Network Security
CS 136
Computer Security
Peter Reiher
February 21, 2008

Outline

- Basics of network security
- Definitions
- Sample attacks
- Defense mechanisms

Some Important Network Characteristics for Security

- Degree of locality
- Media used
- Protocols used

Degree of Locality

- Some networks are very local
 - E.g., an Ethernet
 - Only handles a few machines
 - Benefits from:
 - Physical locality
 - Small number of users
 - Common goals and interests
- Other networks are very non-local
 - E.g., the Internet backbone
 - Vast numbers of users/sites share bandwidth

Network Media

- Some networks are wires, cables, or over telephone lines
 - Can be physically protected
- Other networks are satellite links or other radio links
 - Physical protection possibilities more limited

Protocol Types

- TCP/IP is the most used
 - But it only specifies some common intermediate levels
 - Other protocols exist above and below it
- In places, other protocols replace TCP/IP
- And there are lots of supporting protocols
 - Routing protocols, naming and directory protocols, network management protocols
 - And security protocols (IPSec, ssh, ssl)

Implications of Protocol Type

- The protocol defines a set of rules that will always be followed
 - But usually not quite complete
 - And they assume everyone is at least trying to play by the rules
 - What if they don't?
- Specific attacks exist against specific protocols

Threats to Network Security

- Pretty much the usual suspects:
 - -Wiretapping
 - -Impersonation
 - Message confidentiality
 - -Message integrity
 - -Denial of service

Why Are Networks Especially Threatened?

- Many "moving parts"
- Many different administrative domains
- Everyone can get some access
- In some cases, trivial for attacker to get a foothold on the network
- Networks encourage sharing
- Networks often allow anonymity

What Can Attackers Attack?

- The media connecting the nodes
- Nodes that are connected to them
- Routers that control the traffic
- The protocols that set the rules for communications

Wiretapping

- An obvious network vulnerability
 - But don't forget, "wiretapping" is a general term
 - Not just networks are vulnerable
- **Passive wiretapping** is listening in illicitly on conversations
- Active wiretapping is injecting traffic illicitly

Wiretapping on Wires

- Signals can be trapped at many points
- Actually tapping into some physical wires is possible
- Other "wires" are broadcast media
 - Packet sniffers can listen to all traffic on a broadcast medium
- Subverted routers and gateways also offer access

Wiretapping on Wireless

- Often just a matter of putting an antenna up
 - Though position may matter a lot
 - Generally not even detectable that it's happening
 - Directional antennae and frequency hopping may add challenges
- Active threats are easier to detect
 - And, for satellites, technically challenging

Impersonation

- A packet comes in over the network
 - With some source indicated in its header
- Often, the action to be taken with the packet depends on the source
- But attackers may be able to create packets with false sources

Methods of Network Impersonations

- Even in standard protocols, often easy to change fields in a header
 - -When created or later
 - -E.g., IP allows forging source addresses
- Existing networks have little or no built-in authentication

Authentication to Foil Impersonation

- Higher level protocols often require authentication of transmissions
- Much care required to ensure proper authentication
- And not having authentication underneath can cause many problems
- Authentication schemes are rarely perfect

Violations of Message Confidentiality

- Other problems can cause messages to be inappropriately divulged
- Misdelivery can send a message to the wrong place
 - Clever attackers can make it happen
- Message can be read at an intermediate gateway or a router
- Sometimes an intruder can get useful information just by traffic analysis

Message Integrity

- Even if the attacker can't create the packets he wants, sometimes he can alter proper packets
- To change the effect of what they will do

Denial of Service

- Attacks that prevent legitimate users from doing their work
- By flooding the network
- Or corrupting routing tables
- Or flooding routers
- Or destroying key packets

How Do Denial of Service Attacks Occur?

- Basically, the attacker injects some form of traffic
- Most current networks aren't built to throttle uncooperative parties very well
- All-inclusive nature of the Internet makes basic access trivial
- Universality of IP makes reaching most of the network easy

Some Sample Attacks

- Smurf attacks
- SYN flood
- Ping of Death

Smurf Attacks

- Attack on vulnerability in IP broadcasting
- Send a ping packet to IP broadcast address
 - With forged "from" header of your target
- Resulting in a flood of replies from the sources to the target
- Easy to fix at the intermediary
 - Don't allow IP broadcasts to originate outside your network
- No good solutions for victim

SYN Flood

- Based on vulnerability in TCP
- Attacker uses initial request/response to start TCP session to fill a table at the server
- Preventing new real TCP sessions
- SYN cookies and firewalls with massive tables are possible defenses

Normal SYN Behavior

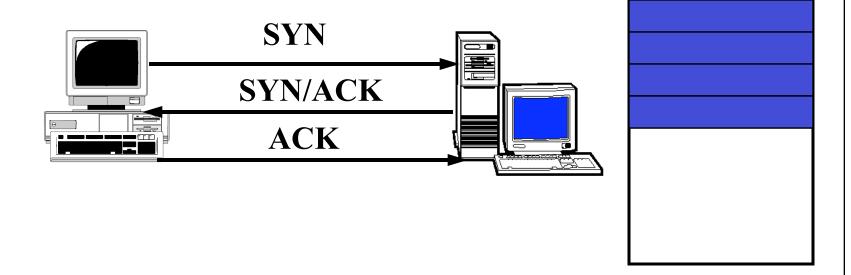
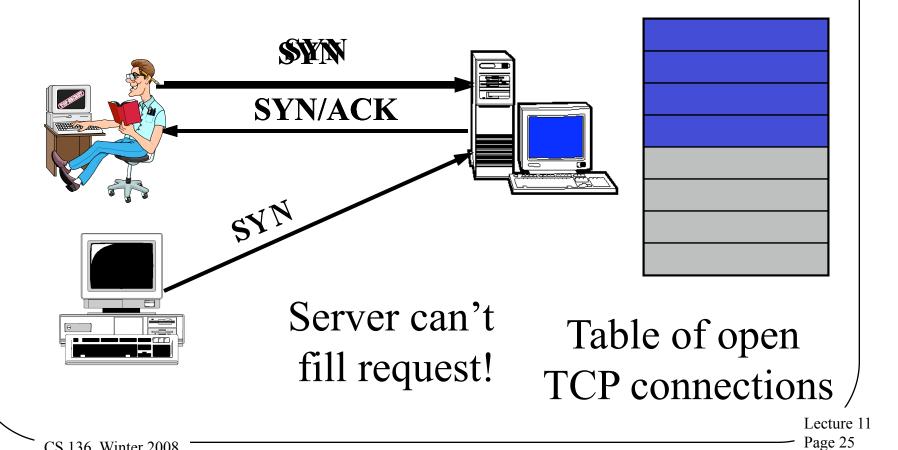
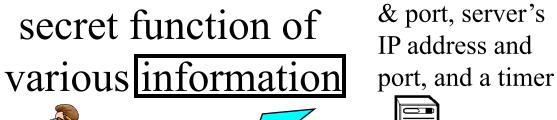
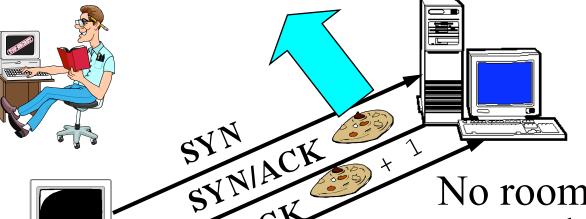



Table of open TCP connections

A SYN Flood

CS 136, Winter 2008


SYN Cookies


SYN/ACK number is

secret function of

Server doesn't need to save Client IP address cookie value!

KEY POINT:

No room in the table, so send back a SYN cookie, instead

Server recalculates cookie to determine if proper response Lecture 11

The Ping of Death

- IP packets are supposed to be no longer than 65,535 bytes long
- Can improperly send longer IP packets
- Some OS networking software wasn't prepared for that
 - Resulting in buffer overflows and crashes
- Can filter out pings, but other IP packets can also cause problem
- OS patches really solve the problem

Network Security Mechanisms

- Again, the usual suspects -
 - -Encryption

-Traffic control

Encryption for Network Security

- Relies on the kinds of encryption algorithms and protocols discussed previously
- Can be applied at different places in the network stack
- With different effects and costs

IPSec

- Standard for applying cryptography at the network layer of IP stack
- Provides various options for encrypting and authenticating packets
 - On end-to-end basis
 - Without concern for transport layer (or higher)

What IPSec Covers

- Message integrity
- Message authentication
- Message confidentiality

What Isn't Covered

- Non-repudiation
- Digital signatures
- Key distribution
- Traffic analysis
- Handling of security associations
- Some of these covered in related standards

Some Important Terms for IPsec

- Security Association "A Security Association (SA) is a simplex "connection" that affords security services to the traffic carried by it.
 - Basically, a secure one-way channel
- SPI (Security Parameters Index) –
 Combined with destination IP address and
 IPsec protocol type, uniquely identifies an
 SA

General Structure of IPsec

- Really designed for end-to-end encryption
 - Though could do link level
- Designed to operate with either IPv4 or IPv6
- Meant to operate with a variety of different encryption protocols
- And to be neutral to key distribution methods

ESP Transport Mode

Original ESP Normal Packet ESP ESP Hdr Payload Trlr Auth

Encrypted

Authenticated

CS 136, Winter 2008

What IPsec Requires

- Protocol standards
 - To allow messages to move securely between nodes
- Supporting mechanisms at hosts running IPsec
 - E.g., a Security Association Database
- Lots of plug-in stuff to do the cryptographic heavy lifting

The Protocol Components

- Pretty simple
- Necessary to interoperate with non-IPsec equipment
- So everything important is inside an individual IP packet's payload
- No inter-message components to protocol
 - Though some security modes enforce inter-message invariants

Lecture 11 Page 37

The Supporting Mechanisms

- Methods of defining security associations
- Databases for keeping track of what's going on with other IPsec nodes
 - To know what processing to apply to outgoing packets
 - To know what processing to apply to incoming packets

Plug-In Mechanisms

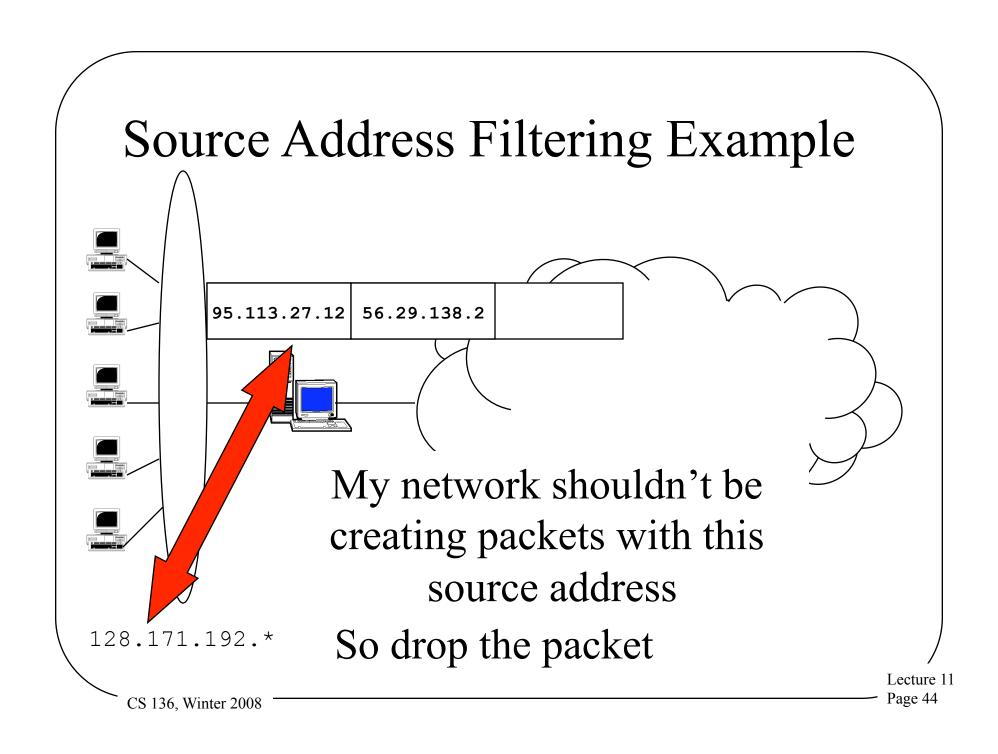
- Designed for high degree of generality
- So easy to plug in:
 - -Different crypto algorithms
 - -Different hashing/signature schemes
 - Different key management mechanisms

Status of IPsec

- Accepted Internet standard
- Widely implemented and used
 - Supported in Windows 2000, XP, and Vista
 - In Linux 2.6 kernel
- The architecture doesn't require everyone to use it
- RFC 3602 on using AES in IPsec still listed as "proposed"
- Expected that AES will become default for ESP in IPsec

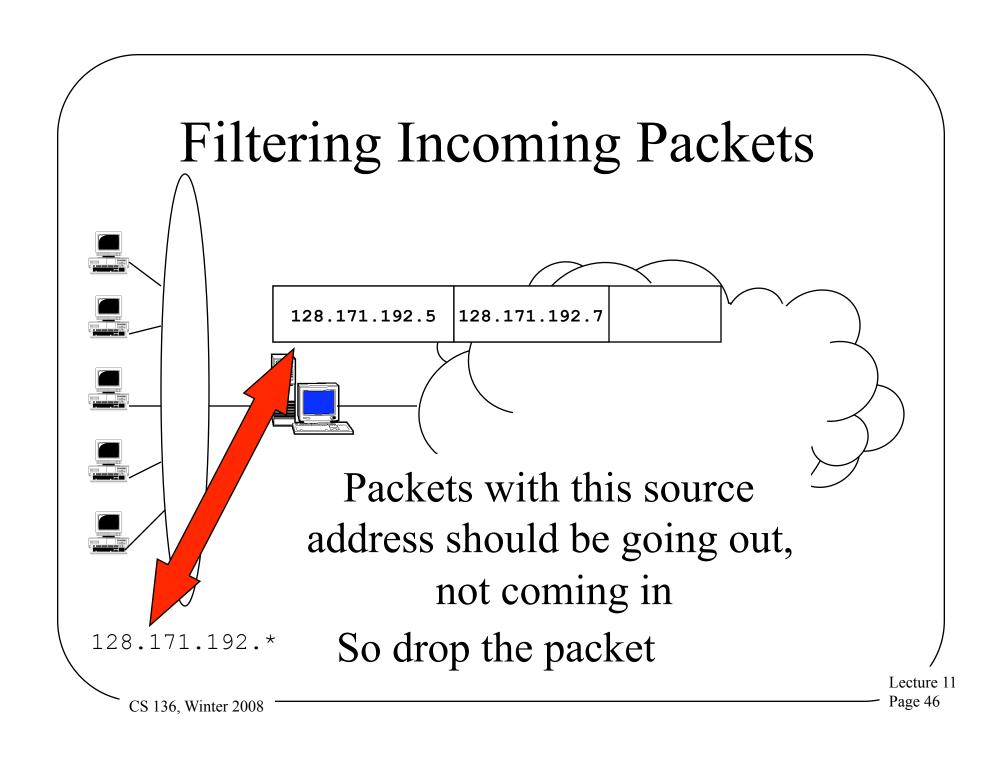
Traffic Control Mechanisms

- Filtering
 - Source address filtering
 - Other forms of filtering
- Rate limits
- Protection against traffic analysis
 - Padding
 - Routing control


Lecture 11 Page 41

Source Address Filtering

- Filtering out some packets because of their source address value
 - Usually because you believe their source address is spoofed
- Often called ingress filtering
 - -Or egress filtering . . .


Source Address Filtering for Address Assurance

- Router "knows" what network it sits in front of
 - In particular, knows IP addresses of machines there
- Filter outgoing packets with source addresses not in that range
- Prevents your users from spoofing other nodes' addresses
 - But not from spoofing each other's

Source Address Filtering in the Other Direction

- Often called egress filtering
 - Or ingress filtering . . .
- Occurs as packets leave the Internet and enter a border router
 - On way to that router's network
- What addresses shouldn't be coming into your local network?

Other Forms of Filtering

- One can filter on things other than source address
 - Such as worm signatures, unknown protocol identifiers, etc.
- Also, there are unallocated IP addresses in IPv4 space
 - Can filter for packets going to or coming from those addresses
- Also, certain source addresses are for local use only
 - Internet routers can drop packets to/from them

Rate Limits

- Many routers can place limits on the traffic they send to a destination
- Ensuring that the destination isn't overloaded
 - Popular for denial of service defenses
- Limits can be defined somewhat flexibly
- But often not enough flexibility to let the good traffic through and stop the bad

Padding

- Sometimes you don't want intruders to know what your traffic characteristics are
- Padding adds extra traffic to hide the real stuff
- Fake traffic must look like real traffic
 - Usually means encrypt it all
- Must be done carefully, or clever attackers can tell the good stuff from the noise

Routing Control

- Use ability to control message routing to conceal the traffic in the network
- Used in *onion routing* to hide who is sending traffic to whom
 - For anonymization purposes
- Routing control also used in some network defense
 - To hide real location of a machine
 - E.g., SOS DDoS defense system

Lecture 11 Page 50