
Lecture 5
Page 1 CS 136, Winter 2017

Cryptographic Keys
CS 136

Computer Security
Peter Reiher

January 24, 2017

Lecture 5
Page 2 CS 136, Winter 2017

Outline

•  Properties of keys
•  Certificates
•  Key management

Lecture 5
Page 3 CS 136, Winter 2017

Introduction

•  It doesn’t matter how strong your
encryption algorithm is

•  If the opponents can get hold of your
keys, your security is gone

•  Proper use of keys is crucial to security
in computing systems

•  Ciphers don’t get cracked often, but
keys get leaked all the time

Lecture 5
Page 4 CS 136, Winter 2017

Properties of Keys

•  Length
•  Randomness
•  Lifetime
•  Secrecy
•  Generation

Lecture 5
Page 5 CS 136, Winter 2017

Key Length

•  If your cryptographic algorithm is
otherwise perfect, its strength depends
on key length

•  Since the only attack is a brute force
attempt to discover the key

•  The longer the key, the more brute
force required

Lecture 5
Page 6 CS 136, Winter 2017

Are There Real Costs for Key
Length?

•  Generally, more bits is more secure
•  Why not a whole lot of key bits, then?
•  Some encryption done in hardware

– More bits in hardware costs more
•  Some software encryption slows down as you add

more bits, too
– Public key cryptography especially

•  Some algorithms have defined key lengths only
•  If the attack isn’t brute force, key length might not

help

Lecture 5
Page 7 CS 136, Winter 2017

Key Randomness

•  Brute force attacks assume you chose your
key at random

•  If attacker learns how you chose your key
– He can reduce brute force costs

•  How good is your random number
generator?

Lecture 5
Page 8 CS 136, Winter 2017

Generating Random Keys
•  Well, don’t use rand()1
•  The closer the method chosen approaches

true randomness, the better
•  But, generally, don’t want to rely on exotic

hardware
•  True randomness is not essential

– Need same statistical properties
– And non-reproducibility

1See http://eprint.iacr.org/2013/338.pdf for details

Lecture 5
Page 9 CS 136, Winter 2017

Cryptographic Methods

•  Start with a random number
•  Use a cryptographic hash on it
•  If the cryptographic hash is a good one, the

new number looks pretty random
•  Produce new keys by hashing old ones
•  Depends on strength of hash algorithm
•  Falls apart if any key is ever broken

– Doesn’t have perfect forward secrecy

Lecture 5
Page 10 CS 136, Winter 2017

Perfect Forward Secrecy
•  A highly desirable property in a

cryptosystem
•  It means that the compromise of any one

session key will not compromise any other
– E.g., don’t derive one key from another

using a repeatable algorithm
•  Keys do get divulged, so minimize the

resulting damage

Lecture 5
Page 11 CS 136, Winter 2017

Random Noise
•  Observe an event that is likely to be random

– Physical processes (cosmic rays, etc.)
– Real world processes (variations in disk

drive delay, keystroke delays, etc.)
•  Assign bit values to possible outcomes
•  Record or generate them as needed
•  More formally described as gathering

entropy
•  Keys derived with proper use of randomness

have good perfect forward secrecy

Lecture 5
Page 12 CS 136, Winter 2017

On Users and Randomness
•  Some crypto packages require users to

provide entropy
– To bootstrap key generation or other uses

of randomness
•  Users do this badly (often very badly)
•  They usually try to do something simple

– And not really random
•  Better to have crypto package get its own

entropy

Lecture 5
Page 13 CS 136, Winter 2017

Don’t Go Crazy on Randomness

•  Make sure it’s non-reproducible
– So attackers can’t play it back

•  Make sure there aren’t obvious patterns
•  Attacking truly unknown patterns in fairly

random numbers is extremely challenging
– They’ll probably mug you, instead

Lecture 5
Page 14 CS 136, Winter 2017

Key Lifetime

•  If a good key’s so hard to find,
– Why every change it?

•  How long should one keep using a
given key?

Lecture 5
Page 15 CS 136, Winter 2017

Why Change Keys?

•  Long-lived keys more likely to be compromised
•  The longer a key lives, the more data is exposed if

it’s compromised
•  The longer a key lives, the more resources

opponents can (and will) devote to breaking it
•  The more a key is used, the easier the

cryptanalysis on it
•  A secret that cannot be readily changed should

be regarded as a vulnerability

Lecture 5
Page 16 CS 136, Winter 2017

Practicalities of Key Lifetimes
•  In some cases, changing keys is

inconvenient
– E.g., encryption of data files

•  Keys used for specific communications
sessions should be changed often
– E.g., new key for each phone call

•  Keys used for key distribution can’t be
changed too often

•  Some keys must be stored permanently or at
least for a long time

Lecture 5
Page 17 CS 136, Winter 2017

Key Storage
•  Symmetric session keys

– Avoid storing permanently
– Get rid of them when session ends

•  Long term symmetric keys
– E.g., for disk encryption
– Safe storage is critical

•  Private asymmetric keys
– Usually require long-term storage
– Safe storage is critical

Lecture 5
Page 18 CS 136, Winter 2017

Storing a User’s Keys
•  Where are a user’s keys kept?

– Given they must be used often
•  Permanently on the user’s machine?

– What happens if the machine is cracked?
•  But people can’t remember random(ish)

keys
– Hash keys from passwords/passphrases?

•  Keep keys on smart cards?
•  Get them from key servers?

– Not a popular solution

Lecture 5
Page 19 CS 136, Winter 2017

Destroying Old Keys
•  Never keep a key around longer than

necessary
– Gives opponents more opportunities

•  Destroy keys securely
– For computers, remember that

information may be in multiple places
• Caches, virtual memory pages, freed

file blocks, stack frames, etc.
– Real modern attacks based on finding old

keys in unlikely places

Lecture 5
Page 20 CS 136, Winter 2017

Key Secrecy

•  Seems obvious
•  Of course you keep your keys secret
•  However, not always handled well in

the real world
•  Particularly with public key

cryptography

Lecture 5
Page 21 CS 136, Winter 2017

Some Problems With Key
Sharing

•  Private keys are often shared
– Same private key used on multiple

machines
– For multiple users
– Stored in “convenient” places
– Perhaps backed up on tapes in

plaintext form

Lecture 5
Page 22 CS 136, Winter 2017

Why Do People Do This?
•  For convenience
•  To share expensive certificates
•  Because they aren’t thinking clearly
•  Because they don’t know any better
•  A recent example:

– RuggedCom’s Rugged Operating System
for power plant control systems

– Private key embedded in executable

Lecture 5
Page 23 CS 136, Winter 2017

To Make It Clear,
•  PRIVATE KEYS ARE PRIVATE!
•  They are for use by a single user
•  They should never be shared or given away
•  They must never be left lying around in insecure

places
– Widely distributed executables are insecure
–  Just because it’s tedious to decipher

executables doesn’t mean can’t be done
•  The entire security of PK systems depends on the

secrecy of the private key!

Lecture 5
Page 24 CS 136, Winter 2017

Key Generation

•  How do you get a key in the first
place?

•  For PK ciphers, predefined key
generation algorithms

•  For local use symmetric keys, random/
pseudorandom methods

•  How about for shared session keys?

Lecture 5
Page 25 CS 136, Winter 2017

The Shared Session Key Problem

•  Two parties wish to communicate
securely across a network

•  They don’t have a symmetric key
•  What do they do to get one?

– Not just to generate one
– But to make sure both have it
– And no one else does

Lecture 5
Page 26 CS 136, Winter 2017

Key Exchange Protocols

•  Network protocols that solve this
problem

•  Some are based on trusted servers
•  Others use PK methods
•  There is a way to do it without either

trusted servers or PK . . .

Lecture 5
Page 27 CS 136, Winter 2017

Diffie/Hellman Key Exchange
•  Securely exchange a key

– Without previously sharing any
secrets
• No PK available
• No other symmetric key either

•  Using an insecure channel
– I.e., the bad guys can hear everything

they tell each other

Lecture 5
Page 28 CS 136, Winter 2017

Exchanging a Key in Diffie/
Hellman

•  How can Alice and Bob possibly get a
shared secret session key in this case?

•  First, they set things up
•  Alice and Bob agree on a large prime n and

a number g
– g should be primitive mod n

•  n and g don’t need to be secrets

Lecture 5
Page 29 CS 136, Winter 2017

Exchanging the Key, Con’t
•  Alice chooses a large random integer x and

sends Bob X = gxmod n
•  Bob chooses a random large integer y and

sends Alice Y = gy mod n
•  Alice computes k = Yx mod n
•  Bob computes k’ = Xy mod n
•  k and k’ are both equal to gxymod n
•  But nobody else can compute k or k’

Lecture 5
Page 30 CS 136, Winter 2017

Why Can’t Others Get the
Secret?

•  What do they know?
– n, g, X, and Y
– Not x or y

•  Knowing X and y gets you k
•  Knowing Y and x gets you k’
•  Knowing X and Y gets you nothing

– Unless you compute the discrete
logarithm to obtain x or y
• Which is believed to be hard

Lecture 5
Page 31 CS 136, Winter 2017

A Snake in Diffie/Hellman’s
Grass

•  Diffie/Hellman “guarantees” that two
parties share a secret

•  But it doesn’t guarantee who those two
parties are

•  How does Alice know whether the Y
she heard actually was sent by Bob?
– What if it was sent by an attacker?

Lecture 5
Page 32 CS 136, Winter 2017

The Core of the Problem
•  Diffie/Hellman does not authenticate

the parties
– It does not provide evidence of who

is talking
•  To get the real effect you want, you

need to authenticate the parties
– Either during the key exchange
– Or after you’ve got the encrypted

session

Lecture 5
Page 33 CS 136, Winter 2017

The Ubiquity of the Problem

•  You actually always require
authentication in any key distribution

•  Otherwise, you don’t know who else
has the key

•  A core problem for the Internet
– At the base of securing all Internet

commerce

Lecture 5
Page 34 CS 136, Winter 2017

Authentication for Key
Distribution

•  You have a key on one machine
•  You need to get it to another machine
•  Since it’s over a network, you need

assurance that it’s the right key
•  How to get that assurance?

Lecture 5
Page 35 CS 136, Winter 2017

Basic Approaches

•  Key servers
•  Certificates

Lecture 5
Page 36 CS 136, Winter 2017

Key Servers
•  Machines whose job it is to distribute keys

to other machines
•  Clients can authenticate themselves to the

key server
•  Key server can authenticate itself to the

clients
•  So clients need not authenticate other clients
•  Note the transitive trust issue here
•  Not the popular solution

Lecture 5
Page 37 CS 136, Winter 2017

Certificates

•  Server-less authentication
– Used throughout the Internet

•  What is a certificate?
•  A signed electronic document proving

you are who you claim to be
•  Most often used to solve key

distribution problem

Lecture 5
Page 38 CS 136, Winter 2017

Public Key Certificates
•  The most common kind of certificate
•  Addresses the biggest challenge in

widespread use of public keys
– How do I know whose key it is?

•  Essentially, a copy of your public key
signed by a trusted authority

•  Presentation of the certificate alone serves
as authentication of your public key

Lecture 5
Page 39 CS 136, Winter 2017

Implementation of Public Key
Certificates

•  Set up a universally trusted authority
•  Every user presents his public key to

the authority
•  The authority returns a certificate

– Containing the user’s public key
signed by the authority’s private key

•  In essence, a special type of key server

Lecture 5
Page 40 CS 136, Winter 2017

Checking a Certificate

•  Every user keeps a copy of the authority’s
public key

•  When a new user wants to talk to you, he
gives you his certificate

•  Decrypt the certificate using the authority’s
public key

•  You now have an authenticated public key
for the new user

•  Authority need not be checked on-line

Lecture 5
Page 41 CS 136, Winter 2017

Scaling Issues of Certificates

•  If there are 1-2 billion Internet users
needing certificates, can one authority
serve them all?

•  Probably not
•  So you need multiple authorities
•  Does that mean everyone needs to

store the public keys of all authorities?

Lecture 5
Page 42 CS 136, Winter 2017

Certification Hierarchies

•  Arrange certification authorities
hierarchically

•  Single authority at the top produces
certificates for the next layer down

•  And so on, recursively

Lecture 5
Page 43 CS 136, Winter 2017

Using Certificates From
Hierarchies

•  I get a new certificate
•  I don’t know the signing authority
•  But the certificate also contains that

authority’s certificate
•  Perhaps I know the authority who

signed this authority’s certificate

Lecture 5
Page 44 CS 136, Winter 2017

Extracting the Authentication
•  Using the public key of the higher level

authority,
– Extract the public key of the signing

authority from the certificate
•  Now I know his public key, and it’s

authenticated
•  I can now extract the user’s key and

authenticate it

Lecture 5
Page 45 CS 136, Winter 2017

A Example

Give me a
certificate
saying that
I’m

Should Alice
believe that he’s
really ?

Alice has never
heard of
But she has
heard of

So she uses
to check

How can
prove who
he is?

Alice gets a
message with
a certificate

Then she uses
to check

Lecture 5
Page 46 CS 136, Winter 2017

Certification Hierarchies Reality
•  Not really what’s used

– For the most part
•  Instead, we rely on large numbers of

independent certifying authorities
– Exception is that each of them may

have internal hierarchy
•  Essentially, a big list
•  Is this really better?

Lecture 5
Page 47 CS 136, Winter 2017

Certificates and Trust

•  Ultimately, the point of a certificate is to
determine if something is trusted
– Do I trust the request enough to perform

some financial transaction?
•  So, Trustysign.com signed this certificate
•  How much confidence should I have in the

certificate?

Lecture 5
Page 48 CS 136, Winter 2017

Potential Problems in the
Certification Process

•  What measures did Trustysign.com use
before issuing the certificate?

•  Is the certificate itself still valid?
•  Is Trustysign.com’s signature/

certificate still valid?
•  Who is trustworthy enough to be at the

top of the hierarchy?

Lecture 5
Page 49 CS 136, Winter 2017

Trustworthiness of Certificate
Authority

•  How did Trustysign.com issue the
certificate?

•  Did it get an in-person sworn affidavit from
the certificate’s owner?

•  Did it phone up the owner to verify it was
him?

•  Did it just accept the word of the requestor
that he was who he claimed to be?

•  Has authority been compromised?

Lecture 5
Page 50 CS 136, Winter 2017

What Does a Certificate Really
Tell Me?

•  That the certificate authority (CA) tied
a public/private key pair to
identification information

•  Generally doesn’t tell me why the CA
thought the binding was proper

•  I may have different standards than
that CA

Lecture 5
Page 51 CS 136, Winter 2017

Showing a Problem Using
 the Example

Alice likes how
verifies identity

But is she equally
happy with how
verifies identity?

Does she even
know how
verifies identity?

What if
uses ‘s lax
policies to
pretend to be

 ?

Lecture 5
Page 52 CS 136, Winter 2017

Another Big Problem
•  Things change

– E.g., recent compromise of Adobe
private keys

•  One result of change is that what used
to be safe or trusted isn’t any more

•  If there is trust-related information out
in the network, what will happen when
things change?

Lecture 5
Page 53 CS 136, Winter 2017

Revocation
•  A general problem for keys,

certificates, access control lists, etc.
•  How does the system revoke

something related to trust?
•  In a network environment
•  Safely, efficiently, etc.
•  Related to revocation problem for

capabilities

Lecture 5
Page 54 CS 136, Winter 2017

Revisiting Our Example
Someone discovers
that has obtained
a false certificate for

How does Alice make sure
that she’s not accepting ‘s
false certificate?

Lecture 5
Page 55 CS 136, Winter 2017

Realities of Certificates
•  Most OSes come with set of “pre-trusted”

certificate authorities
•  System automatically processes (i.e., trusts)

certificates they sign
•  Usually no hierarchy
•  If not signed by one of these, present it to

the user
– Who always accepts it . . .

Lecture 5
Page 56 CS 136, Winter 2017

An Example
•  Firefox web browser
•  Makes extensive use of certificates to

validate entities
– As do all web browsers

•  Comes preconfigured with several
certificate authorities
– Over 100 of them

Lecture 5
Page 57 CS 136, Winter 2017

Firefox Preconfigured Certificate
Authorities

•  Some you’d expect:
– Microsoft, RSA Security, Verisign,

etc.
•  Some you’ve probably never heard of:

• Unizeto Sp. z.o.o., Netlock
Kft.,Chungwa Telecom Co. Ltd.

Lecture 5
Page 58 CS 136, Winter 2017

The Upshot
•  If Netlock Kft. says someone’s OK, I

trust them
– I’ve never heard of Netlock Kft.
– I have no reason to trust Netlock Kft.
– But my system’s security depends on

them

Lecture 5
Page 59 CS 136, Winter 2017

The Problem in the Real World
•  In 2011, a Dutch authority (DigiNotar)

was compromised
•  Attackers generated lots of bogus

certificates signed by DigiNotar
– “Properly” signed by that authority
– For popular web sites

•  Until compromise discovered,
everyone trusted them

Lecture 5
Page 60 CS 136, Winter 2017

Effects of DigiNotar
Compromise

•  Attackers could transparently redirect
users to fake sites
– What looked like Twitter was

actually attacker’s copycat site
•  Allowed attackers to eavesdrop

without any hint to users
•  Apparently used by authorities in Iran

to eavesdrop on dissidents

Lecture 5
Page 61 CS 136, Winter 2017

How Did the Compromise
Occur?

•  DigiNotar had crappy security
– Out-of date antivirus software
– Poor software patching
– Weak passwords
– No auditing of logs
– Poorly designed local network

•  A company providing security services paid
little attention to security

But how
were you

supposed to
know that?

Lecture 5
Page 62 CS 136, Winter 2017

A Browser Solution
•  Certificate key pinning
•  Code into the browser the “right” signing

authority for particular sites
•  So a certificate for Google signed by, say,

DigiNotar gets rejected
•  Currently only for a couple of big name web

sites
– And only in Chrome and Firefox

Lecture 5
Page 63 CS 136, Winter 2017

Another Practicality

•  Certificates have expiration dates
– Important for security
– Otherwise, long-gone entities would

still be trusted
•  But perfectly good certificates also

expire
– Then what?

Lecture 5
Page 64 CS 136, Winter 2017

The Reality of Expired
Certificates

•  When I hear my server’s certificate has
expired, what do I do?
– I trust it anyway
– After all, it’s my server

•  But pretty much everyone does that
– For pretty much every certificate

•  Not so secure

Lecture 5
Page 65 CS 136, Winter 2017

The Core Problem With
Certificates

•  Anyone can create some certificate
•  Typical users have no good basis for

determining whose certificates to trust
– They don’t even really understand

what they mean
•  Therefore, they trust almost any

certificate

Lecture 5
Page 66 CS 136, Winter 2017

Should We Worry About
Certificate Validity?

•  Starting to be a problem
– Stuxnet is one example
– Compromise of DigiNotar and Adobe also
–  Increasing incidence of improper issuance, like

Verisign handing out Microsoft certificates
•  Not the way most attackers break in today
•  With all their problems, still not the weakest link

– But now being exploited, mostly by most
sophisticated adversaries

