows the average instantaneous
power being consumed by each component over the entire workload. The joules values show
the amount of power consumed over the runtime of the workload for each component. For
example, in the “hello, world” example, we see that the CPU consumed 2.67 watts (on
average), while the hard disk consumed 1.86 watts. However, the CPU is said to have
consumed 8.67 joules during the workload while the disk consumed 6.06 joules. By
comparing the ratio of joules to watts for each workload, we can see that:

8.67/2.67 ~= 6.06/1.86 ~= 3.25 seconds
It is important to remember that the same functional workload – that is, code which
accomplishes the same result – will not necessarily have the same runtime, nor will it
necssarily draw the same amount of power from the components depending on the operation
of the components under the implementation of the workload. Additionally, the runtime and
reported data will vary slightly due to noise and interference. All these issues highlight the
importance of careful workload design.

3.4.2 Workload Design
Any reasonable testing framework makes it straightforward to compare the performance of
program A using algorithm X versus algorithm Y. However, systems testing is rarely that
simple. While sshfs and Samba over an encrypted tunnel may accomplish the same outcome,

the code they execute – and how they execute it – is very different. It is not simply a matter of
pulling out one algorithm and sticking in another.

As a simple example, sshfs essentially invokes sftp processes for each file operation. In
contrast, Samba is a fully-featured networked file system managed by several kernel
components. In addition, the use of an ssh tunnel makes Samba dependent on a separate
user-level process – meaning that packets sent over the tunnel have an additional penalty
associated with the context switch and execution of that process.
For reasons like these, it is absolutely critical that you consider all the components of your
testing environment, and make sure that you have streamlined your workload as much as
possible.

4 LEAPfrog
With this background material behind us, we are ready to discuss the LEAPfrog package,
which automates the core process and makes it easier to acquire and process data in a
format suitable for statistical analysis.

LEAPfrog is a package of bash shell scripts meant to automate interactions with the core
Atom LEAP tools. LEAPfrog aims to do several things:

1.Facilitate instrumenting shell scripts and interpreted code
2.Modularize workloads and testing software
3.Automate repetitions of workloads
4.Automate starting and stopping the sampler
5.Automate generating reports
6.Generate output in an analysis and backup-friendly format

We'll talk about each of these topics in the following sections, and show you how to use the
LEAPfrog package to create your own workloads without compiling C code.

4.1 Workloads

4.1.1 Instrumenting modular shell scripts
While compiled C code is perfect for measuring the power consumption of algorithms, it is not
convenient for testing higher level tasks, especially the sequential, interrelated tasks common
in systems testing. For example, suppose we would like to measure the power consumption
involved in decompressing a tar file and then deleting the results of the decompression. We
could do this in C, using multiple system() calls, but this requires recompilation for any
changes. However, the C example above gives us a format we can translate to bash with the
addition of a getticks binary.

#!/bin/bash	

	

MESSAGE=”untar	
 linux”	

TAG=”untar”	

TSC_START=`getticks`	

tar	
 xvjf	
 linux.tar.bz2	

TSC_END=`getticks`	

echo	
 “$MESSAGE,	
 $TAG,	
 $TSC_START,	
 $TSC_END”	
 >	
 /ramdisk/Energy_Caliper_Control_File	

	

MESSAGE=”remove	
 linux”	

TAG=”remove”	

TSC_START=`getticks`	

rm	
 -rf	
 linux-2.6/	

TSC_END=`getticks`	

echo	
 “$MESSAGE,	
 $TAG,	
 $TSC_START,	
 $TSC_END”	
 >>	
 /ramdisk/Energy_Caliper_Control_File	

	

Bash scripts can also easily include “setup” and “teardown” portions to ensure that the
experimental environment always starts in the same state. (That isn't shown here, although
the example /usr/atom_LEAP/code/frog/ext2untar-workload includes code to do this.)

The Atom LEAP system provides a getticks binary, which prints the value of the TSC to
standard out. With a getticks binary, we can perform the steps from the core process section
using flexible interpreted code such as bash scripts to run our workloads (and add necessary
lines to the control file). While we may lose some accuracy due to process startup costs, this
should be insignificant for higher-level workloads like filesystem benchmarks and the like.

4.1.2 Automating repetitions
The performance characteristics of modern computer systems is probabilistic. Cache
behavior, networking, process interference, pipelining, and hard disk behavior (just to name a
few) all conspire to cast doubt on the representativity of any single measurement. Thus, when
measuring systems, it is necessary to take several measurements of the same process and
analyze them in order to make sure that the results are accurate.
We can do this very easily by enclosing the workload in a for loop:

#!/bin/bash	

	

REPS=$1	
 	
 #	
 the	
 first	
 parameter	
 is	
 the	
 number	
 of	
 repetitions	

	

sudo	
 chrt	
 -p	
 $$	
 99	
 #	
 set	
 the	
 priority	
 of	
 this	
 process	

	

source	
 /usr/atom_LEAP/code/frog/frogscripts.sh	
 #	
 load	
 the	
 control_append	
 function	

	

for	
 REP	
 in	
 $REPS	

do	

	

	
 MESSAGE=”untar	
 linux	
 #$REP”	

	
 TAG=”untar”	

	
 TSC_START=`getticks`	

	
 tar	
 xvjf	
 linux.tar.bz2	

	
 TSC_END=`getticks`	

	
 control_append	
 $TSC_START	
 $TSC_END	
 $TAG	
 $MESSAGE	

	
 	

	
 MESSAGE=”remove	
 linux	
 #$REP”	

	
 TAG=”remove”	

	
 TSC_START=`getticks`	

	
 rm	
 -rf	
 linux-2.6/	

	
 TSC_END=`getticks`	

	
 control_append	
 $TSC_START	
 $TSC_END	
 $TAG	
 $MESSAGE	

done	

	

4.1.3 Enhancing the workload
You may have noticed that we made a few small changes to this file. First, we added the line:

sudo	
 chrt	
 -p	
 $$	
 99	
 	

... which sets the process id (PID) of the workload process (and its children) to real time
priority in order to minimize preemptions. This requires sudo access with the NOPASSWD
option set. (See “sudo settings” below.)

The next change is that we've sourced the frogscripts.sh package in order to load the
control_append bash function. As you can see, control_append is simply a shortcut for
echoing the test information to the control file. Bash parameters are positional; it is the order
of the arguments to control_append, not the variable names, that matter. Note that
control_append reads the parameters in a different order; this is to simplify the code.

Thanks to these changes, executing:

$	
 workload	
 10	

... will run the workload 10 times in a row at real-time priority, and the MESSAGE variables
will be updated for each repetition with the $REP counter variable. While the MESSAGE
variable is updated for each REP, the TAG variable is not. That is so that the data associated
with each TAG can be separated for easier analysis.

4.2 Automating the sampler and reporting
As you read in the previous sections, starting and stopping the sampler requires a second
terminal and patience, both while waiting for it to synchronize and to finish collecting data.
LEAPfrog provides a tool, leapfrog, which takes all the hard work out of collecting data.
leapfrog also sources frogscripts.sh, which includes a number of helper functions to:

start the sampler in a subshell and wait for the appropriate messages
run a given workload a number of repetitions
stop the sampler when the workload is complete
run the synchronization tool on the output
run the reporting tools on the synchronized data
back up the data
attempt to behave intelligently when something goes wrong

leapfrog starts the sampler, calls the given workload with any arguments, and cleans up
when finished. With a workload script like the example above, simply execute:

$	
 leapfrog	
 workload	
 10	

This will start the sampler, run the workload 10 times, stop the sampler, and perform the post-
run data processing steps automatically, saving the data out into files.

4.3 LEAPfrog backup behavior
While the Atom LEAP is not suitable for multiple simultaneous experiments, researchers will
want to run multiple, identical, tests in sequence to establish statistical confidence. It's
common for users to reuse the same names for input and output files, but this can facilitate
accidentally overwriting important information. For this reason, LEAPfrog copies all the
relevant data files to /tmp/UNIXDATE-workload/FILENAME	
 where UNIXDATE is the number of
seconds since the UNIX epoch and the value of FILENAME is one of data.txt, sync.txt,
Energy_Caliper_Control_File, or reports (a directory which containing the tabular output for
each tagged workload subcomponent).

4.4 LEAPfrog tabular output format
LEAPfrog prints output to the console in a manner similar to the “core process” just described.
However, because of the necessity of running multiple repetitions for statistical confidence,
LEAPfrog also prints results in a tab-separated file named after the workload file and the
TAG variable included in the control file. For example, after running:

$	
 leapfrog	
 sshfs-disk-workload	
 5	

We find that the output has been backed up in /tmp/1291266494-sshfs-disk-workload/.
1291266494 was the UNIX time when the test began; this ensures that no subsequent test
will overwrite data from a previous test. More importantly, in /tmp/1291266494-sshfs-disk-

workload/reports/, we find three files, copy.tsv, remove.tsv, and untar.tsv. Each of these
files contains aggregate data (one row per repetition) corresponding to a workload tag that
was present in the control file. The reporting tool prints the data in a tab-separated format, in
addition to the human-friendly format printed to the console. This conveniently and
automatically separates data from multiple repetitions into a format which is ready to be
imported into a tool such as R, Open Office Calc, gnuplot, or Excel for analysis.

For example, copy.tsv contains the following information:

CPU (J) HDD (J) BR (J) RAM (J) CPU (W) HDD (W) BR (W) RAM (W)
8.669092 6.065411 1.179657 2.988264 2.665445 1.864903 0.362703 0.918787
8.002690 5.107588 1.225798 2.701306 2.671481 1.705030 0.409200 0.901758
7.937569 5.246586 1.133595 2.783591 2.659865 1.758121 0.379866 0.932776
8.083968 5.213154 1.228385 2.837290 2.669827 1.721706 0.405689 0.937049
7.245004 4.713862 1.074891 2.629322 2.665368 1.734185 0.395442 0.967303

4.5 Manually selecting tabular reporting
By default, user_caliper_report.py does not print tabular output. However, Leapscripts
invokes user_caliper_report.py	
 with options to enable this feature. You can manually select
this style of reporting even if you are not using Leapscripts. For example, to write TSV files to
/tmp/reports (in addition to the human-readable console output), execute:

$	
 user_caliper_report.py	
 -t	
 /tmp/reports	
 sync-data.txt	

4.6 Remote data processing
Data processing on the LEAP platform typically takes much longer than the actual
experiments, and uses the full processing power of the LEAP platform. This reduces the
number of experiments that can be tested, because running experiments while processing
data would produce innacurate experimental results. Some users may wish to collect data on
the LEAP platform, and transfer it to another system for processing.

Three files are needed to fully process the data. First, you need the raw data itself (data.txt
in our examples). Then,for synchronization, you need the kernel message file
(/var/log/messages), and the energy caliper control file
(/ramdisk/Energy_Caliper_Control_File).

4.6.1 Remote synchronization
To perform the synchronization step on a remote server, users must provide the raw data and
the location of the kernel log containing synchronization messages to the synchronization
script. This is done by specifying the log file as the second argument to sync.py, like so:

$	
 sync.py	
 data-copy.txt	
 messages-copy.log	
 >	
 sync-data.txt	

If no second argument is specified, the script assumes the kernel log is at
/var/log/messages.

4.6.2 Remote reporting
Running the reporting tools on a remote server requires you to provide the control file
containing the “energy caliper” time stamps for the experimental data. Specify this path with
the -e switch, typically used with the -t switch described above. For example:

$	
 user_caliper_report.py	
 -t	
 /tmp/123123123-workload/reports	
 -e	
 /tmp/123123123-

workload/Energy_Caliper_Control_File	
 sync-data.txt	

This command manually specifies the synchronized data file and control file to use, and
specifies an output directory for tabular data.

4.7 See also...

For more information on LEAPfrog, see the code in
/usr/atom_LEAP/code/frog/frogscripts.sh is a set of functions for managing the processes,
leapfrog is the launcher, and the *-workload files are sample workloads.

Please report bugs in the LEAPfrog tools to Peter A. H. Peterson <pahp@cs.ucla.edu>

