
Lecture 6
Page 1CS 136, Winter 2008

Operating System Security,
Continued

CS 136
Computer Security

Peter Reiher
January 29, 2008

Lecture 6
Page 2CS 136, Winter 2008

Outline

• Designing secure operating systems
• Assuring OS security
• TPM and trusted computing

Lecture 6
Page 3CS 136, Winter 2008

Desired Security Features of a
Normal OS

• Authentication of users
• Memory protection
• File and I/O access control
• General object access control
• Enforcement of sharing
• Fairness guarantees
• Secure IPC and synchronization
• Security of OS protection mechanisms

Lecture 6
Page 4CS 136, Winter 2008

Extra Features for a Trusted OS

• Mandatory and discretionary access
control

• Object reuse protection
• Complete mediation
• Audit capabilities
• Intruder detection capabilities

Lecture 6
Page 5CS 136, Winter 2008

How To Achieve OS Security

• Kernelized design
• Layered design
• Separation and isolation mechanisms
• Virtualization

Lecture 6
Page 6CS 136, Winter 2008

Secure OS Kernels

• Basic idea is to specify a core set of
OS functions

• Keep it small, build it carefully
• All other services build on top of this

kernel
• Key idea: if the kernel is safe,

everything else must be, too

Lecture 6
Page 7CS 136, Winter 2008

Advantages of Kernelization

• Smaller amount of trusted code
• Easier to check every access
• Separation from other complex pieces

of the system
• Easier to maintain and modify security

features

Lecture 6
Page 8CS 136, Winter 2008

A Disadvantage of Kernelization

• Introduces boundaries in the OS
• Stuff inside is cheaper to work with than

stuff outside
– Since checks and limitations at the

boundaries
• Temptation is to keep moving stuff in

– An irresistible temptation in all major
kernelization efforts

Lecture 6
Page 9CS 136, Winter 2008

A Major Challenge for
Kernelization

• What’s in and what’s out?
• What must you trust to ensure that the rest

of the system is secure?
• Depends heavily on how you define

“secure”
• Certain types of known attacks still possible

against certain “secure” systems
– They left those attacks out of their

definition

Lecture 6
Page 10CS 136, Winter 2008

Layered OS Design

• A generalization of kernelization
• Define inner layer with high security
• Next layer out builds on that

– Allowing lower security
• Next layer out provides even lower security
• Outer layers use inner layer services

through strong interfaces

Lecture 6
Page 11CS 136, Winter 2008

Multics and Layered Security

• Multics came before Unix
–And was a lot more sophisticated

and powerful
• Key element of Multics was this

layered security model
• Multics is still one of the most

sophisticated secure OS designs

Lecture 6
Page 12CS 136, Winter 2008

Separation and Isolation
Mechanisms

• Divide system into components
• Define a secure interface for each

– Allow communication only over
interfaces

• Might ensure no bad stuff crosses
boundaries

• Can separate on user or process boundaries
– Not just functionality

• A pretty successful OS security approach

Lecture 6
Page 13CS 136, Winter 2008

Uses of Separation and Isolation

• The core idea behind page table
security

• Also the core idea behind virtual
memory process security

• Domain and type enforcement
–E.g., as used in SE Linux

Lecture 6
Page 14CS 136, Winter 2008

Domain and Type Enforcement

• A way of confining security problems into a
single domain
– Commonly abbreviated DTE

• Allows system to specify security domains
– E.g., the printing domain

• And to specify data types
– E.g., the printer type

Lecture 6
Page 15CS 136, Winter 2008

Using DTE

• Processes belong to some domain
–Can change domains, under careful

restrictions
• Only types available to that domain are

accessible
–And only in ways specified for that

domain

Lecture 6
Page 16CS 136, Winter 2008

A DTE Example

• Protecting the FTP daemon from buffer
overflow attacks

• Create an FTP domain
• Only the FTP daemon and files in the FTP

directory can be executed in this domain
– And these executables may not be written

within this domain
• Executing the FTP daemon program

automatically enters this domain

Lecture 6
Page 17CS 136, Winter 2008

What Happens On Buffer Overflow?

• The buffer overflow attack allows the attacker to
request execution of an arbitrary program
– Say, /bin/sh

• But the overflowed FTP daemon program was in
the FTP domain
– And still is

• /bin/sh is of a type not executable from this
domain
– So the buffer overflow can’t fork a shell

Lecture 6
Page 18CS 136, Winter 2008

DTE in SE Linux

• SE Linux provides substantial DTE support
• Each process has a domain
• Each object has a type
• Configuration files specify domain

interactions and what types they access
• Starting specified programs puts them in

particular domains

Lecture 6
Page 19CS 136, Winter 2008

Types in SE Linux

• Domains are actually specified as types
in SE Linux

• Access control matrix specifies which
types can interact with other types

• So a process is given a type
–Which implies what other types it

can access

Lecture 6
Page 20CS 136, Winter 2008

Example of SE Linux Type
Enforcement

• Files in /etc are mostly limited to access
by few sysadmin process types

• But /etc also contains /etc/aliases
– Which the mail program must access
– And everyone uses the mail program

• So rules are set up to allow the sendmail
process’ type to access /etc/aliases

Lecture 6
Page 21CS 136, Winter 2008

Types in the Example

• The sendmail process is assigned type
sendmail_t

• The /etc/aliases file is assigned
type etc_aliases_t

• Other mail related files and directories
also get their own types

Lecture 6
Page 22CS 136, Winter 2008

The SE Linux sendmail Rules

allow sendmail_t etc_aliases_t:file
 { read write };
allow sendmail_t etc_mail_t:dir
 { read search add_name remove_name };
allow sendmail_t etc_mail_t:file
 { create read write unlink };

This rule allows processes of sendmail_t type to
access files of etc_aliases_t type for read and
write
Without regard for which user started the process

Lecture 6
Page 23CS 136, Winter 2008

Contrast With Standard Unix File
Access Control

• What permissions do you put on
/etc/aliases?

• Must be sufficient to allow normal
work
–So must allow read and write

• But not too much to allow anyone to
read and write anything there

Lecture 6
Page 24CS 136, Winter 2008

Standard Unix Solution

• Run sendmail setuid to a special
user named mail or something

• Set ownership of /etc/aliases to
mail user

• Allow any user to run the sendmail
program

• Why is SE Linux approach better?

Lecture 6
Page 25CS 136, Winter 2008

Some Differences

• Don’t need to create fake users like mail
• You’ve centralized the security-critical

access control rules
– No worry that a file somewhere had the

wrong permission bits
• The sendmail process runs under the

identity of the calling user
– No need for “real” and “effective” uids

• Clean, extensible abstraction

Lecture 6
Page 26CS 136, Winter 2008

Virtualization

• A popular modern approach
• Run untrusted stuff in a virtual

machine
• Only allow VM to access things you

don’t worry about
• Thus, untrusted stuff can’t screw you

over

Lecture 6
Page 27CS 136, Winter 2008

Approaches to Virtualization

• Native OS virtualization facilities
– Meta-OS runs various virtual machines

on same real machine
– Developed in 1970s for mainframes

• Programming language based VM
– E.g., Java

• VM package tacked on to operating system
– E.g., VMWare and Parallels

Lecture 6
Page 28CS 136, Winter 2008

Challenges to Using
Virtualization

• Securely confining code to a VM
– Often, there are ways for it to get out

• Proper allocation of processes and resources
to a VM
– If things have to share data, must they be

in the same VM?
– If not, how do you keep them in?

• Efficiency
• Multiplexing real hardware

Lecture 6
Page 29CS 136, Winter 2008

Assurance of Trusted Operating
Systems

• How do I know that I should trust
someone’s operating system?

• What methods can I use to achieve the
level of trust I require?

Lecture 6
Page 30CS 136, Winter 2008

Assurance Methods

• Testing
• Formal verification
• Validation

Lecture 6
Page 31CS 136, Winter 2008

Testing

• Run a bunch of tests against the OS to
demonstrate that it’s secure

• But what tests?
• What is a sufficient set of tests to be

quite sure it works?
• Not a strong proof of system security
• But what is used most often

Lecture 6
Page 32CS 136, Winter 2008

Formal Verification

• Define security goals in formal terms
• Map either OS design or

implementation to those terms
• Use formal methods to “prove” that the

system meets security goals

Lecture 6
Page 33CS 136, Winter 2008

Challenges in Formal
Verification

• Defining security goals properly
• Accurate mapping of real system to

formal statements
–This one is a real killer

• High overhead of running verification
methods for realistic systems

Lecture 6
Page 34CS 136, Winter 2008

Validation

• Define desired system security
• In terms of:

– Features provided
– Architectural design
– Processes used in creating the system
– Evaluation methodology
– Possibly other dimensions

• Use standardized procedure to demonstrate your
system fits this profile

Lecture 6
Page 35CS 136, Winter 2008

Validation and Standards

• Validation is usually done against a
pre-defined standard

• Wide agreement that standard specifies
a good system

• So you just have to demonstrate you fit
the standard

Lecture 6
Page 36CS 136, Winter 2008

Benefits of Validation

• Allows head-to-head comparisons of
systems

• Allows varying degrees of effort to
determine system security

• Allows reasonably open and fair
process to determine system security

Lecture 6
Page 37CS 136, Winter 2008

Disadvantages of Validation

• Only as good as its standards
• Doesn’t actually prove anything
• Can be very expensive

Lecture 6
Page 38CS 136, Winter 2008

Secure Operating System
Standards

• If I want to buy a secure operating
system, how do I compare options?

• Use established standards for OS
security

• Several standards exist

Lecture 6
Page 39CS 136, Winter 2008

Some Security Standards

• U.S. Orange Book
• European ITSEC
• U.S. Combined Federal Criteria
• Common Criteria for Information

Technology Security Evaluation

Lecture 6
Page 40CS 136, Winter 2008

The U.S. Orange Book

• The earliest evaluation standard for
trusted operating systems

• Defined by the Department of Defense
in the late 1970s

• Now largely a historical artifact

Lecture 6
Page 41CS 136, Winter 2008

Purpose of the Orange Book

• To set standards by which OS security
could be evaluated

• Fairly strong definitions of what features
and capabilities an OS had to have to
achieve certain levels

• Allowing “head-to-head” evaluation of
security of systems
– And specification of requirements

Lecture 6
Page 42CS 136, Winter 2008

Orange Book Security Divisions

• A, B, C, and D
– In decreasing order of degree of security

• Important subdivisions within some of the
divisions

• Requires formal certification from the government
(NCSC)
– Except for the D level

Lecture 6
Page 43CS 136, Winter 2008

Some Important Orange Book
Divisions and Subdivisions

• C2 - Controlled Access Protection
• B1 - Labeled Security Protection
• B2 - Structured Protection

Lecture 6
Page 44CS 136, Winter 2008

The C2 Security Class

• Discretionary access control
–At fairly low granularity

• Requires auditing of accesses
• And password authentication and

protection of reused objects
• Windows NT was certified to this class

Lecture 6
Page 45CS 136, Winter 2008

The B1 Security Class

• Includes mandatory access control
–Using Bell-La Padula model
–Each subject and object is assigned a

security level
• Requires both hierarchical and non-

hierarchical access controls

Lecture 6
Page 46CS 136, Winter 2008

The B3 Security Class

• Requires careful security design
–With some level of verification

• And extensive testing
• Doesn’t require formal verification

–But does require “a convincing
argument”

• Trusted Mach was in this class

Lecture 6
Page 47CS 136, Winter 2008

Why Did the Orange Book Fail?
• Expensive to use
• Didn’t meet all parties’ needs

– Really meant for US military
– Inflexible

• Certified products were slow to get to market
• Not clear certification meant much

– Windows NT was C2, but didn’t mean NT was
secure in usable conditions

• Review procedures tied to US government

Lecture 6
Page 48CS 136, Winter 2008

The Common Criteria

• Modern international standards for computer
systems security

• Covers more than just operating systems
• Design based on lessons learned from earlier

security standards
• Lengthy documents describe the Common Criteria

Lecture 6
Page 49CS 136, Winter 2008

Basics of Common Criteria
Approach

• Something of an alphabet soup –
• The CC documents describe

–The Evaluation Assurance Levels
(EAL)

• The Common Evaluation Methodology
(CEM) details guidelines for
evaluating systems

Lecture 6
Page 50CS 136, Winter 2008

Another Bowl of Common
Criteria Alphabet Soup

• TOE – Target of Evaluation
• TSP – TOE Security Policy

– Security policy of system being evaluated
• TSF – TOE Security Functions

– HW, SW used to enforce TSP
• PP – Protection Profile

– Implementation-dependent set of security requirements
• ST – Security Target

– Predefined sets of security requirements

Lecture 6
Page 51CS 136, Winter 2008

What’s This All Mean?

• Highly detailed methodology for specifying :
1. What security goals a system has
2. What environment it operates in
3. What mechanisms it uses to achieve its

security goals
4. Why anyone should believe it does so

Lecture 6
Page 52CS 136, Winter 2008

How Does It Work?

• Someone who needs a secure system
specifies what security he needs
– Using CC methodology
– Either some already defined PPs
– Or he develops his own

• He then looks for products that meet that PP
– Or asks developers to produce something

that does

Lecture 6
Page 53CS 136, Winter 2008

How Do You Know a Product
Meets a PP?

• Dependent on individual countries
• Generally, independent labs verify that

product meets a protection profile
• In practice, a few protection profiles

are commonly used
• Allowing those whose needs match

them to choose from existing products

Lecture 6
Page 54CS 136, Winter 2008

Status of the Common Criteria

• In wide use
• Several countries have specified procedures

for getting certifications
– And there are agreements for honoring

other countries’ certifications
• Many products have received various

certifications

Lecture 6
Page 55CS 136, Winter 2008

Problems With Common Criteria
• Expensive to use
• Slow to get certification

– Ensuring certified products are behind the
market

• Practical certification levels might not mean that
much
– Windows 2000 was certified EAL4+
– But kept requiring security patches . . .

• Perhaps more attention to paperwork than actual
software security

Lecture 6
Page 56CS 136, Winter 2008

TPM and Trusted Computing

• Can special hardware help improve OS
security?

• Perhaps
• TPM is an approach to building such

hardware
• The approach is commonly called

“trusted computing”

Lecture 6
Page 57CS 136, Winter 2008

What Is TPM?

• Special hardware built into personal
computers
– And other types of machines

• Tamperproof, special purpose
• Effective use requires interaction with

software
– Especially OS software

• Defined as a set of open standards

Lecture 6
Page 58CS 136, Winter 2008

What Does TPM Hardware Do?

• Three basic core functionalities:
–Secure storage and use of keys
–Secure software attestations
–Sealing data

• These functions can be used to build
several useful security features

Lecture 6
Page 59CS 136, Winter 2008

TPM Key Storage

• Keys are stored in a tamperproof area
• TPM hardware can generate RSA key pairs

– Using true random number generator
• Each TPM chip has one permanent

endorsement key
• Other keys generated as needed

Lecture 6
Page 60CS 136, Winter 2008

The Endorsement Key

• Created when the chip was fabricated
• Used to sign attestations

–To prove that this particular machine
made the attestation

• A public/private key pair
–Private part never leaves the trusted

hardware

Lecture 6
Page 61CS 136, Winter 2008

TPM Cryptography

• Some TPM hardware includes
encryption and decryption functions

• To ensure keys are never outside a
tamperproof perimeter

Lecture 6
Page 62CS 136, Winter 2008

TPM Attestations

• Allows TPM to provide proof that a
particular piece of software is running
on the machine
–An OS, a web browser, whatever

• Essentially, a signature on a hash of the
software

Lecture 6
Page 63CS 136, Winter 2008

An Example of an Attestation

• What version of Linux is running on
this machine?

• TPM (with appropriate SW support)
hashes the OS itself

• Signs the hash with its attestation key
• Sends the signature to whoever needs

to know

Lecture 6
Page 64CS 136, Winter 2008

Secure TPM Boot Facilities

• Use attestations to ensure that the boot
loader is trusted code

• The trusted boot loader then checks the OS
it intends to load
– Trusted attestations can tell the boot

loader if it’s the right one
– Bail out if it’s not the right one

• Can prevent an attacker from getting you to
boot a corrupted kernel

Lecture 6
Page 65CS 136, Winter 2008

Sealing Data With TPM

• Encrypt the data with keys particular to
one machine
–Keys stored by TPM

• Data can only be decrypted
successfully on that machine

• Can also seal storage such that only a
particular application can access it

Lecture 6
Page 66CS 136, Winter 2008

The TPM Controversy
• TPM can be used for many good security purposes
• But some believe it takes too much power from the user

– E.g., can require user to prove he’s running a particular
browser before you give him a file

– Or seal a file so only the owner’s application can read it
• Many (but not all) critics worry especially about DRM

uses
– Also serious issues about companies using it to achieve

anti-competitive effects
• Serious questions about practicality based on patching,

various releases, etc.
– Will you have to accept attestations for all of them?

