
Lecture 8
Page 1 CS 136, Fall 2014

Operating System Security
Computer Security

Peter Reiher
October 30, 2014

Lecture 8
Page 2 CS 136, Fall 2014

Outline

•  What does the OS protect?
•  Authentication for operating systems
•  Memory protection

– Buffer overflows
•  IPC protection

– Covert channels
•  Stored data protection

– Full disk encryption

Lecture 8
Page 3 CS 136, Fall 2014

Introduction

•  Operating systems provide the lowest layer
of software visible to users

•  Operating systems are close to the hardware
– Often have complete hardware access

•  If the operating system isn’t protected, the
machine isn’t protected

•  Flaws in the OS generally compromise all
security at higher levels

Lecture 8
Page 4 CS 136, Fall 2014

Why Is OS Security So Important?

•  The OS controls access to application
memory

•  The OS controls scheduling of the processor
•  The OS ensures that users receive the

resources they ask for
•  If the OS isn’t doing these things securely,

practically anything can go wrong
•  So almost all other security systems must

assume a secure OS at the bottom

Lecture 8
Page 5 CS 136, Fall 2014

Single User Vs. Multiple User
Machines

•  The majority of today’s computers usually
support a single user

•  Some computers are still multi-user
– Often specialized servers

•  Single user machines often run multiple
processes, though
– Often through downloaded code

•  Increasing numbers of embedded machines
– Effectively no (human) user

Lecture 8
Page 6 CS 136, Fall 2014

Trusted Computing
•  Since OS security is vital, how can we

be sure our OS is secure?
•  Partly a question of building in good

security mechanisms
•  But also a question of making sure

you’re running the right OS
– And it’s unaltered

•  That’s called trusted computing

Lecture 8
Page 7 CS 136, Fall 2014

How Do We Achieve Trusted
Computing?

•  From the bottom up
•  We need hardware we can count on
•  It can ensure the boot program behaves
•  The boot can make sure we run the

right OS
•  The OS will protect at the application

level

Lecture 8
Page 8 CS 136, Fall 2014

TPM and Bootstrap Security
•  Trusted Platform Module (TPM)

– Special hardware designed to improve OS
security

•  Proves OS was booted with a particular
bootstrap loader
– Using tamperproof HW and

cryptographic techniques
•  Also provides secure key storage and crypto

support

Lecture 8
Page 9 CS 136, Fall 2014

TPM and the OS Itself
•  Once the bootstrap loader is operating,

it uses TPM to check the OS
•  Essentially, ensures that expected OS

was what got booted
•  OS can request TPM to verify

applications it runs
•  Remote users can request such

verifications, too

Lecture 8
Page 10 CS 136, Fall 2014

Transitive Trust in TPM
•  You trust the app, because the OS says

to trust it
•  You trust the OS, because the bootstrap

says to trust it
•  You trust the bootstrap, because

somebody claims it’s OK
•  You trust the whole chain, because you

trust the TPM hardware’s attestations

Lecture 8
Page 11 CS 136, Fall 2014

Trust vs. Security
•  TPM doesn’t guarantee security

– It (to some extent) verifies trust
•  It doesn’t mean the OS and apps are secure,

or even non-malicious
•  It just verifies that they are versions you

have said you trust
•  Offers some protection against tampering

with software
•  But doesn’t prevent other bad behavior

Lecture 8
Page 12 CS 136, Fall 2014

Status of TPM
•  Hardware widely installed

– Not widely used
•  Microsoft Bitlocker uses it

– When available
•  A secure Linux boot loader and OS

work with it
•  Some specialized software uses TPM

Lecture 8
Page 13 CS 136, Fall 2014

SecureBoot

•  A somewhat different approach to
ensuring you boot the right thing

•  Built into the boot hardware and SW
•  Designed by Microsoft
•  Essentially, only allows booting of

particular OS versions

Lecture 8
Page 14 CS 136, Fall 2014

Some Details of SecureBoot
•  Part of the Unified Extensible

Firmware Interface (UEFI)
– Replacement for BIOS

•  Microsoft insists on HW supporting
these features

•  Only boots systems with pre-arranged
digital signatures

•  Some issues of who can set those

Lecture 8
Page 15 CS 136, Fall 2014

Authentication in Operating
Systems

•  The OS must authenticate all user
requests
– Otherwise, can’t control access to

critical resources
•  Human users log in

– Locally or remotely
•  Processes run on their behalf

– And request resources

Lecture 8
Page 16 CS 136, Fall 2014

In-Person User Authentication

•  Authenticating the physically present
user

•  Most frequently using password
techniques

•  Sometimes biometrics
•  To verify that a particular person is

sitting in front of keyboard and screen

Lecture 8
Page 17 CS 136, Fall 2014

Remote User Authentication
•  Many users access machines remotely
•  How are they authenticated?
•  Most typically by password
•  Sometimes via public key crypto
•  Sometimes at OS level, sometimes by a

particular process
– In latter case, what is their OS identity?
– What does that imply for security?

Lecture 8
Page 18 CS 136, Fall 2014

Process Authentication
•  Successful login creates a primal process

– Under ID of user who logged in
•  The OS securely ties a process control block to the

process
– Not under user control
– Contains owner’s ID

•  Processes can fork off more processes
– Usually child process gets same ID as parent

•  Usually, special system calls can change a
process’ ID

Lecture 8
Page 19 CS 136, Fall 2014

For Example,
•  Process X wants to open file Y for read
•  File Y has read permissions set for user

Bill
•  If process X belongs to user Bill,

system ties the open call to that user
•  And file system checks ID in open

system call to file system permissions
•  Other syscalls (e.g., RPC) similar

Lecture 8
Page 20 CS 136, Fall 2014

Protecting Memory

•  What is there to protect in memory?
•  Page tables and virtual memory

protection
•  Special security issues for memory
•  Buffer overflows

Lecture 8
Page 21 CS 136, Fall 2014

What Is In Memory?

•  Executable code
– Integrity required to ensure secure

operations
•  Copies of permanently stored data

– Secrecy and integrity issues
•  Temporary process data

– Mostly integrity issues

Lecture 8
Page 22 CS 136, Fall 2014

Mechanisms for Memory
Protection

•  Most general purpose systems provide some
memory protection
– Logical separation of processes that run

concurrently
•  Usually through virtual memory methods
•  Originally arose mostly for error

containment, not security

Lecture 8
Page 23 CS 136, Fall 2014

Paging and Security

•  Main memory is divided into page frames
•  Every process has an address space divided

into logical pages
•  For a process to use a page, it must reside in

a page frame
•  If multiple processes are running, how do

we protect their frames?

Lecture 8
Page 24 CS 136, Fall 2014

Protection of Pages

•  Each process is given a page table
– Translation of logical addresses into

physical locations
•  All addressing goes through page table

– At unavoidable hardware level
•  If the OS is careful about filling in the page

tables, a process can’t even name other
processes’ pages

Lecture 8
Page 25 CS 136, Fall 2014

Page Tables and Physical Pages

Process A

Process B

Process Page Tables Physical Page Frames
Any address
Process A
names goes
through the
green table

Any address
Process B
names goes
through the
blue table
They can’t
even name
each other’s
pages

Lecture 8
Page 26 CS 136, Fall 2014

Security Issues of Page Frame
Reuse

•  A common set of page frames is shared by
all processes

•  The OS switches ownership of page frames
as necessary

•  When a process acquires a new page frame,
it used to belong to another process
– Can the new process read the old data?

Lecture 8
Page 27 CS 136, Fall 2014

Reusing Pages

Process A

Process B

Process Page Tables Physical Page Frames
What

happens now
if Process A
requests a

page?

Can Process
A now read
Process B’s
deallocated

data?

Process B
deallocates

a page

Lecture 8
Page 28 CS 136, Fall 2014

Strategies for Cleaning Pages

•  Don’t bother
– Basic Linux strategy

•  Zero on deallocation
•  Zero on reallocation
•  Zero on use
•  Clean pages in the background

– Windows strategy

Lecture 8
Page 29 CS 136, Fall 2014

Special Interfaces to Memory
•  Some systems provide a special interface to

memory
•  If the interface accesses physical memory,

– And doesn’t go through page table
protections,

– Then attackers can read the physical
memory

– Letting them figure out what’s there and
find what they’re looking for

Lecture 8
Page 30 CS 136, Fall 2014

Buffer Overflows

•  One of the most common causes for
compromises of operating systems

•  Due to a flaw in how operating systems
handle process inputs
– Or a flaw in programming languages
– Or a flaw in programmer training
– Depending on how you look at it

Lecture 8
Page 31 CS 136, Fall 2014

What Is a Buffer Overflow?

•  A program requests input from a user
•  It allocates a temporary buffer to hold

the input data
•  It then reads all the data the user

provides into the buffer, but . . .
•  It doesn’t check how much data was

provided

Lecture 8
Page 32 CS 136, Fall 2014

For Example,
int main(){
 char name[32];
 printf(“Please type your name: “);
 gets(name);
 printf(“Hello, %s”, name);
 return (0);
}

•  What if the user enters more than 32 characters?

Lecture 8
Page 33 CS 136, Fall 2014

Well, What If the User Does?
•  Code continues reading data into memory
•  The first 32 bytes go into name buffer

– Allocated on the stack
– Close to record of current function

•  The remaining bytes go onto the stack
– Right after name buffer
– Overwriting current function record
– Including the instruction pointer

Lecture 8
Page 34 CS 136, Fall 2014

Why Is This a Security Problem?
•  The attacker can cause the function to

“return” to an arbitrary address
•  But all attacker can do is run different code

than was expected
•  He hasn’t gotten into anyone else’s

processes
– Or data

•  So he can only fiddle around with his own
stuff, right?

Lecture 8
Page 35 CS 136, Fall 2014

Is That So Bad?

•  Well, yes
•  That’s why a media player can write

configuration and data files
•  Unless roles and access permissions set

up very carefully, a typical program
can write all its user’s files

Lecture 8
Page 36 CS 136, Fall 2014

The Core Buffer Overflow
Security Issue

•  Programs often run on behalf of others
– But using your identity

•  Maybe OK for you to access some data
•  But is it OK for someone who you’re

running a program for to access it?
– Downloaded programs
– Users of web servers
– Many other cases

Lecture 8
Page 37 CS 136, Fall 2014

Using Buffer Overflows to
Compromise Security

•  Carefully choose what gets written into
the instruction pointer

•  So that the program jumps to
something you want to do
– Under the identity of the program

that’s running
•  Such as, execute a command shell
•  Usually attacker provides this code

Lecture 8
Page 38 CS 136, Fall 2014

Effects of Buffer Overflows

•  A remote or unprivileged local user runs a
program with greater privileges

•  If buffer overflow is in a root program, it
gets all privileges, essentially

•  Can also overwrite other stuff
– Such as heap variables

•  Common mechanism to allow attackers to
break into machines

Lecture 8
Page 39 CS 136, Fall 2014

Stack Overflows

•  The most common kind of buffer overflow
•  Intended to alter the contents of the stack
•  Usually by overflowing a dynamic variable
•  Usually with intention of jumping to exploit

code
– Though it could instead alter parameters

or variables in other frames
– Or even variables in current frame

Lecture 8
Page 40 CS 136, Fall 2014

Heap Overflows

•  Heap is used to store dynamically
allocated memory

•  Buffers kept there can also overflow
•  Generally doesn’t offer direct ability to

jump to arbitrary code
•  But potentially quite dangerous

Lecture 8
Page 41 CS 136, Fall 2014

What Can You Do With Heap
Overflows?

•  Alter variable values
•  “Edit” linked lists or other data structures
•  If heap contains list of function pointers,

can execute arbitrary code
•  Generally, heap overflows are harder to

exploit than stack overflows
•  But they exist

– E.g., Google Chrome one discovered
February 2012

Lecture 8
Page 42 CS 136, Fall 2014

Some Recent Buffer Overflows
•  Watchguard Firewall
•  Apple Quicktime
•  Pidgin chat client
•  Internet Explorer

– A heap overflow
•  Adobe Flash Player
•  Not as common as they used to be, but

still a real danger

Lecture 8
Page 43 CS 136, Fall 2014

Fixing Buffer Overflows
•  Write better code (check input lengths, etc.)
•  Use programming languages that prevent them
•  Add OS controls that prevent overwriting the stack
•  Put things in different places on the stack, making it hard

to find the return pointer (e.g., Microsoft ASLR)
•  Don’t allow execution from places in memory where

buffer overflows occur (e.g., Windows DEP)
–  Or don’t allow execution of writable pages

•  Why aren’t these things commonly done?
–  Sometimes they are, but not always effective

•  When not, presumably because programmers and
designers neither know nor care about security

Lecture 8
Page 44 CS 136, Fall 2014

Protecting Interprocess
Communications

•  Operating systems provide various kinds of
interprocess communications
– Messages
– Semaphores
– Shared memory
– Sockets

•  How can we be sure they’re used properly?

Lecture 8
Page 45 CS 136, Fall 2014

IPC Protection Issues

•  How hard it is depends on what you’re
worried about

•  For the moment, let’s say we’re worried
about one process improperly using IPC to
get info from another
– Process A wants to steal information

from process B
•  How would process A do that?

Lecture 8
Page 46 CS 136, Fall 2014

Message Security
Process A Process B

Can process B use message-based
IPC to steal the secret?

Gimme your
 secret

That’s probably
not going to work

Lecture 8
Page 47 CS 136, Fall 2014

How Can B Get the Secret?
•  He can convince the system he’s A

– A problem for authentication
•  He can break into A’s memory

– That doesn’t use message IPC
– And is handled by page tables

•  He can forge a message from someone else to get
the secret
– But OS tags IPC messages with identities

•  He can “eavesdrop” on someone else who gets the
secret

Lecture 8
Page 48 CS 136, Fall 2014

Can an Attacker Really
Eavesdrop on IPC Message?

•  On a single machine, what is a message send,
really?

•  A message is copied from a process buffer to an
OS buffer
– Then from the OS buffer to another process’

buffer
– Sometimes optimizations skip some copies

•  If attacker can’t get at processes’ internal buffers
and can’t get at OS buffers, he can’t “eavesdrop”

•  Need to handle page reuse (discussed earlier)

Lecture 8
Page 49 CS 136, Fall 2014

Other Forms of IPC
•  Semaphores, sockets, shared memory, RPC
•  Pretty much all the same

– Use system calls for access
– Which belong to some process
– Which belongs to some principal
– OS can check principal against access control

permissions at syscall time
– Ultimately, data is held in some type of

memory
• Which shouldn’t be improperly accessible

Lecture 8
Page 50 CS 136, Fall 2014

So When Is It Hard?
1.  Always possible that there’s a bug in the

operating system
–  Allowing masquerading,

eavesdropping, etc.
–  Or, if the OS itself is compromised, all

bets are off
2.  What if it’s not a single machine?
3.  What if the OS has to prevent cooperating

processes from sharing information?

Lecture 8
Page 51 CS 136, Fall 2014

Distributed System Issues
•  What if your RPC is really remote?
•  Goal of RPC is to make remote access

transparent
– Looks “just like” local

•  The hard part is authentication
– The call didn’t come from your own

OS
– How do you authenticate its origin?

Lecture 8
Page 52 CS 136, Fall 2014

The Other Hard Case
Process A Process B

Process A wants to tell the secret to process B
But the OS has been instructed to prevent that

 A necessary part of Bell-La Padula, e.g.
Can the OS prevent A and B from colluding

 to get the secret to B?

Lecture 8
Page 53 CS 136, Fall 2014

OS Control of Interactions

•  OS can “understand” the security policy
•  Can maintain labels on files, process, data

pages, etc.
•  Can regard any IPC or I/O as a possible leak

of information
– To be prohibited if labels don’t allow it

Lecture 8
Page 54 CS 136, Fall 2014

Covert Channels

•  Tricky ways to pass information
•  Requires cooperation of sender and

receiver
– Generally in active attempt to

deceive system
•  Use something not ordinarily regarded

as a communications mechanism

Lecture 8
Page 55 CS 136, Fall 2014

Lecture 8
Page 56 CS 136, Fall 2014

Covert Channels in Computers
•  Generally, one process “sends” a covert

message to another
– But could be computer to computer

•  How?
– Disk activity
– Page swapping
– Time slice behavior
– Use of a peripheral device
– Limited only by imagination

Lecture 8
Page 57 CS 136, Fall 2014

Handling Covert Channels

•  Relatively easy if you know details of
how the channel is used
– Put randomness/noise into channel to

wash out message
•  Hard to impossible if you don’t know

what the channel is
•  Not most people’s problem

Lecture 8
Page 58 CS 136, Fall 2014

Stored Data Protection

•  Files are a common example of a typically
shared resource

•  If an OS supports multiple users, it needs to
address the question of file protection

•  Simple read/write access control
•  What else do we need to do?
•  Protect the raw disk or SSD

Lecture 8
Page 59 CS 136, Fall 2014

Encrypted File Systems

•  Data stored on disk is subject to many risks
– Improper access through OS flaws
– But also somehow directly accessing the

disk
•  If the OS protections are bypassed, how can

we protect data?
•  How about if we store it in encrypted form?

Lecture 8
Page 60 CS 136, Fall 2014

An Example of an Encrypted File
System

Sqzmredq
#099 sn
lx
rzuhmfr
zbbntms

Ks

Transfer
$100 to
my
savings
account

Issues for
encrypted file

systems:
When does the

cryptography occur?

Where does the
key come from?

What is the
granularity of
cryptography?

Lecture 8
Page 61 CS 136, Fall 2014

When Does Cryptography Occur?

•  Transparently when a user opens a file?
– In disk drive?
– In OS?
– In file system?

•  By explicit user command?
– Or always, implicitly?

•  How long is the data decrypted?
•  Where does it exist in decrypted form?

Lecture 8
Page 62 CS 136, Fall 2014

Where Does the Key Come From?

•  Provided by human user?
•  Stored somewhere in file system?
•  Stored on a smart card?
•  Stored in the disk hardware?
•  Stored on another computer?
•  Where and for how long do we store

the key?

Lecture 8
Page 63 CS 136, Fall 2014

What Is the Granularity of
Cryptography?

•  An entire disk?
•  An entire file system?
•  Per file?
•  Per block?
•  Consider both in terms of:

– How many keys?
– When is a crypto operation applied?

Lecture 8
Page 64 CS 136, Fall 2014

What Are You Trying to Protect
Against With Crypto File Systems?

•  Unauthorized access by improper users?
– Why not just access control?

•  The operating system itself?
– What protection are you really getting?
– Unless you’re just storing data on the machine

•  Data transfers across a network?
– Why not just encrypt while in transit?

•  Someone who accesses the device not using the
OS?
– A realistic threat in your environment?

Lecture 8
Page 65 CS 136, Fall 2014

Full Disk Encryption

•  All data on the disk is encrypted
•  Data is encrypted/decrypted as it

enters/leaves disk
•  Primary purpose is to prevent improper

access to stolen disks
– Designed mostly for portable

machines (laptops, tablets, etc.)

Lecture 8
Page 66 CS 136, Fall 2014

HW Vs. SW Full Disk Encryption
•  HW advantages:

– Faster
– Totally transparent, works for any OS
– Setup probably easier

•  HW disadvantages:
– Not ubiquitously available today
– More expensive (not that much, though)
– Might not fit into a particular machine
– Backward compatibility

Lecture 8
Page 67 CS 136, Fall 2014

 Example of Hardware Full Disk
Encryption

•  Seagate’s Momentus 7200 FDE.2 line
•  Hardware encryption for entire disk

– Using AES
•  Key accessed via user password, smart card,

or biometric authentication
– Authentication information stored

internally on disk
– Check performed by disk, pre-boot

•  .15 Gbytes/sec sustained transfer rate
•  Primarily for laptops

Lecture 8
Page 68 CS 136, Fall 2014

Example of Software Full Disk
Encryption

•  Microsoft BitLocker
•  Doesn’t encrypt quite the whole drive

– Unencrypted partition holds bootstrap
•  Uses AES for cryptography
•  Key stored either in special hardware or

USB drive
•  Microsoft claims “single digit percentage”

overhead
– One independent study claims 12%

