Secure Programming
CS 136
Computer Security
Peter Rether
March 6, 2008

-

e Introduction

{ Outline J

* Principles for secure software
* Choosing technologies
* Major problem areas

* Evaluating program security

CS 136, Winter 2008

Lecture 15
Page 2

{Introductionj

 How do you write secure software?
 Basically, define security goals

* And use techniques that are likely to
achieve them

* Ideally, part of the whole process of
software development

— Not just some tricks programmers use

CS 136, Winter 2008

Lecture 15
Page 3

-

CS 136, Winter 2008

Designing for Security

Often developers design for functionality
—“We’ll add security later”

* Security retrofits have a terrible reputation

— Insecure designs offer too many attack
opportunities

Designing security from the beginning
works better

~

Lecture 15

Page 4

4 N

For Example,

« Windows 95 and its relatives

* Not designed with security in mind

* Security professionals assume any

networked Windows 95 machine can
be hacked

—Despite later security retrofits

Lecture 15
CS 136, Winter 2008 Page 5

-

CS 136, Winter 2008

~

Defining Security Goals

Think about which security properties are relevant
to your software

— Does 1t need limited access?
— Privacy issues?
— Is availability important?
And the way i1t interacts with your environment

— Even 1f 1t doesn’t care about security, what
about the system 1t runs on?

/

Lecture 15
Page 6

/ Some Common Kinds of

— Tampering

Problems

e We’ve seen these betfore:
— Eavesdropping

— Spoofing and replay
— Allowing improper access
— Social engineering

* Many threats are malicious input problems

~

/

Lecture 15

CS 136, Winter 2008

Page 7

-

CS 136, Winter 2008

Security and Other Goals

Security 1s never the only goal of a
piece of software

Usually not the primary goal

* Generally, secure software that doesn’t

meet 1ts other goals 1s a failure

Consider the degree of security
required as an 1ssue of risk

~

Lecture 15

Page 8

-

e How much risk can this software tolerate?

* What compromises can you make to
minimize that risk?

— Often other goals conflict with security

—E.g., should my program be more usable
or require strong authentication?

* Considering tradeoffs in terms of risks can
clarify what you need to do

Managing Software Security Risk

~

Lecture 15

CS 136, Winter 2008

Page 9

/ Risk Management and Software\
Development

* Should consider security risk as part of your
software development model

* E.g., 1n spiral model, add risk analysis phase
to the area of spiral where you evaluate
alternatives

* Considering security and risks early can
avoid pitfalls later

* Returning to risk when refining is necessary /

Lecture 15
Page 10

CS 136, Winter 2008

-

CS 136, Winter 2008

Design and Security Experts

Someone on a software development team
should understand security

— The more they understand it, the better

— Ideally, someone on team should have
explicit security responsibility

» Experts should be involved 1n all phases

— Starting from design

~

Lecture 15

Page 11

|

» Following these doesn’t guarantee
security

]\

Principles for Secure Software

* But they touch on the most commonly
seen security problems

* Thinking about them 1s likely to lead to
more secure code

Lecture 15
CS 136, Winter 2008 Page 12

-

CS 136, Winter 2008

1. Secure the Weakest Link

Don’t consider only a single possible
attack

Look at all possible attacks you can
think of

Concentrate most attention on most
vulnerable elements

~

Lecture 15

Page 13

4 N

For Example,

 Attackers are not likely to break
cryptography
— Switching from DES to AES probably
doesn’t address your weakest link

* More likely to use a buffer overflow to
break 1n

— And read data before 1t’s encrypted
— Spend the time on preventing that /

Lecture 15
CS 136, Winter 2008 Page 14

-

CS 136, Winter 2008

2. Practice Defense 1n Depth

Try to avoid designing software so failure
anywhere compromises everything

* Also try to protect data and applications

from failures elsewhere in the system

Don’t let one security breach give away
everything

~

Lecture 15

Page 15

-

\\%

For Example,

* Protecting data moving between
servers 1n a single enterprise system

* Don’t just put up a firewall around

hole system

o Al

CS 136, Winter 2008

so encrypt data 1n transit

* And put another firewall on each
machine/application

Lecture 15
Page 16

-

CS 136, Winter 2008

3. Fail Securely

Common source of security problems
arise when programs fail

 Often fail into modes that aren’t secure

So attackers cause them to fail
—And see 1f that helps them

So make sure that when ordinary
measures fail, the backup 1s secure

~

/

Lecture 15

Page 17

-

* A major security flaw 1n typical Java RMI
implementations

For Example,

 If server wants to use security protocol
client doesn’t have, what happens?

— Client downloads 1t from the server
— Which i1s doesn’t trust yet . . .

* Malicious entity can force installation of
compromised protocol

~

Lecture 15

CS 136, Winter 2008

Page 18

/ 4. Use Principle of Least \
Privilege
* (Glve minimum access necessary

e For the minimum amount of time required
* Always possible that the privileges you give
will be abused

— Either directly or through finding a
security flaw

* The less you give, the lower the risk

Lecture 15
CS 136, Winter 2008 Page 19

4 N

For Example,

* In traditional Unix systems, can’t bind to
port number < 1024 unless you’re root

* So if someone legitimately needs to bind to
such a port, must give them root

* But once they’ve bound to 1t, program
should relinquish privileges

e So only program flaws 1n limited part of
program give attacker root privilege /

Lecture 15
CS 136, Winter 2008 Page 20

-

CS 136, Winter 2008

5. Compartmentalize

Divide programs 1nto pieces

» Ensure that compromise of one piece

does not automatically compromise
others

Set up limited interfaces between
pleces

—Allowing only necessary interactions

~

Lecture 15

Page 21

-

CS 136, Winter 2008

~

For Example,

Traditional Unix has terrible
compartmentalization

— Obtaining root privileges gives away the
entire system

Redesigns that allow previous root
programs to run under other 1dentities helps

— E.g., mail server and print server users

Lecture 15
Page 22

-

CS 136, Winter 2008

6. Value Simplicity

Complexity 1s the enemy of security

Complex systems give more
opportunities to screw up

* Also, harder to understand all “proper”

behaviors of complex systems

* So favor simple designs over complex

oncs

~

Lecture 15

Page 23

4 N

For Example,

* Re-use components when you think they’re
secure

« Use one implementation of encryption, not
several

— Especially 1f you use “tried and true”
implementation

— And one that only does what you need

— Implementation of exactly what you need
better than “Swiss army knife”

CS 136, Winter 2008

/

Lecture 15
Page 24

/ Especially Important When \
Human Users Involved

e Users will not read documentation

— So don’t rely on designs that require them
to

» Users are lazy
— They’ll 1gnore pop-ups and warnings

—“QG1ven the choice between dancing pigs
and security, users will pick dancing pigs
every time.” Ed Felten /

Lecture 15
CS 136, Winter 2008 Page 25

-

CS 136, Winter 2008

7. Promote Privacy

Avoid doing things that will
COmMpPromise user privacy

* Don’t ask for data you don’t need

* Avoid storing user data permanently

—Especially unencrypted data

» There are strong legal i1ssues related to

this, nowadays

~

/

Lecture 15

Page 26

4 N

For Example,

* Storing user passwords

* If you store them 1n plaintext, you can
“remind” users who forget

* But breakins might compromise all of them
— And users might use them elsewhere

» Consider storing them only encrypted

— Which has usability 1ssues . . .

Lecture 15
Page 27

CS 136, Winter 2008

/ 8. Remember That Hiding \
Secrets 1s Hard

* Assume anyone who has your program can
learn everything about 1t

* “Hidden” keys and passwords in
executables are mvariably found

« Security based on obfusticated code 1s
always broken

 Just because you’re not smart enough to
crack it doesn’t mean the hacker isn’t, either /

Lecture 15
CS 136, Winter 2008 Page 28

-

CS 136, Winter 2008

For Example,

Digital rights management software often
needs to hide a key

But needs that key available to the users

* All schemes developed to do this have been

cracked

— Nowadays, usually cracked before
official release of “protected” media

~

Lecture 15

Page 29

-

CS 136, Winter 2008

9. Be Reluctant to Trust

Don’t automatically trust things
— Especially i1f you don’t have to

Remember, you’re not just trusted the
honesty of the other party

— You’re also trusting their caution

Avoid trusting users you don’t need to trust,
too

— Doing so makes you more open to social
engineering attacks

~

/

Lecture 15
Page 30

-

For Example,

 Why do you trust that shrinkwrapped

software?

 Or that open source library?
* Must you?

* Can you design the system so 1t’s

secure even 1f that component fails?

e [fso, doit

CS 136, Winter 2008

~

Lecture 15

Page 31

/ 10. Use Your Community \
Resources

* Favor widely used and respected
security software over untested stuff

—Especially your own . . .

» Keep up to date on what’s going on
—Not just patching
— Also things like attack trends

Lecture 15
CS 136, Winter 2008 Page 32

-

CS 136, Winter 2008

For Example,

Don’t implement your own AES code

Rely on one of the widely used
Versions

But also don’t be too trusting

—E.g., just because 1t’s open source
doesn’t mean 1t’s more secure

~

Lecture 15

Page 33

-

CS 136, Winter 2008

{Choosing Technologies J

Different technologies have different security
properties

— Operating systems

— Languages

— Object management systems

— Libraries

Important to choose wisely

— And understand the implications of the choice

~

Lecture 15

Page 34

-

CS 136, Winter 2008

Choices and Practicalities

You usually don’t get to choose the OS

* The environment you’re writing for dictates

the choice

— E.g., commercial software often must be
written for Windows

— Or Linux 1s the platform 1n your company

Might not get choice 1n other areas, either

— But exercise it when you can

~

Lecture 15

Page 35

Rarely an option
If they are, does 1t matter?
Probably not, any more
— All major choices have poor security histories
* No, Linux is not necessarily safer than Windows
— All have exhibited lots of problems
— In many cases, problems are in the apps, anyway
Exception if you get to choose really trusted platform
— E.g., SE Linux or Trusted Solaris

 Not perfect, but better /

e But at a cost Lecture 15
CS 136, Winter 2008 Page 36

* More likely to be possible

—Though often hard to switch from
what’s already being used

* If you do get the choice, what should 1t
be?

Lecture 15
CS 136, Winter 2008 Page 37

-

CS 136, Winter 2008

e A

C and C++

* Probably the worst security choice
* Far more susceptible to buffer

overflows than other choices

Often chosen for efficiency

—But 1s efficiency that important for
your application?

so prone to other reliability problems

~

Lecture 15

Page 38

4 N

Java

* Less susceptible to buffer overtlows
* Also better error handling than C/C++

* Has special built-in security features

— Which aren’t widely used
* But has its own set of problems
* E.g., exception handling 1ssues

* 19 serious security flaws found between
1996 and 2001)

Lecture 15
CS 136, Winter 2008 Page 39

-

CS 136, Winter 2008

Scripting Languages

* Depends on language
 Javascript and CGlbin have awtul

security reputations

 Perl offers some useful security

features

» But there are some general 1ssues

~

Lecture 15

Page 40

/ General Security Issues for \
Scripting Languages
* Might be security flaws in their interpreters
— More likely than 1n compilers

* Scripts often easily examined by attackers

— Obscurity of binary no guarantee, but it 1s
an obstacle

* Scripting languages often used to make
system calls

— Inherently dangerous /

Lecture 15
CS 136, Winter 2008 Page 41

-

CS 136, Winter 2008

__

e e e e e e e e e e e e e e e e e e e Em e e e e e e m e e e m e e e e e e e e e e e e

* Which distributed object management

system?
—CORBA, DCOM, RMI, .net?

~

—Each has different security properties

* Which authentication technology to

use?

* Which existing components to include?

Page 42

cture 15

e ~

Open Source vs. Closed Source |

__

* Some argue open source software 1s
inherently more secure

* The “more eyes” argument —

— Since anyone can look at open source
code,

— More people will examine it

— Finding more bugs

— Increasing security Lectue 15

CS 136, Winter 2008 Page 43

/ Is the “Many Eyes” Argument \
Correct?

* Probably not
* At least not in general

* Linux has security bug history similar to
Windows

* Other open source projects even worse

—In many cases, nobody really looks at the
code

— Which is no better than closed source T

CS 136, Winter 2008 Page 44

-

CS 136, Winter 2008

The Flip Side Argument

“Hackers can examine open source
software and find 1its flaws™

* Well, Windows’ security history 1s not

a recommendation for this view

* Most commonly exploited flaws can be

found via black-box approach
—E.g., typical buffer overtlows

~

Lecture 15

Page 45

-

CS 136, Winter 2008

~

The Upshot?

* No solid evidence that open source or

closed source produces better security

* Major exception 1s crypto

— At least for crypto standards
—Maybe widely used crypto packages

—Criticality and limited scope means
many eyeballs will really look at 1t

/

Lecture
Page 46

15

fMaj or Security Issues for Secure\\
Design and Coding

A)

* Buffer overflows

* Access control 1ssues

* Race conditions

« Randomness and determinism

* Proper use of cryptography

* Trust management and 1nput validation

Lecture 15
CS 136, Winter 2008 Page 47

* The poster child of insecure
programming

* One of the most commonly exploited
types of programming error

» Technical details of how they occur
discussed earlier

* Key problem 1s language does not
check bounds of variables /)

CS 136, Winter 2008 Page 48

-

CS 136, Winter 2008

~

Preventing Buffer Overflows
Use a language with bounds checking

—Most modern languages other than C
and C++

—Not always a choice
—Or the right choice
Check bounds carefully yourself

Avoid constructs that often cause
trouble

Page 49

cture 15

/ Problematic Constructs for \

Buffer Overtlows
* Most frequently C system calls:

-gets (), strcpy (), strcat (),
sprintf (), scanf (),
sscanf (), fscanf (),
viscanf (),vsprintf (),
vscant (), vsscant (),
streadd (), strecpy ()

—There are others that are also risky /

Lecture 15
CS 136, Winter 2008 Page 50

-

CS 136, Winter 2008

Why Are These Calls Risky?

They copy data into a buffer

Without checking if the length of the data
copied 1s greater than the buffer

Allowing overflow of that buffer

Assumes attacker can put his own data into
the buffer

— Not always true
— But why take the risk?

~

Lecture 15
Page 51

4 N

What Do You Do Instead?

* Many of the calls have variants that
specify how much data 1s copied

—If used properly, won’t allow the
buffer to overtlow

 Those without the variants allow
precision specifiers

—Which limit the amount of data)
handled

CS 136, Winter 2008 Page 52

-

e No
 These are automated bufter overtlows

Is That All I Have To Do?

* You can easily write your own

* Must carefully check the amount of
data you copy 1f you do

* And beware of integer overflow
problems

~

CS 136, Winter 2008

Page 53

cture 15

4 N

An Example

* Actual bug in OpenSSH server:

u int nresp;

nresp = packet get int();

If (nresp > 0) {
response = xmalloc (nresp * sizeof (char *));
for (1i=0; i<nresp;it+)
response[1] = packet get string(NULL) ;

J
packet check eom(); /

Lecture 15
CS 136, Winter 2008 Page 54

-

CS 136, Winter 2008

Why Is This a Problem?

 nresp 1s provided by the user

— nresp = packet get int();

* But we allocate a buffer of nresp

entries, right?

— response = xmalloc (nresp * sizeof (char *));

So how can that buffer overtlow?

* Due to integer overflow

~

Lecture 15

Page 55

/ How Does That Work?

* The argument to xmalloc () 1s an
unsigned 1nt

e Its maximum value is 23?%-1
—4.294.967,295
e sizeof (char *) 1s4

 What 1f the user sets nresp to
0x400000207?

e Multiplication is modulo 23% . . .
—So 4 * 0x40000020 is 0x80

CS 136, Winter 2008

Lecture 15
Page 56

-

CS 136, Winter 2008

~

What Is the Result?

There are 128 entries 1n response []

And the loop iterates hundreds of
millions of times

—Copying data into the “proper place”
in the buffer each time

A massive bufter overflow

Lecture 15
Page 57

/ Other Programming Tools for \
Buffer Overtlow Prevention

* Software scanning tools that look for buffer
overflows

— Of varying sophistication

e Use C compiler that includes bounds
checking
— Typically as an option

» Use 1ntegrity-checking programs

— Stackguard, Rational’s Purity, etc. Lt 15

Page 58

CS 136, Winter 2008

. Programs usually run under their user’s
1dentity
— With his privileges

* Some programs get expanded
privileges
—Setuid programs 1n Unix, €.g.

* Poor programming here can give too
much access

CS 136, Winter 2008 Page 59

-

CS 136, Winter 2008

~

An Example Problem

a shell to be for

» A program that runs setuid and allows

ked

—G1ving the cal

ler a root environment

in which to run arbitrary commands

* Buffer overflows in privileged

programs usually give privileged

dCCCSS

Lecture 15
Page 60

-

CS 136, Winter 2008

A Real World Example

/sbin/dump from NetBSD

Ran setgid as group tty

— To notify sysadmins of important events
— Never dropped this privilege

Result: dump would start program of
user’s choice as user tty

— Allowing them to interact with other
user’s terminals

~

Lecture 15

Page 61

-

CS 136, Winter 2008

What To Do About This?

* Avoid running programs setuid
* If you must, don’t make them root-

ownhed

* Change back to the real caller as soon

as you can

—Limiting exposure

e Use tools like chroot () to

compartmentalize

~

Lecture 15

Page 62

4 N

chroot ()

* Unix command to set up sandboxed
environment

* Programs run chroot () see different
directory as the root of the file system

* Thus, can’t see anything not under that
directory

e Hard to set up right, though

 Other systems have different approaches)

Lecture 15
CS 136, Winter 2008 Page 63

