
Lecture 5
Page 1CS 136, Winter 2008

Operating System Security
CS 136

Computer Security
Peter Reiher

January 24, 2008

Lecture 5
Page 2CS 136, Winter 2008

Outline

• Introduction
• Memory protection
• Buffer overflows
• Interprocess communications protection
• File protection and disk encryption

Lecture 5
Page 3CS 136, Winter 2008

Introduction

• Operating systems provide the lowest layer
of software visible to users

• Operating systems are close to the hardware
– Often have complete hardware access

• If the operating system isn’t protected, the
machine isn’t protected

• Flaws in the OS generally compromise all
security at higher levels

Lecture 5
Page 4CS 136, Winter 2008

Why Is OS Security So Important?

• The OS controls access to application
memory

• The OS controls scheduling of the processor
• The OS ensures that users receive the

resources they ask for
• If the OS isn’t doing these things securely,

practically anything can go wrong
• So almost all other security systems must

assume a secure OS at the bottom

Lecture 5
Page 5CS 136, Winter 2008

Single User Vs. Multiple User
Machines

• The majority of today’s computers usually
support a single user
– Sometimes one at a time, sometimes only

one ever
• Some computers are still multi-user

– Mainframes
– Servers
– Network-of-workstation machines

• Single user machines often run multiple
processes, though

Lecture 5
Page 6CS 136, Winter 2008

Server Machines Vs. General
Purpose Machines

• Most server machines provide only limited
services
– Web page access
– File access
– DNS lookup

• Security problems are simpler for them
• Some machines still provide completely

general service, though
• And many server machines can run general

services . . .

Lecture 5
Page 7CS 136, Winter 2008

Downloadable Code and Single
User Machines

• Applets and other downloaded code
should run in a constrained mode

• Using access control on a finer
granularity than the user

• Essentially the same protection
problem as multiple users

Lecture 5
Page 8CS 136, Winter 2008

Mechanisms for Secure
Operating Systems

• Most operating system security is
based on separation
–Keep the bad guys away from the

good stuff
–Since you don’t know who’s bad,

separate most things

Lecture 5
Page 9CS 136, Winter 2008

Separation Methods

• Physical separation
– Different machines

• Temporal separation
– Same machine, different times

• Logical separation
– HW/software enforcement
– Possibly VM technology

• Cryptographic separation

Lecture 5
Page 10CS 136, Winter 2008

The Problem of Sharing

• Separating stuff is actually pretty easy
• The hard problem is allowing

controlled sharing
• How can the OS allow users to share

exactly what they intend to share?
– In exactly the ways they intend

Lecture 5
Page 11CS 136, Winter 2008

Levels of Sharing Protection

• None
• Isolation
• All or nothing
• Access limitations
• Limited use of an object

Lecture 5
Page 12CS 136, Winter 2008

Protecting Memory

• Most general purpose systems provide some
memory protection
– Logical separation of processes that run

concurrently
• Usually through virtual memory methods
• Originally arose mostly for error containment, not

security

Lecture 5
Page 13CS 136, Winter 2008

Security Aspects of Paging

• Main memory is divided into page frames
• Every process has an address space divided into

logical pages
• For a process to use a page, it must reside in a

page frame
• If multiple processes are running, how do we

protect their frames?

Lecture 5
Page 14CS 136, Winter 2008

Protection of Pages

• Each process is given a page table
– Translation of logical addresses into

physical locations
• All addressing goes through page table

– At unavoidable hardware level
• If the OS is careful about filling in the page

tables, a process can’t even name other
processes’ pages

Lecture 5
Page 15CS 136, Winter 2008

Security Issues of Page Frame
Reuse

• A common set of page frames is shared by
all processes

• The OS switches ownership of page frames
as necessary

• When a process acquires a new page frame,
it used to belong to another process
– Can the new process read the old data?

Lecture 5
Page 16CS 136, Winter 2008

Special Interfaces to Memory

• Some systems provide a special interface to
memory

• If the interface accesses physical memory,
– And doesn’t go through page table

protections,
– Attackers can read the physical memory
– Then figure out what’s there and find

what they’re looking for

Lecture 5
Page 17CS 136, Winter 2008

Buffer Overflows

• One of the most common causes for
compromises of operating systems

• Due to a flaw in how operating
systems handle process inputs
–Or a flaw in programming languages
–Or a flaw in programmer training
–Depending on how you look at it

Lecture 5
Page 18CS 136, Winter 2008

What Is a Buffer Overflow?

• A program requests input from a user
• It allocates a temporary buffer to hold

the input data
• It then reads all the data the user

provides into the buffer, but . . .
• It doesn’t check how much data was

provided

Lecture 5
Page 19CS 136, Winter 2008

For Example,
int main(){
char name[32];
printf(“Please type your name: “);
gets(name);
printf(“Hello, %s”, name);
return (0);

}

• What if the user enters more than 32 characters?

Lecture 5
Page 20CS 136, Winter 2008

Well, What If the User Does?

• The code continues reading data into
memory
–That’s how gets() works

• The first 32 bytes go into name
• Where do the remaining bytes go?
• Onto the stack

Lecture 5
Page 21CS 136, Winter 2008

Munging the Stack
• The temporary variable name is allocated

on the stack
– Close to the record of the function

currently being run
• The overflow will spill into whatever’s next

on the stack
• If it overflows enough, it will overwrite the

instruction pointer
• When the function exits, it will go to the

overwritten pointer, not where it came from

Lecture 5
Page 22CS 136, Winter 2008

Why Is This a Security Problem?

• All attacker can do is run different
code than was expected

• He hasn’t gotten into anyone else’s
processes
–Or data

• So he can only fiddle around with his
own stuff, right?

Lecture 5
Page 23CS 136, Winter 2008

Is That So Bad?

• Well, yes
• That’s why a media player can write

configuration and data files
• Unless roles and access permissions set

up very carefully, a typical program
can write all its user’s files

Lecture 5
Page 24CS 136, Winter 2008

The Core Buffer Overflow
Security Issue

• Programs are often run on behalf of
others
–But using your identity

• Maybe it’s OK for you to access some
data

• But is it OK for someone who you’re
running a program for?

Lecture 5
Page 25CS 136, Winter 2008

But I Never Run Programs for
Anyone Else

• Oh, yes, you do
• Every time you download any form of executable
• Every time you download a file containing an

executable
• Every time you allow someone to remotely access

data on your system
– E.g., via a web server

• In all cases, you’re doing something for someone
else

Lecture 5
Page 26CS 136, Winter 2008

Using Buffer Overflows to
Compromise Security

• Carefully choose what gets written into
the instruction pointer

• So that the program jumps to
something you want to do
–Under the identity of the program

that’s running
• Such as, execute a command shell

Lecture 5
Page 27CS 136, Winter 2008

Effects of Buffer Overflows

• A remote or unprivileged local user runs a
program with greater privileges

• If buffer overflow is in a root program, it
gets all privileges, essentially

• Can also overwrite other stuff
– Such as heap variables

• Common mechanism to allow attackers to
break into machines

Lecture 5
Page 28CS 136, Winter 2008

Stack Overflows

• The most common kind of buffer overflow
• Intended to alter the contents of the stack
• Usually by overflowing a dynamic variable
• Usually with intention of jumping to exploit

code
– Though could be to alter parameters or

variables in other frames
– Or even variables in current frame

Lecture 5
Page 29CS 136, Winter 2008

Heap Overflows

• Heap is used to store dynamically
allocated memory

• Buffers kept there can also overflow
• Generally doesn’t offer direct ability to

jump to arbitrary code
• But potentially quite dangerous

Lecture 5
Page 30CS 136, Winter 2008

What Can You Do With Heap
Overflows?

• Alter variable values
• “Edit” linked lists or other data structures
• If heap contains list of function pointers,

can execute arbitrary code
• Generally, heap overflows are harder to

exploit than stack overflows
• But they exist

– E.g., Microsoft CVE-2007-0948
• Allowed VM to escape confinement

Lecture 5
Page 31CS 136, Winter 2008

Are Buffer Overflows Common?

• You bet!
• Weekly occurrences in major

systems/applications
–Mostly stack overflows

• Probably one of the most common
security bugs

Lecture 5
Page 32CS 136, Winter 2008

Some Recent Buffer Overflows

• Cisco Security Agent for Windows
– They should have known better

• HP OpenView Network Node Manager
– They should have, too

• IBM Lotus Notes
– Them, too

• 3ivx MPEG-4 Codec
• And more than 15 others in December 2007 alone

– In code written by everyone from Microsoft to
tiny software shops

Lecture 5
Page 33CS 136, Winter 2008

Fixing Buffer Overflows
• Check the length of the input
• Use programming languages that prevent them
• Add OS controls that prevent overwriting the stack
• Put things in different places on the stack, making it hard

to find the return pointer
• Don’t allow execution from places in memory where

buffer overflows occur (E.g., Windows DEP)
• Why aren’t these things commonly done?

– Sometimes they are
• Presumably because programmers and designers neither

know nor care about security

Lecture 5
Page 34CS 136, Winter 2008

Protecting Interprocess
Communications

• Operating systems provide various kinds of
interprocess communications
– Messages
– Semaphores
– Shared memory
– Sockets

• How can we be sure they’re used properly?

Lecture 5
Page 35CS 136, Winter 2008

IPC Protection Issues

• How hard it is depends on what you’re
worried about

• For the moment, let’s say we’re worried
about one process improperly using IPC to
get info from another
– Process A wants to steal information

from process B
• How would process A do that?

Lecture 5
Page 36CS 136, Winter 2008

Message Security
Process A Process B

Can process B use message-based
IPC to steal the secret?

Gimme your
 secret

That’s probably
not going to work

Lecture 5
Page 37CS 136, Winter 2008

How Can B Get the Secret?
• He can convince the system he’s A

– A problem for authentication
• He can break into A’s memory

– That doesn’t use message IPC
– And is handled by page tables

• He can forge a message from someone else to get
the secret

• He can “eavesdrop” on someone else who gets the
secret

Lecture 5
Page 38CS 136, Winter 2008

Forging An Identity
Process A Process B

Process C

I’m C, gimme
your secret

Will A
know B is

lying?

Lecture 5
Page 39CS 136, Winter 2008

Operating System Protections

• The operating system knows who each
process belongs to

• It can tag the message with the identity of
the sender
– Raw message never available outside the

OS
• If the receiver cares, he can know the

identity

Lecture 5
Page 40CS 136, Winter 2008

How About Eavesdropping?
Process A Process B

Process C

I’m C, gimme
your secret

Can process B
“listen in” on
this message?

Lecture 5
Page 41CS 136, Winter 2008

What’s Really Going on Here?

• On a single machine, what is a message send,
really?

• A message is copied from a process buffer to an
OS buffer
– Then from the OS buffer to another process’

buffer
– Sometimes optimizations skip some copies

• If attacker can’t get at processes’ internal buffers
and can’t get at OS buffers, he can’t “eavesdrop”

Lecture 5
Page 42CS 136, Winter 2008

Returning to an Earlier Issue

• What are buffers, really?
• Data held in memory pages
• Really in page frames
• Page frames are shared

–Serially
• Will the page frame I allocate contain

data from its last user?

Lecture 5
Page 43CS 136, Winter 2008

Avoiding Page Frame
“Eavesdropping”

• Zero pages on deallocation
• Zero pages on allocation
• Mark pages as unreadable until a

process writes them
–Need to ensure partial write doesn’t

clear the mark entirely

Lecture 5
Page 44CS 136, Winter 2008

Other Forms of IPC

• Semaphores, sockets, shared memory, RPC
• Pretty much all the same

– Use system calls for access
– Which belong to some process
– Which belongs to some principal
– OS can check principal against access control

permissions at syscall time
– Ultimately, data is held in some type of memory

• Which shouldn’t be improperly accessible

Lecture 5
Page 45CS 136, Winter 2008

So When Is It Hard?

1. Always possible that there’s a bug in the
operating system

– Allowing masquerading, eavesdropping, etc.
– Or, if the OS itself is compromised, all bets

are off
2. What if the OS has to prevent cooperating

processes from sharing information?

Lecture 5
Page 46CS 136, Winter 2008

The Hard Case
Process A Process B

Process A wants to tell the secret to process B
But the OS has been instructed to prevent that

A necessary part of Bell-La Padula, e.g.
Can the OS prevent A and B from colluding
to get the secret to B?

Lecture 5
Page 47CS 136, Winter 2008

OS Control of Interactions

• OS can “understand” the security policy
• Can maintain labels on files, process, data

pages, etc.
• Can regard any IPC or I/O as a possible leak

of information
– To be prohibited if labels don’t allow it

Lecture 5
Page 48CS 136, Winter 2008

Example

• Bell-LaPadula doesn’t allow writedown
• Process A is at Top Secret clearance
• It tries to send a message to process B

– Which is at Secret clearance
• OS understands Bell-LaPadula

– Observes illegal access and prevents the
IPC

Lecture 5
Page 49CS 136, Winter 2008

Covert Channels

• Tricky ways to pass information
• Requires cooperation of sender and

receiver
–Generally in active attempt to

deceive system
• Use something not ordinarily regarded

as a communications mechanism

Lecture 5
Page 50CS 136, Winter 2008

Lecture 5
Page 51CS 136, Winter 2008

Covert Channels in Computers
• Generally, one process “sends” covert

message to another
– But could be computer to computer

• How?
– Disk activity
– Page swapping
– Time slice behavior
– Use of a peripheral device
– Limited only by imagination

Lecture 5
Page 52CS 136, Winter 2008

Handling Covert Channels

• Relatively easy if you know what the
channel is
–Put randomness/noise into channel to

wash out message
• Hard to impossible if you don’t know

what the channel is
• Not most people’s problem

Lecture 5
Page 53CS 136, Winter 2008

Dangers for Operating System
Security

• Bugs in the OS
– Not checking security, allowing access to

protected resources, etc.
• Privileged users and roles

– Superusers often can do anything
• Untrusted applications and overly broad

security domains

Lecture 5
Page 54CS 136, Winter 2008

File Protection

• How do we apply these access protection
mechanisms to a real system resource?

• Files are a common example of a typically shared
resource

• If an OS supports multiple users, it needs to
address the question of file protection

Lecture 5
Page 55CS 136, Winter 2008

Unix File Protection

• A model for protecting files developed in the
1970s

• Still in very wide use today
– With relatively few modifications

• To review, three subjects
• Owner, group, other

• and three modes
– Read, write, execute
– Sometimes these have special meanings

Lecture 5
Page 56CS 136, Winter 2008

Setuid/Setgid Programs

• Unix mechanisms for changing your user identity
and group identity

• Either indefinitely or for the run of a single
program

• Created to deal with inflexibilities of the Unix
access control model

• But the source of endless security problems

Lecture 5
Page 57CS 136, Winter 2008

Why Are Setuid Programs
Necessary?

• The print queue is essentially a file
• Someone must own that file
• How will other people put stuff in the print queue?

– Without making the print queue writeable for
all purposes

• Typical Unix answer is run the printing program
setuid
– To the owner of the print queue

Lecture 5
Page 58CS 136, Winter 2008

Why Are Setuid Programs
Dangerous?

• Essentially, setuid programs expand a
user’s security domain

• In an encapsulated way
–Abilities of the program limit the

operations in that domain
• Need to be damn sure that the

program’s abilities are limited

Lecture 5
Page 59CS 136, Winter 2008

Some Examples of Setuid
Dangers

• Setuid programs that allow forking of a new shell
• Setuid programs with powerful debugging modes
• Setuid programs with “interesting” side effects

– E.g., lpr options that allow file deletion

Lecture 5
Page 60CS 136, Winter 2008

Encrypted File Systems

• Data stored on disk is subject to many risks
– Improper access through OS flaws
– But also somehow directly accessing the disk

• If the OS protections are bypassed, how can we
protect data?

• How about if we store it in encrypted form?

Lecture 5
Page 61CS 136, Winter 2008

An Example of an Encrypted File
System

Sqzmredq
#099 sn
lx
rzuhmfr
zbbntms

Ks

Transfer
$100 to
my
savings
account

Issues for
encrypted file

systems:
When does the

cryptography occur?

Where does the
key come from?

What is the
granularity of
cryptography?

Lecture 5
Page 62CS 136, Winter 2008

When Does Cryptography Occur?

• Transparently when user opens file?
– In disk drive?
– In OS?
– In file system?

• By explicit user command?
– Or always, implicitly?

• How long is the data decrypted?
• Where does it exist in decrypted form?

Lecture 5
Page 63CS 136, Winter 2008

Where Does the Key Come From?

• Provided by human user?
• Stored somewhere in file system?
• Stored on a smart card?
• Stored in the disk hardware?
• Stored on another computer?
• Where and for how long do we store

the key?

Lecture 5
Page 64CS 136, Winter 2008

What Is the Granularity of
Cryptography?

• An entire file system?
• Per file?
• Per block?
• Consider both in terms of:

–How many keys?
–When is a crypto operation applied?

Lecture 5
Page 65CS 136, Winter 2008

What Are You Trying to Protect
Against With Crypto File Systems?

• Unauthorized access by improper users?
– Why not just access control?

• The operating system itself?
– What protection are you really getting?

• Data transfers across a network?
– Why not just encrypt while in transit?

• Someone who accesses the device not using the
OS?
– A realistic threat in your environment?

Lecture 5
Page 66CS 136, Winter 2008

Full Disk Encryption

• All data on the disk is encrypted
• Data is encrypted/decrypted as it

enters/leaves disk
• Primary purpose is to prevent improper

access to stolen disks
–Designed mostly for laptops

Lecture 5
Page 67CS 136, Winter 2008

Hardware Vs. Software Full Disk
Encryption

• HW advantages:
– Probably faster
– Totally transparent, works for any OS
– Setup probably easier

• HW disadvantages:
– Not ubiquitously available today
– More expensive (not that much, though - ~$90

vs. ~$50 for 80Gbyte disk)
– Might not fit into a particular machine
– Backward compatibility

Lecture 5
Page 68CS 136, Winter 2008

An Example of Hardware Full Disk
Encryption

• Seagate’s Momentus 5400 FDE product line
• Hardware encryption for entire disk

– Using AES
• Key accessed via user password

– Hashed password stored on disk
– Check performed by the disk itself, pre-boot
– 44 Mbytes/sec sustained transfer rate

• Primarily for laptops

Lecture 5
Page 69CS 136, Winter 2008

Example of Software Full Disk
Encryption

• Vista BitLocker
• Doesn’t encrypt quite the whole drive

– Need unencrypted partition to hold bootstrap
stuff

• Uses AES for cryptography
• Key stored either in special hardware or USB

drive
• Microsoft claims “single digit percentage”

overhead
– One independent study claims 12%

