
Lecture 15
Page 1 CS 136, Winter 2008

Secure Programming
CS 136

Computer Security
Peter Reiher

March 6, 2008

Lecture 15
Page 2 CS 136, Winter 2008

Outline

•  Introduction
• Principles for secure software
• Choosing technologies
• Major problem areas
• Evaluating program security

Lecture 15
Page 3 CS 136, Winter 2008

Introduction

• How do you write secure software?
•  Basically, define security goals
• And use techniques that are likely to

achieve them
•  Ideally, part of the whole process of

software development
– Not just some tricks programmers use

Lecture 15
Page 4 CS 136, Winter 2008

Designing for Security

• Often developers design for functionality
– “We’ll add security later”

•  Security retrofits have a terrible reputation
– Insecure designs offer too many attack

opportunities
• Designing security from the beginning

works better

Lecture 15
Page 5 CS 136, Winter 2008

For Example,

• Windows 95 and its relatives
• Not designed with security in mind
• Security professionals assume any

networked Windows 95 machine can
be hacked
– Despite later security retrofits

Lecture 15
Page 6 CS 136, Winter 2008

Defining Security Goals

•  Think about which security properties are relevant
to your software
– Does it need limited access?
– Privacy issues?
– Is availability important?

•  And the way it interacts with your environment
– Even if it doesn’t care about security, what

about the system it runs on?

Lecture 15
Page 7 CS 136, Winter 2008

Some Common Kinds of
Problems

• We’ve seen these before:
– Eavesdropping
– Tampering
– Spoofing and replay
– Allowing improper access
– Social engineering

• Many threats are malicious input problems

Lecture 15
Page 8 CS 136, Winter 2008

Security and Other Goals

• Security is never the only goal of a
piece of software

• Usually not the primary goal
• Generally, secure software that doesn’t

meet its other goals is a failure
• Consider the degree of security

required as an issue of risk

Lecture 15
Page 9 CS 136, Winter 2008

Managing Software Security Risk

• How much risk can this software tolerate?
• What compromises can you make to

minimize that risk?
– Often other goals conflict with security
– E.g., should my program be more usable

or require strong authentication?
•  Considering tradeoffs in terms of risks can

clarify what you need to do

Lecture 15
Page 10 CS 136, Winter 2008

Risk Management and Software
Development

•  Should consider security risk as part of your
software development model

•  E.g., in spiral model, add risk analysis phase
to the area of spiral where you evaluate
alternatives

•  Considering security and risks early can
avoid pitfalls later

•  Returning to risk when refining is necessary

Lecture 15
Page 11 CS 136, Winter 2008

Design and Security Experts

•  Someone on a software development team
should understand security
– The more they understand it, the better
– Ideally, someone on team should have

explicit security responsibility
•  Experts should be involved in all phases

– Starting from design

Lecture 15
Page 12 CS 136, Winter 2008

Principles for Secure Software

• Following these doesn’t guarantee
security

• But they touch on the most commonly
seen security problems

• Thinking about them is likely to lead to
more secure code

Lecture 15
Page 13 CS 136, Winter 2008

1. Secure the Weakest Link

• Don’t consider only a single possible
attack

• Look at all possible attacks you can
think of

• Concentrate most attention on most
vulnerable elements

Lecture 15
Page 14 CS 136, Winter 2008

For Example,

• Attackers are not likely to break
cryptography
– Switching from DES to AES probably

doesn’t address your weakest link
• More likely to use a buffer overflow to

break in
– And read data before it’s encrypted
– Spend the time on preventing that

Lecture 15
Page 15 CS 136, Winter 2008

2. Practice Defense in Depth

•  Try to avoid designing software so failure
anywhere compromises everything

• Also try to protect data and applications
from failures elsewhere in the system

• Don’t let one security breach give away
everything

Lecture 15
Page 16 CS 136, Winter 2008

For Example,

• Protecting data moving between
servers in a single enterprise system

• Don’t just put up a firewall around
whole system

• Also encrypt data in transit
• And put another firewall on each

machine/application

Lecture 15
Page 17 CS 136, Winter 2008

3. Fail Securely

• Common source of security problems
arise when programs fail

• Often fail into modes that aren’t secure
• So attackers cause them to fail

– And see if that helps them
• So make sure that when ordinary

measures fail, the backup is secure

Lecture 15
Page 18 CS 136, Winter 2008

For Example,

• A major security flaw in typical Java RMI
implementations

•  If server wants to use security protocol
client doesn’t have, what happens?
– Client downloads it from the server
– Which is doesn’t trust yet . . .

• Malicious entity can force installation of
compromised protocol

Lecture 15
Page 19 CS 136, Winter 2008

4. Use Principle of Least
Privilege

• Give minimum access necessary
•  For the minimum amount of time required
• Always possible that the privileges you give

will be abused
– Either directly or through finding a

security flaw
•  The less you give, the lower the risk

Lecture 15
Page 20 CS 136, Winter 2008

For Example,

•  In traditional Unix systems, can’t bind to
port number < 1024 unless you’re root

•  So if someone legitimately needs to bind to
such a port, must give them root

•  But once they’ve bound to it, program
should relinquish privileges

•  So only program flaws in limited part of
program give attacker root privilege

Lecture 15
Page 21 CS 136, Winter 2008

5. Compartmentalize

• Divide programs into pieces
• Ensure that compromise of one piece

does not automatically compromise
others

• Set up limited interfaces between
pieces
– Allowing only necessary interactions

Lecture 15
Page 22 CS 136, Winter 2008

For Example,

•  Traditional Unix has terrible
compartmentalization
– Obtaining root privileges gives away the

entire system
•  Redesigns that allow previous root

programs to run under other identities helps
– E.g., mail server and print server users

Lecture 15
Page 23 CS 136, Winter 2008

6. Value Simplicity

• Complexity is the enemy of security
• Complex systems give more

opportunities to screw up
• Also, harder to understand all “proper”

behaviors of complex systems
• So favor simple designs over complex

ones

Lecture 15
Page 24 CS 136, Winter 2008

For Example,
•  Re-use components when you think they’re

secure
• Use one implementation of encryption, not

several
– Especially if you use “tried and true”

implementation
– And one that only does what you need
– Implementation of exactly what you need

better than “Swiss army knife”

Lecture 15
Page 25 CS 136, Winter 2008

Especially Important When
Human Users Involved

• Users will not read documentation
– So don’t rely on designs that require them

to
• Users are lazy

– They’ll ignore pop-ups and warnings
– “Given the choice between dancing pigs

and security, users will pick dancing pigs
every time.” Ed Felten

Lecture 15
Page 26 CS 136, Winter 2008

7. Promote Privacy

• Avoid doing things that will
compromise user privacy

• Don’t ask for data you don’t need
• Avoid storing user data permanently

– Especially unencrypted data
• There are strong legal issues related to

this, nowadays

Lecture 15
Page 27 CS 136, Winter 2008

For Example,

•  Storing user passwords
•  If you store them in plaintext, you can

“remind” users who forget
•  But breakins might compromise all of them

– And users might use them elsewhere
•  Consider storing them only encrypted

– Which has usability issues . . .

Lecture 15
Page 28 CS 136, Winter 2008

8. Remember That Hiding
Secrets is Hard

• Assume anyone who has your program can
learn everything about it

•  “Hidden” keys and passwords in
executables are invariably found

•  Security based on obfusticated code is
always broken

•  Just because you’re not smart enough to
crack it doesn’t mean the hacker isn’t, either

Lecture 15
Page 29 CS 136, Winter 2008

For Example,

• Digital rights management software often
needs to hide a key

•  But needs that key available to the users
• All schemes developed to do this have been

cracked
– Nowadays, usually cracked before

official release of “protected” media

Lecture 15
Page 30 CS 136, Winter 2008

9. Be Reluctant to Trust
• Don’t automatically trust things

– Especially if you don’t have to
•  Remember, you’re not just trusted the

honesty of the other party
– You’re also trusting their caution

• Avoid trusting users you don’t need to trust,
too
– Doing so makes you more open to social

engineering attacks

Lecture 15
Page 31 CS 136, Winter 2008

For Example,

• Why do you trust that shrinkwrapped
software?

• Or that open source library?
• Must you?
• Can you design the system so it’s

secure even if that component fails?
•  If so, do it

Lecture 15
Page 32 CS 136, Winter 2008

10. Use Your Community
Resources

• Favor widely used and respected
security software over untested stuff
– Especially your own . . .

• Keep up to date on what’s going on
– Not just patching
– Also things like attack trends

Lecture 15
Page 33 CS 136, Winter 2008

For Example,

• Don’t implement your own AES code
• Rely on one of the widely used

versions
• But also don’t be too trusting

– E.g., just because it’s open source
doesn’t mean it’s more secure

Lecture 15
Page 34 CS 136, Winter 2008

Choosing Technologies

•  Different technologies have different security
properties
– Operating systems
– Languages
– Object management systems
– Libraries

•  Important to choose wisely
– And understand the implications of the choice

Lecture 15
Page 35 CS 136, Winter 2008

Choices and Practicalities

• You usually don’t get to choose the OS
•  The environment you’re writing for dictates

the choice
– E.g., commercial software often must be

written for Windows
– Or Linux is the platform in your company

• Might not get choice in other areas, either
– But exercise it when you can

Lecture 15
Page 36 CS 136, Winter 2008

Operating System Choices
•  Rarely an option
•  If they are, does it matter?
•  Probably not, any more

– All major choices have poor security histories
• No, Linux is not necessarily safer than Windows

– All have exhibited lots of problems
–  In many cases, problems are in the apps, anyway

•  Exception if you get to choose really trusted platform
– E.g., SE Linux or Trusted Solaris

• Not perfect, but better
• But at a cost

Lecture 15
Page 37 CS 136, Winter 2008

Language Choices

• More likely to be possible
– Though often hard to switch from

what’s already being used
•  If you do get the choice, what should it

be?

Lecture 15
Page 38 CS 136, Winter 2008

C and C++

• Probably the worst security choice
• Far more susceptible to buffer

overflows than other choices
• Also prone to other reliability problems
• Often chosen for efficiency

– But is efficiency that important for
your application?

Lecture 15
Page 39 CS 136, Winter 2008

Java
•  Less susceptible to buffer overflows
• Also better error handling than C/C++
• Has special built-in security features

– Which aren’t widely used
•  But has its own set of problems
•  E.g., exception handling issues
•  19 serious security flaws found between

1996 and 2001

Lecture 15
Page 40 CS 136, Winter 2008

Scripting Languages

• Depends on language
•  Javascript and CGIbin have awful

security reputations
• Perl offers some useful security

features
• But there are some general issues

Lecture 15
Page 41 CS 136, Winter 2008

General Security Issues for
Scripting Languages

• Might be security flaws in their interpreters
– More likely than in compilers

•  Scripts often easily examined by attackers
– Obscurity of binary no guarantee, but it is

an obstacle
•  Scripting languages often used to make

system calls
– Inherently dangerous

Lecture 15
Page 42 CS 136, Winter 2008

Other Choice Issues

• Which distributed object management
system?
– CORBA, DCOM, RMI, .net?
– Each has different security properties

• Which existing components to include?
• Which authentication technology to

use?

Lecture 15
Page 43 CS 136, Winter 2008

Open Source vs. Closed Source

•  Some argue open source software is
inherently more secure

•  The “more eyes” argument –
– Since anyone can look at open source

code,
– More people will examine it
– Finding more bugs
– Increasing security

Lecture 15
Page 44 CS 136, Winter 2008

Is the “Many Eyes” Argument
Correct?

•  Probably not
• At least not in general
•  Linux has security bug history similar to

Windows
• Other open source projects even worse

– In many cases, nobody really looks at the
code

– Which is no better than closed source

Lecture 15
Page 45 CS 136, Winter 2008

The Flip Side Argument

• “Hackers can examine open source
software and find its flaws”

• Well, Windows’ security history is not
a recommendation for this view

• Most commonly exploited flaws can be
found via black-box approach
– E.g., typical buffer overflows

Lecture 15
Page 46 CS 136, Winter 2008

The Upshot?

• No solid evidence that open source or
closed source produces better security

• Major exception is crypto
– At least for crypto standards
– Maybe widely used crypto packages
– Criticality and limited scope means

many eyeballs will really look at it

Lecture 15
Page 47 CS 136, Winter 2008

Major Security Issues for Secure
Design and Coding

• Buffer overflows
• Access control issues
• Race conditions
• Randomness and determinism
• Proper use of cryptography
• Trust management and input validation

Lecture 15
Page 48 CS 136, Winter 2008

Buffer Overflows
• The poster child of insecure

programming
• One of the most commonly exploited

types of programming error
• Technical details of how they occur

discussed earlier
• Key problem is language does not

check bounds of variables

Lecture 15
Page 49 CS 136, Winter 2008

Preventing Buffer Overflows
• Use a language with bounds checking

– Most modern languages other than C
and C++

– Not always a choice
– Or the right choice

• Check bounds carefully yourself
• Avoid constructs that often cause

trouble

Lecture 15
Page 50 CS 136, Winter 2008

Problematic Constructs for
Buffer Overflows

• Most frequently C system calls:
– gets(), strcpy(), strcat(),
sprintf(), scanf(),
sscanf(), fscanf(),
vfscanf(),vsprintf(),
vscanf(), vsscanf(),
streadd(), strecpy()

– There are others that are also risky

Lecture 15
Page 51 CS 136, Winter 2008

Why Are These Calls Risky?

•  They copy data into a buffer
• Without checking if the length of the data

copied is greater than the buffer
• Allowing overflow of that buffer
• Assumes attacker can put his own data into

the buffer
– Not always true
– But why take the risk?

Lecture 15
Page 52 CS 136, Winter 2008

What Do You Do Instead?
• Many of the calls have variants that

specify how much data is copied
– If used properly, won’t allow the

buffer to overflow
• Those without the variants allow

precision specifiers
– Which limit the amount of data

handled

Lecture 15
Page 53 CS 136, Winter 2008

Is That All I Have To Do?

• No
• These are automated buffer overflows
• You can easily write your own
• Must carefully check the amount of

data you copy if you do
• And beware of integer overflow

problems

Lecture 15
Page 54 CS 136, Winter 2008

An Example

• Actual bug in OpenSSH server:

u_int nresp;
. . .
nresp = packet_get_int();
If (nresp > 0) {
 response = xmalloc(nresp * sizeof(char *));
 for (i=0; i<nresp;i++)
 response[i] = packet_get_string(NULL);
}
packet_check_eom();

Lecture 15
Page 55 CS 136, Winter 2008

Why Is This a Problem?

• nresp is provided by the user
–  nresp = packet_get_int();

• But we allocate a buffer of nresp
entries, right?
–  response = xmalloc(nresp * sizeof(char *));

• So how can that buffer overflow?
• Due to integer overflow

Lecture 15
Page 56 CS 136, Winter 2008

How Does That Work?
•  The argument to xmalloc() is an

unsigned int
•  Its maximum value is 232-1

– 4,294,967,295
• sizeof(char *) is 4
• What if the user sets nresp to

0x40000020?
• Multiplication is modulo 232 . . .

– So 4 * 0x40000020 is 0x80

Lecture 15
Page 57 CS 136, Winter 2008

What Is the Result?

• There are 128 entries in response[]
• And the loop iterates hundreds of

millions of times
– Copying data into the “proper place”

in the buffer each time
• A massive buffer overflow

Lecture 15
Page 58 CS 136, Winter 2008

Other Programming Tools for
Buffer Overflow Prevention

•  Software scanning tools that look for buffer
overflows
– Of varying sophistication

• Use C compiler that includes bounds
checking
– Typically as an option

• Use integrity-checking programs
– Stackguard, Rational’s Purity, etc.

Lecture 15
Page 59 CS 136, Winter 2008

Access Control Issues
• Programs usually run under their user’s

identity
– With his privileges

• Some programs get expanded
privileges
– Setuid programs in Unix, e.g.

• Poor programming here can give too
much access

Lecture 15
Page 60 CS 136, Winter 2008

An Example Problem

• A program that runs setuid and allows
a shell to be forked
– Giving the caller a root environment

in which to run arbitrary commands
• Buffer overflows in privileged

programs usually give privileged
access

Lecture 15
Page 61 CS 136, Winter 2008

A Real World Example

• /sbin/dump from NetBSD
•  Ran setgid as group tty

– To notify sysadmins of important events
– Never dropped this privilege

•  Result: dump would start program of
user’s choice as user tty
– Allowing them to interact with other

user’s terminals

Lecture 15
Page 62 CS 136, Winter 2008

What To Do About This?
• Avoid running programs setuid
•  If you must, don’t make them root-

owned
• Change back to the real caller as soon

as you can
– Limiting exposure

• Use tools like chroot() to
compartmentalize

Lecture 15
Page 63 CS 136, Winter 2008

chroot()
• Unix command to set up sandboxed

environment
•  Programs run chroot() see different

directory as the root of the file system
•  Thus, can’t see anything not under that

directory
• Hard to set up right, though
• Other systems have different approaches

