
Lecture 2
Page 1 CS 136, Spring 2016

Security Principles, Policies, and
Tools
CS 136

Computer Security
Peter Reiher

March 31, 2016

Lecture 2
Page 2 CS 136, Spring 2016

Outline

•  Security design principles
•  Security policies

– Basic concepts
– Security policies for real systems

•  Classes of security tools
– Access control

Lecture 2
Page 3 CS 136, Spring 2016

Design Principles for
Secure Systems

•  Economy
•  Complete mediation
•  Open design
•  Separation of privileges
•  Least privilege
•  Least common mechanism
•  Acceptability
•  Fail-safe defaults

Lecture 2
Page 4 CS 136, Spring 2016

Economy in Security Design

•  Economical to develop
– And to use
– And to verify

•  Should add little or no overhead
•  Should do only what needs to be done
•  Generally, try to keep it simple and

small

Lecture 2
Page 5 CS 136, Spring 2016

Complete Mediation

•  Apply security on every access to a
protected object
– E.g., each read of a file, not just the

open
•  Also involves checking access on

everything that could be attacked

Lecture 2
Page 6 CS 136, Spring 2016

Open Design
•  Don’t rely on “security through obscurity”
•  Assume all potential attackers know everything

about the design
– And completely understand it

•  This doesn’t mean publish everything important
about your security system
– Though sometimes that’s a good idea

•  Obscurity can provide some security, but it’s brittle
– When the fog is cleared, the security disappears
– And modern attackers have good fog blowers

Lecture 2
Page 7 CS 136, Spring 2016

Separation of Privileges

•  Provide mechanisms that separate the
privileges used for one purpose from
those used for another

•  To allow flexibility in security systems
•  E.g., separate access control on each

file

Lecture 2
Page 8 CS 136, Spring 2016

Least Privilege

•  Give bare minimum access rights
required to complete a task

•  Require another request to perform
another type of access

•  E.g., don’t give write permission to a
file if the program only asked for read

Lecture 2
Page 9 CS 136, Spring 2016

Least Common Mechanism

•  Avoid sharing parts of the security
mechanism
– among different users
– among different parts of the system

•  Coupling leads to possible security
breaches

Lecture 2
Page 10 CS 136, Spring 2016

Acceptability

•  Mechanism must be simple to use
•  Simple enough that people will use it

without thinking about it
•  Must rarely or never prevent

permissible accesses

Lecture 2
Page 11 CS 136, Spring 2016

Fail-Safe Designs

•  Default to lack of access
•  So if something goes wrong or is

forgotten or isn’t done, no security lost
•  If important mistakes are made, you’ll

find out about them
– Without loss of security
– But if it happens too often . . .

Lecture 2
Page 12 CS 136, Spring 2016

Thinking About Security
When considering the security of any system, ask these

questions:
1.  What assets are you trying to protect?
2.  What are the risks to those assets?
3.  How well does the security solution mitigate those

risks?
4.  What other security problems does the security solution

cause?
5.  What tradeoffs does the security solution require?
(This set of questions was developed by Bruce Schneier, for

his book Beyond Fear)

Lecture 2
Page 13 CS 136, Spring 2016

Security Policies
•  Security policies describe how a secure

system should behave
•  Policy says what should happen, not

how you achieve that
•  Generally, if you don’t have a clear

policy, you don’t have a secure system
– Since you don’t really know what

you’re trying to do

Lecture 2
Page 14 CS 136, Spring 2016

Informal Security Policies

•  “Users should only be able to access their
own files, in most cases.”

•  “Only authorized users should be able to log
in.”

•  “System executables should only be altered
by system administrators.”

•  The general idea is pretty clear
•  But it can be hard to determine if a system

meets these goals

Lecture 2
Page 15 CS 136, Spring 2016

Formal Security Policies
•  Typically expressed in a mathematical security

policy language
•  Tending towards precision

– Allowing formal reasoning about the system
and policy

•  Often matched to a particular policy model
– E.g., Bell-La Padula model

•  Hard to express many sensible policies in formal
ways
– And hard to reason about them usefully

Lecture 2
Page 16 CS 136, Spring 2016

Some Important Security Policies

•  Bell-La Padula
•  Biba integrity policy

Lecture 2
Page 17 CS 136, Spring 2016

Bell-La Padula Model

•  Probably best-known computer security
model

•  Corresponds to military classifications
•  Combines mandatory and discretionary

access control
•  Two parts:

– Clearances
– Classifications

Lecture 2
Page 18 CS 136, Spring 2016

Clearances

•  Subjects (people, programs, etc.) have
a clearance

•  Clearance describes how trusted the
subject is

•  E.g., unclassified, confidential, secret,
top secret

Lecture 2
Page 19 CS 136, Spring 2016

Classifications

•  Each object (file, database entry, etc.) has a
classification

•  The classification describes how sensitive
the object is

•  Using same categories as clearances
•  Informally, only people with the same (or

higher) clearance should be able to access
objects of a particular classification

Lecture 2
Page 20 CS 136, Spring 2016

Goal of Bell-La Padula Model

•  Prevent any subject from ever getting read access
to data at higher classification levels than subject’s
clearance
–  I.e., don’t let untrusted people see your secrets

•  Concerned not just with objects
•  Also concerned with the objects’ contents
•  Includes discretionary access control

– Which we won’t cover in lecture

Lecture 2
Page 21 CS 136, Spring 2016

Bell-La Padula Simple Security
Condition

•  Subject S can read object O iff lO ≤ lS
•  Simple enough:

– If S isn’t granted top secret
clearance, S can’t read top secret
objects

•  Are we done?

Lecture 2
Page 22 CS 136, Spring 2016

Why Aren’t We Done?

•  Remember, we really care about the
information in an object

•  A subject with top secret clearance can read
a top secret object

•  If careless, he could write that information
to a confidential object

•  Then someone with confidential clearance
can read top secret information

Lecture 2
Page 23 CS 136, Spring 2016

The Bell-La Padula *-Property

•  S can write O iff lS ≤ lO
•  Prevents write-down

– Privileged subjects writing high-
classification information to low-
classification objects

– E.g., a top secret user can’t write to a
confidential data file

•  Can be proven that a system meeting these
properties is “secure”

Lecture 2
Page 24 CS 136, Spring 2016

Bell-La Padula Example
TOP SECRET

Top Secret

Secret

Classified write

read

Write
(attack the red tank)

Bell-La Padula
doesn’t allow
write-down!

Classified

Lecture 2
Page 25 CS 136, Spring 2016

So How Do You Really Use The
System?

•  There have to be mechanisms for
reclassification
– Usually requiring explicit operation

•  Danger that reclassification process
will be done incautiously

•  Real systems also use classes of
information

Lecture 2
Page 26 CS 136, Spring 2016

Integrity Security Policies

•  Designed to ensure that information is
not improperly changed

•  Often the key issue for commercial
systems

•  Secrecy is nice, but not losing track of
your inventory is crucial

Lecture 2
Page 27 CS 136, Spring 2016

Example: Biba Integrity Policy
•  Subject set S, object set O
•  Set of ordered integrity levels I
•  Subjects and objects have integrity levels
•  Subjects at high integrity levels are less likely to

screw up data
– E.g., trusted users or carefully audited programs

•  Data at a high integrity level is less likely to be
screwed up
– Probably because it badly needs not to be

screwed up

Lecture 2
Page 28 CS 136, Spring 2016

Biba Integrity Policy Rules

•  s can write to o iff i(o) ≤ i(s)
•  s1 can execute s2 iff i(s2) ≤ i(s1)
•  A subject s can read object o iff i(s) ≤

i(o)
•  Why do we need the read rule?

Lecture 2
Page 29 CS 136, Spring 2016

Hybrid Models
•  Sometimes the issue is keeping things

carefully separated
•  E.g., a brokerage that handles accounts for

several competing businesses
•  Microsoft might not like the same analyst

working on their account and IBM’s
•  There are issues of both confidentiality and

integrity here
•  Example – Chinese Wall model

Lecture 2
Page 30 CS 136, Spring 2016

The Realities of Discretionary
Access Control

•  Most users never change the defaults on anything
– Unless the defaults prevent them from doing

something they want to do
•  Most users don’t think about or understand access

control
•  Probably not wise to rely on it to protect

information you care about
– Unless you’re the one setting it
– And you know what you’re doing

Lecture 2
Page 31 CS 136, Spring 2016

The Problems With Security Policies

•  Hard to define properly
– How do you determine what to allow and

disallow?
•  Hard to go from policy to the mechanisms

that actually implement it
•  Hard to understand implications of policy
•  Defining and implementing policies is a lot

of work

Lecture 2
Page 32 CS 136, Spring 2016

Tools for Security

•  Physical security
•  Access control
•  Encryption
•  Authentication
•  Encapsulation
•  Intrusion detection
•  Common sense

Lecture 2
Page 33 CS 136, Spring 2016

Physical Security
•  Lock up your computer

– Actually, sometimes a good answer
•  But what about networking?

– Networks poke a hole in the locked door
•  Hard to prevent legitimate holder of a

computer from using it as he wants
– E.g., smart phone jailbreaks

•  In any case, lack of physical security often
makes other measures pointless

Lecture 2
Page 34 CS 136, Spring 2016

Access Controls

•  Only let authorized parties access the
system

•  A lot trickier than it sounds
•  Particularly in a network environment
•  Once data is outside your system, how can

you continue to control it?
– Again, of concern in network

environments

Lecture 2
Page 35 CS 136, Spring 2016

Encryption

•  Algorithms to hide the content of data or
communications

•  Only those knowing a secret can decrypt the
protection

•  One of the most important tools in computer
security
– But not a panacea

•  Covered in more detail later in class

Lecture 2
Page 36 CS 136, Spring 2016

Authentication

•  Methods of ensuring that someone is
who they say they are

•  Vital for access control
•  But also vital for many other purposes
•  Often (but not always) based on

encryption

Lecture 2
Page 37 CS 136, Spring 2016

Encapsulation

•  Methods of allowing outsiders limited
access to your resources

•  Let them use or access some things
– But not everything

•  Simple, in concept
•  Extremely challenging, in practice

Lecture 2
Page 38 CS 136, Spring 2016

Intrusion Detection

•  All security methods sometimes fail
•  When they do, notice that something is

wrong
•  And take steps to correct the problem
•  Reactive, not preventative

– But it’s unrealistic to believe any
prevention is certain

•  Must be automatic to be really useful

Lecture 2
Page 39 CS 136, Spring 2016

Common Sense

•  A lot of problems arise because people
don’t like to think

•  The best security tools generally fail if
people use them badly

•  If the easiest way in is to fool people,
that’s what attackers will do

Lecture 2
Page 40 CS 136, Spring 2016

Access Control
•  Security could be easy

– If we didn’t want anyone to get access to
anything

•  The trick is giving access to only the right
people
– And at the right time and circumstances

•  How do we ensure that a given resource can
only be accessed when it should be?

Lecture 2
Page 41 CS 136, Spring 2016

Goals for Access Control

•  Complete mediation
•  Least privilege
•  Useful in a networked environment
•  Scalability
•  Acceptable cost and usability

Lecture 2
Page 42 CS 136, Spring 2016

Access Control Mechanisms

•  Access control lists
•  Capabilities
•  Access control matrices

– Theoretical concept we won’t
discuss in detail

•  Role based access control

Lecture 2
Page 43 CS 136, Spring 2016

The Language of Access Control

•  Subjects are active entities that want to gain
access to something
– E.g., users or programs

•  Objects represent things that can be
accessed
– E.g., files, devices, database records

•  Access is any form of interaction with an
object

•  An entity can be both subject and object

Lecture 2
Page 44 CS 136, Spring 2016

Mandatory vs. Discretionary
Access Control

•  Mandatory access control is dictated by the
underlying system
– Individual users can’t override it
– Even for their own data

•  Discretionary access control is under
command of the user
– System enforces what they choose
– More common than mandatory

Lecture 2
Page 45 CS 136, Spring 2016

Access Control Lists

•  For each protected resource, maintain a
single list

•  Each list entry specifies a user who can
access the resource
– And the allowable modes of access

•  When a user requests access to a resource,
check the access control list (ACL)

Lecture 2
Page 46 CS 136, Spring 2016

ACL Objects and Subjects

•  In ACL terminology, the resources
being protected are objects

•  The entities attempting to access them
are subjects
– Allowing finer granularity of control

than per-user

Lecture 2
Page 47 CS 136, Spring 2016

ACL Example

•  An operating system example:
– Using ACLs to protect a file

•  User (Subject) A is allowed to read and
write to the file

•  User (Subject) B may only read from it
•  User (Subject) C may not access it

Lecture 2
Page 48 CS 136, Spring 2016

An ACL Protecting a File

File
X

ACL for file X

A read
write

B write

C none

Subject A

Subject B

Subject C
read

denied

Lecture 2
Page 49 CS 136, Spring 2016

Issues for Access Control Lists

•  How do you know that the requestor is
who he says he is?

•  How do you protect the access control
list from modification?

•  How do you determine what resources
a user can access?

•  Generally issues for OS design

Lecture 2
Page 50 CS 136, Spring 2016

Pros and Cons of ACLs

+ Easy to figure out who can access a
resource

+ Easy to revoke or change access
permissions

– Hard to figure out what a subject can access
–  Changing access rights requires getting to

the object

Lecture 2
Page 51 CS 136, Spring 2016

Capabilities

•  Each subject keeps a set of data items
that specify his allowable accesses

•  Essentially, a set of tickets
•  Possession of the capability for an

object implies that access is allowed

Lecture 2
Page 52 CS 136, Spring 2016

Properties of Capabilities

•  Must be unforgeable
– In single machine, keep capabilities under

control of OS
– What about in a networked system?

•  In most systems, some capabilities allow
creation of other capabilities
– Process can pass a restricted set of

capabilities to a subprocess

Lecture 2
Page 53 CS 136, Spring 2016

Capabilities Protecting a File

Read X

Subject B

Subject C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

Subject A

Capability
Checking

File X
Read, Write

File X
Read, Write

Check
validity of
capability

OK!

Lecture 2
Page 54 CS 136, Spring 2016

Capabilities Denying Access

write

User B

User C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

User A

Capability
Checking

Check
validity of
capability

No
Capability
Provided!

Lecture 2
Page 55 CS 136, Spring 2016

How Will This Work in a
Network?

Subject B

Subject C

Capabilities
for C

Capabilities
for B

File X
Read

Capabilities
for A

File X
Read, Write

Subject A

Capability
Checking

File
X

File X
Read, Write

Subject A

Subject B
File X
Read

Subject C
File X
Read, Write

How can we
tell if it’s a
good
capability?

Lecture 2
Page 56 CS 136, Spring 2016

Revoking Capabilities

Fred

Nancy

Accounts
receivable

How do we take
away Fred’s
capability?

Without taking
away Nancy’s?

Lecture 2
Page 57 CS 136, Spring 2016

Options for Revoking
Capabilities

•  Destroy the capability
– How do you find it?

•  Revoke on use
– Requires checking on use

•  Generation numbers
– Requires updating non-revoked

capabilities

Lecture 2
Page 58 CS 136, Spring 2016

Pros and Cons of Capabilities

+ Easy to determine what a subject can access
+ Potentially faster than ACLs (in some

circumstances)
+ Easy model for transfer of privileges
– Hard to determine who can access an object
–  Requires extra mechanism to allow

revocation
–  In network environment, need

cryptographic methods to prevent forgery

Lecture 2
Page 59 CS 136, Spring 2016

Distributed Access Control
•  ACLs still work OK

– Provided you have a global
namespace for subjects

– And no one can masquerade
•  Capabilities are more problematic

– Security relies on unforgeability
– Provided by cryptographic methods
– Prevents forging, not copying

Lecture 2
Page 60 CS 136, Spring 2016

Role Based Access Control

•  An enhancement to ACLs or capabilities
•  Each user has certain roles he can take

while using the system
•  At any given time, the user is performing a

certain role
•  Give the user access to only those things

that are required to fulfill that role
•  Available in some form in most modern

operating systems

Lecture 2
Page 61 CS 136, Spring 2016

A Simple Example

Fred is a system
administrator

But Fred is a also a
normal user

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

Fred should operate under
one role while doing
system administration

And another role while
doing normal stuff

Lecture 2
Page 62 CS 136, Spring 2016

Continuing With Our Example

Fred logs on as “fred”

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

He reads his email

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

He decides to upgrade
the C++ compiler

So he changes his
role to “sysadmin”
Then he has the privileges to
upgrade the compiler
But may have lost the privileges
to read “fred’s” email

Result: Evil malware in
fred’s email can’t
“upgrade” the compiler

Lecture 2
Page 63 CS 136, Spring 2016

Changing Roles
•  Role based access control only helps if

changing roles isn’t trivial
– Otherwise, the malicious code merely

changes roles before doing anything else
•  Typically requires providing some secure

form of authentication
– Which proves you have the right to

change roles
– Usually passwords, but other methods

possible

Lecture 2
Page 64 CS 136, Spring 2016

Practical Limitations on Role Based
Access Control

•  Number of roles per user
•  Problems of disjoint role privileges
•  System administration overheads
•  Generally, these cause usability and

management problems

Lecture 2
Page 65 CS 136, Spring 2016

Reference Monitors

•  Whatever form it takes, access control must
be instantiated in actual code
– Which checks if a given attempt to

reference an object should be allowed
•  That code is called a reference monitor
•  Obviously, good reference monitors are

critical for system security

Lecture 2
Page 66 CS 136, Spring 2016

Desirable Properties of Reference
Monitors

•  Correctness
•  Proper placement
•  Efficiency
•  Simplicity
•  Flexibility

