
Lecture 2
Page 1 CS 136, Spring 2014

Security Principles, Policies, and
Tools

CS 136
Computer Security

Peter Reiher
April 3, 2014

Lecture 2
Page 2 CS 136, Spring 2014

Outline

•  Security design principles
•  Security policies

– Basic concepts
– Security policies for real systems

•  Classes of security tools
– Access control

Lecture 2
Page 3 CS 136, Spring 2014

Design Principles for
Secure Systems

•  Economy
•  Complete mediation
•  Open design
•  Separation of privileges
•  Least privilege
•  Least common mechanism
•  Acceptability
•  Fail-safe defaults

Lecture 2
Page 4 CS 136, Spring 2014

Economy in Security Design

•  Economical to develop
– And to use
– And to verify

•  Should add little or no overhead
•  Should do only what needs to be done
•  Generally, try to keep it simple and

small

Lecture 2
Page 5 CS 136, Spring 2014

Complete Mediation

•  Apply security on every access to a
protected object
– E.g., each read of a file, not just the

open
•  Also involves checking access on

everything that could be attacked

Lecture 2
Page 6 CS 136, Spring 2014

Open Design
•  Don’t rely on “security through obscurity”
•  Assume all potential attackers know everything

about the design
– And completely understand it

•  This doesn’t necessarily mean publishing
everything important about your security system
– Though sometimes that’s a good idea

•  Obscurity can provide some security, but it’s brittle
– When the fog is cleared, the security disappears
– And modern attackers have good fog blowers

Lecture 2
Page 7 CS 136, Spring 2014

Separation of Privileges

•  Provide mechanisms that separate the
privileges used for one purpose from
those used for another

•  To allow flexibility in security systems
•  E.g., separate access control on each

file

Lecture 2
Page 8 CS 136, Spring 2014

Least Privilege

•  Give bare minimum access rights
required to complete a task

•  Require another request to perform
another type of access

•  E.g., don’t give write permission to a
file if the program only asked for read

Lecture 2
Page 9 CS 136, Spring 2014

Least Common Mechanism

•  Avoid sharing parts of the security
mechanism
– Among different users
– Among different parts of the system

•  Coupling leads to possible security
breaches

Lecture 2
Page 10 CS 136, Spring 2014

Acceptability

•  Mechanism must be simple to use
•  Simple enough that people will use it

without thinking about it
•  Must rarely or never prevent

permissible accesses

Lecture 2
Page 11 CS 136, Spring 2014

Fail-Safe Designs

•  Default to lack of access
•  So if something goes wrong or is

forgotten or isn’t done, no security lost
•  If important mistakes are made, you’ll

find out about them
– Without loss of security
– But if it happens too often . . .

Lecture 2
Page 12 CS 136, Spring 2014

Security Policies
•  Security policies describe how a secure

system should behave
•  Policy says what should happen, not

how you achieve that
•  Generally, if you don’t have a clear

policy, you don’t have a secure system
– Since you don’t really know what

you’re trying to do

Lecture 2
Page 13 CS 136, Spring 2014

Informal Security Policies

•  “Users should only be able to access their
own files, in most cases.”

•  “Only authorized users should be able to log
in.”

•  “System executables should only be altered
by system administrators.”

•  The general idea is pretty clear
•  But it can be hard to determine if a system

meets these goals

Lecture 2
Page 14 CS 136, Spring 2014

Formal Security Policies
•  Typically expressed in a mathematical security

policy language
•  Tending towards precision

– Allowing formal reasoning about the system
and policy

•  Often matched to a particular policy model
– E.g., Bell-La Padula model

•  Hard to express many sensible policies in formal
ways
– And hard to reason about them usefully

Lecture 2
Page 15 CS 136, Spring 2014

Some Important Security Policies

•  Bell-La Padula
•  Biba integrity policy

Lecture 2
Page 16 CS 136, Spring 2014

Bell-La Padula Model

•  Probably best-known computer security
model

•  Corresponds to military classifications
•  Combines mandatory and discretionary

access control
•  Two parts:

– Clearances
– Classifications

Lecture 2
Page 17 CS 136, Spring 2014

Clearances

•  Subjects (people, programs, etc.) have
a clearance

•  Clearance describes how trusted the
subject is

•  E.g., unclassified, confidential, secret,
top secret

Lecture 2
Page 18 CS 136, Spring 2014

Classifications

•  Each object (file, database entry, etc.) has a
classification

•  The classification describes how sensitive
the object is

•  Using same categories as clearances
•  Informally, only people with the same (or

higher) clearance should be able to access
objects of a particular classification

Lecture 2
Page 19 CS 136, Spring 2014

Goal of Bell-La Padula Model

•  Prevent any subject from ever getting read access
to data at higher classification levels than subject’s
clearance
–  I.e., don’t let untrusted people see your secrets

•  Concerned not just with objects
•  Also concerned with the objects’ contents
•  Includes discretionary access control

– Which we won’t cover in lecture

Lecture 2
Page 20 CS 136, Spring 2014

Bell-La Padula Simple Security
Condition

•  Subject S can read object O iff lO ≤ lS
•  Simple enough:

– If S isn’t granted top secret
clearance, S can’t read top secret
objects

•  Are we done?

Lecture 2
Page 21 CS 136, Spring 2014

Why Aren’t We Done?

•  Remember, we really care about the
information in an object

•  A subject with top secret clearance can read
a top secret object

•  If careless, he could write that information
to a confidential object

•  Then someone with confidential clearance
can read top secret information

Lecture 2
Page 22 CS 136, Spring 2014

The Bell-La Padula *-Property

•  S can write O iff lS ≤ lO
•  Prevents write-down

– Privileged subjects writing high-
classification information to low-
classification objects

– E.g., a top secret user can’t write to a
confidential data file

•  Can be proven that a system meeting these
properties is “secure”

Lecture 2
Page 23 CS 136, Spring 2014

Bell-La Padula Example
TOP SECRET

Top Secret

Secret

Classified write

read

Write
(attack the red tank)

Bell-La Padula
doesn’t allow
write-down!

Classified

Lecture 2
Page 24 CS 136, Spring 2014

So How Do You Really Use The
System?

•  There have to be mechanisms for
reclassification
– Usually requiring explicit operation

•  Danger that reclassification process
will be done incautiously

•  Real systems also use classes of
information

Lecture 2
Page 25 CS 136, Spring 2014

Integrity Security Policies

•  Designed to ensure that information is
not improperly changed

•  Often the key issue for commercial
systems

•  Secrecy is nice, but not losing track of
your inventory is crucial

Lecture 2
Page 26 CS 136, Spring 2014

Example: Biba Integrity Policy
•  Subject set S, object set O
•  Set of ordered integrity levels I
•  Subjects and objects have integrity levels
•  Subjects at high integrity levels are less likely to

screw up data
– E.g., trusted users or carefully audited programs

•  Data at a high integrity level is less likely to be
screwed up
– Probably because it badly needs not to be

screwed up

Lecture 2
Page 27 CS 136, Spring 2014

Biba Integrity Policy Rules

•  s can write to o iff i(o) ≤ i(s)
•  s1 can execute s2 iff i(s2) ≤ i(s1)
•  A subject s can read object o iff i(s) ≤

i(o)
•  Why do we need the read rule?

Lecture 2
Page 28 CS 136, Spring 2014

Hybrid Models
•  Sometimes the issue is keeping things

carefully separated
•  E.g., a brokerage that handles accounts for

several competing businesses
•  Microsoft might not like the same analyst

working on their account and IBM’s
•  There are issues of both confidentiality and

integrity here
•  Example – Chinese Wall model

Lecture 2
Page 29 CS 136, Spring 2014

The Realities of Discretionary
Access Control

•  Most users never change the defaults on anything
– Unless the defaults prevent them from doing

something they want to do
•  Most users don’t think about or understand access

control
•  Probably not wise to rely on it to protect

information you care about
– Unless you’re the one setting it
– And you know what you’re doing

Lecture 2
Page 30 CS 136, Spring 2014

The Problems With Security Policies

•  Hard to define properly
– How do you determine what to allow and

disallow?
•  Hard to go from policy to the mechanisms

that actually implement it
•  Hard to understand implications of policy
•  Defining and implementing policies is a lot

of work

Lecture 2
Page 31 CS 136, Spring 2014

Tools for Security

•  Physical security
•  Access control
•  Encryption
•  Authentication
•  Encapsulation
•  Intrusion detection
•  Common sense

Lecture 2
Page 32 CS 136, Spring 2014

Physical Security
•  Lock up your computer

– Actually, sometimes a good answer
•  But what about networking?

– Networks poke a hole in the locked door
•  Hard to prevent legitimate holder of a

computer from using it as he wants
– E.g., smart phone jailbreaks

•  In any case, lack of physical security often
makes other measures pointless

Lecture 2
Page 33 CS 136, Spring 2014

Access Controls

•  Only let authorized parties access the
system

•  A lot trickier than it sounds
•  Particularly in a network environment
•  Once data is outside your system, how can

you continue to control it?
– Again, of concern in network

environments

Lecture 2
Page 34 CS 136, Spring 2014

Encryption

•  Algorithms to hide the content of data or
communications

•  Only those knowing a secret can decrypt the
protection

•  One of the most important tools in computer
security
– But not a panacea

•  Covered in more detail later in class

Lecture 2
Page 35 CS 136, Spring 2014

Authentication

•  Methods of ensuring that someone is
who they say they are

•  Vital for access control
•  But also vital for many other purposes
•  Often (but not always) based on

encryption

Lecture 2
Page 36 CS 136, Spring 2014

Encapsulation

•  Methods of allowing outsiders limited
access to your resources

•  Let them use or access some things
– But not everything

•  Simple, in concept
•  Extremely challenging, in practice

Lecture 2
Page 37 CS 136, Spring 2014

Intrusion Detection

•  All security methods sometimes fail
•  When they do, notice that something is

wrong
•  And take steps to correct the problem
•  Reactive, not preventative

– But it’s unrealistic to believe any
prevention is certain

•  Must be automatic to be really useful

Lecture 2
Page 38 CS 136, Spring 2014

Common Sense

•  A lot of problems arise because people
don’t like to think

•  The best security tools generally fail if
people use them badly

•  If the easiest way in is to fool people,
that’s what attackers will do

Lecture 2
Page 39 CS 136, Spring 2014

Access Control
•  Security could be easy

– If we didn’t want anyone to get access to
anything

•  The trick is giving access to only the right
people
– And at the right time and circumstances

•  How do we ensure that a given resource can
only be accessed when it should be?

Lecture 2
Page 40 CS 136, Spring 2014

Goals for Access Control

•  Complete mediation
•  Least privilege
•  Useful in a networked environment
•  Scalability
•  Acceptable cost and usability

Lecture 2
Page 41 CS 136, Spring 2014

Access Control Mechanisms

•  Access control lists
•  Capabilities
•  Access control matrices

– Theoretical concept we won’t
discuss in detail

•  Role based access control

Lecture 2
Page 42 CS 136, Spring 2014

The Language of Access Control

•  Subjects are active entities that want to gain
access to something
– E.g., users or programs

•  Objects represent things that can be
accessed
– E.g., files, devices, database records

•  Access is any form of interaction with an
object

•  An entity can be both subject and object

Lecture 2
Page 43 CS 136, Spring 2014

Mandatory vs. Discretionary
Access Control

•  Mandatory access control is dictated by the
underlying system
– Individual users can’t override it
– Even for their own data

•  Discretionary access control is under
command of the user
– System enforces what they choose
– More common than mandatory

Lecture 2
Page 44 CS 136, Spring 2014

Access Control Lists

•  For each protected resource, maintain a
single list

•  Each list entry specifies a user who can
access the resource
– And the allowable modes of access

•  When a user requests access to a resource,
check the access control list (ACL)

Lecture 2
Page 45 CS 136, Spring 2014

ACL Objects and Subjects

•  In ACL terminology, the resources
being protected are objects

•  The entities attempting to access them
are subjects
– Allowing finer granularity of control

than per-user

Lecture 2
Page 46 CS 136, Spring 2014

ACL Example

•  An operating system example:
– Using ACLs to protect a file

•  User (Subject) A is allowed to read and
write to the file

•  User (Subject) B may only read from it
•  User (Subject) C may not access it

Lecture 2
Page 47 CS 136, Spring 2014

An ACL Protecting a File

File
X

ACL for file X

A read
write

B write

C none

Subject A

Subject B

Subject C
read

denied

Lecture 2
Page 48 CS 136, Spring 2014

Issues for Access Control Lists

•  How do you know that the requestor is
who he says he is?

•  How do you protect the access control
list from modification?

•  How do you determine what resources
a user can access?

•  Generally issues for OS design

Lecture 2
Page 49 CS 136, Spring 2014

Pros and Cons of ACLs

+ Easy to figure out who can access a
resource

+ Easy to revoke or change access
permissions

– Hard to figure out what a subject can access
–  Changing access rights requires getting to

the object

Lecture 2
Page 50 CS 136, Spring 2014

Capabilities

•  Each subject keeps a set of data items
that specify his allowable accesses

•  Essentially, a set of tickets
•  Possession of the capability for an

object implies that access is allowed

Lecture 2
Page 51 CS 136, Spring 2014

Properties of Capabilities

•  Must be unforgeable
– In single machine, keep capabilities under

control of OS
– What about in a networked system?

•  In most systems, some capabilities allow
creation of other capabilities
– Process can pass a restricted set of

capabilities to a subprocess

Lecture 2
Page 52 CS 136, Spring 2014

Capabilities Protecting a File

Read X

Subject B

Subject C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

Subject A

Capability
Checking

File X
Read, Write

File X
Read, Write

Check
validity of
capability

OK!

Lecture 2
Page 53 CS 136, Spring 2014

Capabilities Denying Access

write

User B

User C

Capabilities
for C

Capabilities
for A

File X
Read, Write

Capabilities
for B

File X
Read

File
X

User A

Capability
Checking

Check
validity of
capability

No
Capability
Provided!

Lecture 2
Page 54 CS 136, Spring 2014

How Will This Work in a
Network?

Subject B

Subject C

Capabilities
for C

Capabilities
for B

File X
Read

Capabilities
for A

File X
Read, Write

Subject A

Capability
Checking

File
X

File X
Read, Write

Subject A

Subject B
File X
Read

Subject C
File X
Read, Write

How can we
tell if it’s a
good
capability?

Lecture 2
Page 55 CS 136, Spring 2014

Revoking Capabilities

Fred

Nancy

Accounts
receivable

How do we take
away Fred’s
capability?

Without taking
away Nancy’s?

Lecture 2
Page 56 CS 136, Spring 2014

Options for Revoking
Capabilities

•  Destroy the capability
– How do you find it?

•  Revoke on use
– Requires checking on use

•  Generation numbers
– Requires updating non-revoked

capabilities

Lecture 2
Page 57 CS 136, Spring 2014

Pros and Cons of Capabilities

+ Easy to determine what a subject can access
+ Potentially faster than ACLs (in some

circumstances)
+ Easy model for transfer of privileges
– Hard to determine who can access an object
–  Requires extra mechanism to allow

revocation
–  In network environment, need

cryptographic methods to prevent forgery

Lecture 2
Page 58 CS 136, Spring 2014

Distributed Access Control
•  ACLs still work OK

– Provided you have a global
namespace for subjects

– And no one can masquerade
•  Capabilities are more problematic

– Security relies on unforgeability
– Provided by cryptographic methods
– Prevents forging, not copying

Lecture 2
Page 59 CS 136, Spring 2014

Role Based Access Control

•  An enhancement to ACLs or capabilities
•  Each user has certain roles he can take

while using the system
•  At any given time, the user is performing a

certain role
•  Give the user access to only those things

that are required to fulfill that role
•  Available in some form in most modern

operating systems

Lecture 2
Page 60 CS 136, Spring 2014

A Simple Example

Fred is a system
administrator

But Fred is a also a
normal user

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

Fred should operate under
one role while doing
system administration

And another role while
doing normal stuff

Lecture 2
Page 61 CS 136, Spring 2014

Continuing With Our Example

Fred logs on as “fred”

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

He reads his email

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

To:Fred
From: Dick
Subject: Fun URL

Hi, Fred. I found
this neat URL
. . .

He decides to upgrade
the C++ compiler

So he changes his
role to “sysadmin”
Then he has the privileges to
upgrade the compiler
But may have lost the privileges
to read “fred’s” email

Result: Evil malware in
fred’s email can’t
“upgrade” the compiler

Lecture 2
Page 62 CS 136, Spring 2014

Changing Roles
•  Role based access control only helps if

changing roles isn’t trivial
– Otherwise, the malicious code merely

changes roles before doing anything else
•  Typically requires providing some secure

form of authentication
– Which proves you have the right to

change roles
– Usually passwords, but other methods

possible

Lecture 2
Page 63 CS 136, Spring 2014

Practical Limitations on Role Based
Access Control

•  Number of roles per user
•  Problems of disjoint role privileges
•  System administration overheads
•  Generally, these cause usability and

management problems

Lecture 2
Page 64 CS 136, Spring 2014

Android Access Control
•  Android is a software development

environment for mobile devices
– Especially phones

•  An open platform that allows adding
arbitrary applications
– Written by many different parties

•  What’s the appropriate access control
model?

Lecture 2
Page 65 CS 136, Spring 2014

The Android Access Control
Model

•  Linux ACLs at the bottom
–  If that were all, apps would run with

permissions of user who ran them
•  Above that, access control specific for Android
•  Each application runs as its own Linux user

– But how to handle interactions between apps?
•  Access to other apps’ components handled by

Intercomponent Communications (ICC) controls

Lecture 2
Page 66 CS 136, Spring 2014

ICC Access Control
•  Built into Android stack

– So Android apps use it, but no regular app does
•  ICC reference monitor provides a form of

mandatory access control
•  Android apps are built of components

– Each app component has an access label
•  Developer assigns a set of access labels to an app

– Some for components in their own app
– Some for components of other apps
– Set defines an application’s access domain

Lecture 2
Page 67 CS 136, Spring 2014

What Does This Mean?
•  Application developer limits what his

application can do
– Even if compromised, it can’t do more
– Permissions settable only at app

installation
•  Developer can also limit who else can use

his components
– Preventing data leakage, for example

Lecture 2
Page 68 CS 136, Spring 2014

Some Advantages of This
Approach

•  Limits power of applications
•  Allows those installing applications to

know what they can access
•  Centralizes information about access

permissions
– Extensions limit that somewhat

Lecture 2
Page 69 CS 136, Spring 2014

Reference Monitors

•  Whatever form it takes, access control must
be instantiated in actual code
– Which checks if a given attempt to

reference an object should be allowed
•  That code is called a reference monitor
•  Obviously, good reference monitors are

critical for system security

Lecture 2
Page 70 CS 136, Spring 2014

Desirable Properties of Reference
Monitors

•  Correctness
•  Proper placement
•  Efficiency
•  Simplicity
•  Flexibility

