-

Operating System Security
CS 136
Computer Security
Peter Rether
January 24, 2008

\

-

* Introduction

* Memory protection

» Buffer overflows

 Interprocess communications protection
* File protection and disk encryption

\

[Outline J

\ Lecture 5
Page 2

CS 136, Winter 2008

~

* Operating systems provide the lowest layer
of software visible to users

* Operating systems are close to the hardware
— Often have complete hardware access

{ Introduction J

* [f the operating system 1sn’t protected, the
machine 1sn’t protected

* Flaws 1n the OS generally compromise all
security at higher levels

\ Lecture 5
Page 3

CS 136, Winter 2008

Why Is OS Security So Important?

* The OS controls access to application

memory

* The OS controls scheduling of the processor

 The OS ensures

that users receive the

resources they ask for

* If the OS 1sn’t ¢
practically anytl

oing these things securely,
1ng can go wrong

e So almost all of]

ner security systems must

assume a secure OS at the bottom

CS 136, Winter 2008

/ Single User Vs. Multiple User \

Machines

* The majority of today’s computers usually
support a single user

— Sometimes one at a time, sometimes only
one ever

* Some computers are still multi-user
— Mainframes
— Servers
— Network-of-workstation machines

» Single user machines often run multiple
\ processes, though Lem/s

CS 136, Winter 2008 Page 5

/ Server Machines Vs. General \

Purpose Machines

* Most server machines provide only limited
services

— Web page access
— File access
— DNS lookup
* Security problems are simpler for them

* Some machines still provide completely
general service, though

* And many server machines can run general y
\ SerV1ceS e o o Lecture 5

CS 136, Winter 2008 Page 6

/ Downloadable Code and Single\
User Machines
* Applets and other downloaded code
should run 1n a constrained mode

» Using access control on a finer
granularity than the user

* Essentially the same protection
problem as multiple users

\ Lecture 5
Page 7

CS 136, Winter 2008

/ ‘Mechanisms for Secure
Operating Systems

* Most operating system security 1S
based on separation

J

—Keep the bad guys away from the
good stuff

—Since you don’t know who’s bad,
separate most things

\

CS 136, Winter 2008

4 N

Separation Methods

» Physical separation

— Daifferent machines
* Temporal separation

— Same machine, different times
* Logical separation

— HW/software enforcement

— Possibly VM technology

\° Cryptographic separation)

Lecture 5
CS 136, Winter 2008 Page 9

-

* Separating stuff 1s actually pretty easy

The Problem of Sharing

* The hard problem 1s allowing
controlled sharing

e How can the OS allow users to share
exactly what they intend to share?

—In exactly the ways they intend

\ Lecture
Page 10

CS 136, Winter 2008

Levels of Sharing Protection

 None

* Jsolation

* All or nothing

» Access limitations

* Limited use of an object

\ Lecture 5

CS 136, Winter 2008 Page 11

-

* Most general purpose systems provide some
memory protection

{Protecting Memory}

— Logical separation of processes that run
concurrently

e Usually through virtual memory methods

* Originally arose mostly for error containment, not
security

\ Lecture 5

CS 136, Winter 2008 Page 12

Security Aspects of Paging

* Main memory 1s divided into page frames

* Every process has an address space divided 1nto
logical pages

* For a process to use a page, it must reside 1n a

page frame

* If multiple processes are running, how do we
protect their frames?

\ Lecture 5
Page 13

CS 136, Winter 2008

-

* Each process 1s given a page table

— Translation of logical addresses into
physical locations

* All addressing goes through page table
— At unavoidable hardware level

 If the OS 1s careful about filling 1n the page
tables, a process can’t even name other
processes’ pages

Protection of Pages

Lecture 5
Page 14

CS 136, Winter 2008

/ Security Issues of Page Frame \
Reuse
* A common set of page frames 1s shared by

all processes

* The OS switches ownership of page frames
as necessary

 When a process acquires a new page frame,
it used to belong to another process

— Can the new process read the old data?

\ Lecture 5

CS 136, Winter 2008 Page 15

Special Interfaces to Memory

* Some systems provide a special interface to
memory

* [f the interface accesses physical memory,

— And doesn’t go through page table
protections,

— Attackers can read the physical memory

— Then figure out what’s there and find
what they’re looking for

Lecture 5
CS 136, Winter 2008 Page 16

-

CS 136, Winter 2008

{Buffer OverﬂowsJ

One of the most common causes for
compromises of operating systems

* Due to a flaw 1n how operating

systems handle process inputs

—Or a flaw 1n programming languages
—Or a flaw 1n programmer training
—Depending on how you look at 1t

Lecture 5
Page 17

-

* A program requests input from a user

* It allocates a temporary buffer to hold
the input data

* [t then reads all the data the user
provides into the buffer, but . . .

e [t doesn’t check how much data was
provided

\ Lecture
Page 18

CS 136, Winter 2008

What Is a Bufter Overtlow?

-

int main () {

J

For Example,

char name[32];

printf (“Please type your name:
gets (name) ;

printf (Y“Hello, %s”, name);
return (0);

e What if the user enters more than 32 characters?

\

\\\

\\) .
’

/

Lecture 5
Page 19

CS 136, Winter 2008

-

* The code continues reading data into
memory

Well, What If the User Does?

—That’s how gets () works
* The first 32 bytes go into name
* Where do the remaining bytes go?
* Onto the stack

\

CS 136, Winter 2008

u
Page 20

4 N

Munging the Stack

* The temporary variable name 1is allocated
on the stack

— Close to the record of the function
currently being run

* The overflow will spill into whatever’s next
on the stack

 [f it overflows enough, it will overwrite the
instruction pointer

* When the function exits, 1t will go to the
\ overwritten pointer, not where it came from |

Lecture 5

CS 136, Winter 2008 Page 21

Why Is This a Security Problem?

o All attacker can do 1s run different
code than was expected

* He hasn’t gotten into anyone else’s
Processes

—Or data

* So he can only fiddle around with his
own stuff, right?

\ Lecture
Page 22

CS 136, Winter 2008

-

* Well, yes

« That’s why a media player can write
configuration and data files

Is That So Bad?

up very carefully, a typical program
can write all 1ts user’s files

\

* Unless roles and access permissions set

~

Lecture 5

CS 136, Winter 2008

Page 23

/ The Core Buftter Overtlow \

Security Issue
* Programs are often run on behalf of
others
—But using your 1dentity

* Maybe 1t’s OK for you to access some
data

* But 1s it OK for someone who you’re
running a program for?

\ Lecture 5
Page 24

CS 136, Winter 2008

/ But I Never Run Programs for \
Anyone Else

* Oh, yes, you do
* Every time you download any form of executable

* Every time you download a file containing an
executable

* Every time you allow someone to remotely access
data on your system

— E.g., via a web server

 In all cases, you’re doing something for someone
else

Lecture 5
CS 136, Winter 2008 Page 25

/ Using Buffer Overtlows to \
Compromise Security

» Carefully choose what gets written into
the 1nstruction pointer

* So that the program jumps to
something you want to do

—Under the 1dentity of the program
that’s running

e Such as, execute a command shell

\ Lecture 5
Page 26

CS 136, Winter 2008

Eftects of Bufter Overflows

A remote or unprivileged local user runs a
program with greater privileges

If buffer overtlow 1s 1n a root program, it
gets all privileges, essentially

Can also overwrite other stuff
— Such as heap variables

Common mechanism to allow attackers to
break into machines

CS 136, Winter 2008

Lecture 5
Page 27

4 N

* The most common kind of buffer overflow

* Intended to alter the contents of the stack

* Usually by overflowing a dynamic variable

» Usually with intention of jumping to exploit
code

— Though could be to alter parameters or
variables 1n other frames

Stack Overflows

\ — Or even variables 1n current frame y

Lecture 5

CS 136, Winter 2008 Page 28

4 N

Heap Overtlows

* Heap i1s used to store dynamically
allocated memory

» Buffers kept there can also overtlow

* Generally doesn’t offer direct ability to
jump to arbitrary code

» But potentially quite dangerous

\ Lecture 5
Page 29

CS 136, Winter 2008

/ What Can You Do With Heap \

Overflows?

e Alter variable values
e “Edit” linked lists or other data structures

* If heap contains list of function pointers,
can execute arbitrary code

* Generally, heap overflows are harder to
exploit than stack overflows

* But they exist
—E.g., Microsoft CVE-2007-0948

\ » Allowed VM to escape confinement

CS 136, Winter 2008

/

Lecture 5
Page 30

Are Bufter Overtlows Common?

* You bet!

* Weekly occurrences 1n major
systems/applications

—Mostly stack overflows

* Probably one of the most common
security bugs

\ Lecture 5
Page 31

CS 136, Winter 2008

Some Recent Butffer Overtlows

Cisco Security Agent for Windows
— They should have known better
HP OpenView Network Node Manager
— They should have, too
IBM Lotus Notes
— Them, too
31vx MPEG-4 Codec
And more than 15 others in December 2007 alone

— In code written by everyone from Microsoft to
\ tiny software shops)

Lecture 5

CS 136, Winter 2008 Page 32

Fixing Buffer Overtlows

Check the length of the input
Use programming languages that prevent them
Add OS controls that prevent overwriting the stack

Put things in different places on the stack, making 1t hard
to find the return pointer

Don’t allow execution from places in memory where
buffer overflows occur (E.g., Windows DEP)

Why aren’t these things commonly done?
— Sometimes they are

Presumably because programmers and designers neither
know nor care about security /

Lecture 5
CS 136, Winter 2008 Page 33

/ 'Protecting Interprocess
Communications

- J

* Operating systems provide various kinds of
Interprocess communications

— Messages
— Semaphores
— Shared memory
— Sockets
 How can we be sure they’re used properly?

\

\

Lecture 5

CS 136, Winter 2008

Page 34

-

 How hard 1t 1s depends on what you’re
worried about

IPC Protection Issues

* For the moment, let’s say we’re worried
about one process improperly using IPC to
get info from another

— Process A wants to steal information
from process B

 How would process A do that?

\ Lecture 5

CS 136, Winter 2008 Page 35

-

\

CS 136, Winter 2008

Process A

Message Security
Process B

Gimme your
secret

<

[]
That’s probably

not going to work

Can process B use message-based
IPC to steal the secret?

~

Lecture 5

Page 36

How Can B Get the Secret?

* He can convince the system he’s A
— A problem for authentication

* He can break into A’s memory
— That doesn’t use message IPC
— And 1s handled by page tables

* He can forge a message from someone else to get
the secret

* He can “eavesdrop” on someone else who gets the
secret

\ Lecture 5
Page 37

CS 136, Winter 2008

-

\

CS 136, Winter 2008

Forging An Identity
Process A Process B
I'm C, gimme

[] your secret
<
Will A Process C
know B 1s
lying?

\

Lecture 5

Page 38

Operating System Protections

* The operating system knows who each
process belongs to

* It can tag the message with the 1dentity of
the sender

— Raw message never available outside the
OS

* [fthe receiver cares, he can know the
1dentity

\ Lecture 5
Page 39

CS 136, Winter 2008

\

How About Eavesdropping?

Process A

I'm C, gimme
your secret

Process C

Process B

Can process B

“listen 1n” on
this message?

CS 136, Winter 2008

Lecture 5
Page 40

-

* On a single machine, what 1s a message send,
really?

* A message 1s copied from a process buffer to an
OS buffer

— Then from the OS buffer to another process’
buffer

— Sometimes optimizations skip some copies

 If attacker can’t get at processes’ internal buffers
and can’t get at OS buffers, he can’t “eavesdrop”

What’s Really Going on Here?

CS 136, Winter 2008

Lecture 5
Page 41

Returning to an Earlier Issue

 What are buffers, really?

* Data held in memory pages

* Really 1n page frames

* Page frames are shared
—Serially

« Will the page frame I allocate contain
\ data from 1ts last user?)

CS 136, Winter 2008 Page 42

/ Avoiding Page Frame \
“Eavesdropping”

« Zero pages on deallocation
» Zero pages on allocation

* Mark pages as unreadable until a
process writes them

—Need to ensure partial write doesn’t
clear the mark entirely

\ Lecture 5
Page 43

CS 136, Winter 2008

-

« Semaphores, sockets, shared memory, RPC

Other Forms of IPC

* Pretty much all the same
— Use system calls for access
— Which belong to some process
— Which belongs to some principal

— OS can check principal against access control
permissions at syscall time

— Ultimately, data is held in some type of memory

* Which shouldn’t be improperly accessible

\

CS 136, Winter 2008

/

Lecture 5
Page 44

e N

1. Always possible that there’s a bug in the
operating system

— Allowing masquerading, eavesdropping, etc.

— Or, 1f the OS 1itself 1s compromised, all bets
are off

2. What if the OS has to prevent cooperating
processes from sharing information?

\ Lecture 5
Page 45

CS 136, Winter 2008

-

Process A

The Hard Case

llllll

llllll

lllll

llllll

llllll

lllll

IIIIII
llllll

llllll

lllll

llllll

llllll

lllll

llllll

llllll

lllll

llllll

llllll

to get the secret to B?

CS 136, Winter 2008

Process B

Process A wants to tell the secret to process B
But the OS has been instructed to prevent that

A necessary part of Bell-La Padula, e.g.
Can the OS prevent A and B from colluding

\

Lecture 5

Page 46

-

\

CS 136, Winter 2008

OS Control of Interactions

OS can “understand” the security policy

« Can maintain labels on files, process, data

pages, eftc.

* Can regard any IPC or I/O as a possible leak

of information
— To be prohibited 1f labels don’t allow it

Lecture 5
Page 47

4 N

Example

» Bell-LaPadula doesn’t allow writedown

* Process A 1s at Top Secret clearance

* It tries to send a message to process B
— Which i1s at Secret clearance

* OS understands Bell-LaPadula

— Observes 1llegal access and prevents the
IPC

\ Lecture 5
Page 48

CS 136, Winter 2008

-

\

CS 136, Winter 2008

Covert Channels

Tricky ways to pass information

» Requires cooperation of sender and

recelver

—Generally 1n active attempt to
decelve system

» Use something not ordinarily regarded

as a communications mechanism

~

Lecture 5

Page 49

\

CS 136, Winter 2008

]]
| |
10
]]
]]
]]
]]
_ RN

]]
]]
]]
]]
]]
]]
]]
ninj

/

Lecture 5

Page 50

Covert Channels in Computers

* Generally, one process “sends” covert
message to another

— But could be computer to computer
« How?

— Disk activity

— Page swapping

— Time slice behavior

— Use of a peripheral device
\ — Limited only by imagination /

Lecture 5
CS 136, Winter 2008 Page 51

Handling Covert Channels

» Relatively easy 1f you know what the
channel 1s

—Put randomness/noise into channel to
wash out message

» Hard to impossible if you don’t know
what the channel 1s

* Not most people’s problem

\ Lecture 5
Page 52

CS 136, Winter 2008

/ Dangers for Operating System \
Security

. J

* Bugs in the OS

— Not checking security, allowing access to
protected resources, etc.

* Privileged users and roles
— Superusers often can do anything

» Untrusted applications and overly broad
security domains

\ Lecture 5
Page 53

CS 136, Winter 2008

-

 How do we apply these access protection
mechanisms to a real system resource?

~

[File Protection }

 Files are a common example of a typically shared
resource

» If an OS supports multiple users, 1t needs to
address the question of file protection

\ Lecture 5

CS 136, Winter 2008 Page 54

* A model for protecting files developed in the
1970s

« Still in very wide use today
— With relatively few modifications
* To review, three subjects
* Owner, group, other
and three modes
— Read, write, execute
— Sometimes these have special meanings

\ Lecture 5
: Page 55

CS 136, Winter 2008

Setuid/Setgid Programs

* Unix mechanisms for changing your user identity
and group identity

 Either indefinitely or for the run of a single
program

 (Created to deal with inflexibilities of the Unix
access control model

* But the source of endless security problems

\ Lecture 5

CS 136, Winter 2008 Page 56

/ Why Are Setuid Programs \
Necessary?

» The print queue 1s essentially a file
* Someone must own that file
* How will other people put stuff in the print queue?

— Without making the print queue writeable for
all purposes

* Typical Unix answer 1s run the printing program
setuid

— To the owner of the print queue

\ Lecture 5

CS 136, Winter 2008 Page 57

/ Why Are Setuid Programs \

Dangerous?
» Essentially, setuid programs expand a
user’s security domain
* In an encapsulated way

— Abilities of the program limit the
operations 1n that domain

* Need to be damn sure that the
program’s abilities are limited

\ Lecture 5
Page 58

CS 136, Winter 2008

/ Some Examples of Setuid \
Dangers

* Setuid programs that allow forking of a new shell
* Setuid programs with powerful debugging modes

* Setuid programs with “interesting’ side effects
— E.g., 1pr options that allow file deletion

\ Lecture 5
Page 59

CS 136, Winter 2008

__

» Data stored on disk 1s subject to many risks
— Improper access through OS flaws
— But also somehow directly accessing the disk

 If the OS protections are bypassed, how can we
protect data?

« How about 1f we store it in encrypted form?

\ Lecture 5
Page 60

CS 136, Winter 2008

/ An Example of an Encrypted File \

System

Ad
= K

Sgamséfdqg
§000 s&o

sauhmf's
abbotums

\

Issues for
encrypted file
systems:

When does the

cryptography occur?

Where does the
key come from?

What 1s the
granularity of

cryptography?

CS 136, Winter 2008

/

Lecture 5
Page 61

\

When Does Cryptography Occur?

» Transparently when user opens file?
In disk drive?
In OS?

In file system?
* By explicit user command?

— Or always, implicitly?

CS 136, Winter 2008

 How long is the data decrypted?
* Where does it exist in decrypted form?

Lecture 5
Page 62

\

Where Does the Key Come From?

Provided by human user?

Stored somewhere in file system?
Stored on a smart card?
Stored 1n the disk hardware?
Stored on another computer?

Where and for how long do we store
the key?

CS 136, Winter 2008

Lecture 5
Page 63

/ What Is the Granularity of \
Cryptography?

* An entire file system?

 Per file?

* Per block?

 Consider both 1n terms of:

—How many keys?

—When 1s a crypto operation applied?

\ Lecture 5
Page 64

CS 136, Winter 2008

/ What Are You Trying to Protect \
Against With Crypto File Systems?

* Unauthorized access by improper users?
— Why not just access control?
* The operating system itself?
— What protection are you really getting?
« Data transfers across a network?
— Why not just encrypt while in transit?

» Someone who accesses the device not using the
OS?

— A realistic threat 1n your environment?

\ Lecture 5
Page 65

CS 136, Winter 2008

-

\

CS 136, Winter 2008

Full Disk Encryption

 All data on the disk 1s encrypted
» Data 1s encrypted/decrypted as 1t

enters/leaves disk

access to stolen disks
—Designed mostly for laptops

* Primary purpose 1s to prevent improper

u
Page 66

ﬁ{ardware Vs. Software Full Disla

Encryption
« HW advantages:
— Probably faster
— Totally transparent, works for any OS
— Setup probably easier
e HW disadvantages:
— Not ubiquitously available today

— More expensive (not that much, though - ~$90
vs. ~$50 for 80Gbyte disk)

— Might not fit into a particular machine

— Backward compatibility Lectuns 5

CS 136, Winter 2008 Page 67

/ An Example of Hardware Full Disk\
Encryption

Seagate’s Momentus 5400 FDE product line
« Hardware encryption for entire disk
— Using AES
« Key accessed via user password
— Hashed password stored on disk
— Check performed by the disk itself, pre-boot
— 44 Mbytes/sec sustained transfer rate
Primarily for laptops

\ Lecture 5
Page 68

CS 136, Winter 2008

/" Example of Software Full Disk \
Encryption

Vista BitLocker
* Doesn’t encrypt quite the whole drive

— Need unencrypted partition to hold bootstrap
stuff

* Uses AES for cryptography

« Key stored either 1n special hardware or USB
drive

* Microsoft claims “single digit percentage”
overhead

\ — One independent study claims 12% /

Lecture 5
CS 136, Winter 2008 Page 69

