-

Operating System Security
Computer Security
Peter Rether
October 30, 2014

\

eeeeee

-

CS 136, Fall 2014

Outline |

What does the OS protect?
Authentication for operating systems
Memory protection

— Buffer overflows

[PC protection

— Covert channels

Stored data protection

— Full disk encryption

\

\

Operating systems provide the lowest layer
of software visible to users

Operating systems are close to the hardware
— Often have complete hardware access

{ Introduction }

If the operating system 1sn’t protected, the
machine 1sn’t protected

Flaws 1n the OS generally compromise all
security at higher levels

CS 136, Fall 2014 Page 3

-

CS 136, Fall 2014

Why Is OS Security So Important?

The OS controls access to application
memory

\

The OS controls scheduling of the processor

The OS ensures that users receive the
resources they ask for

If the OS 1sn’t doing these things securely,
practically anything can go wrong

So almost all other security systems must
assume a secure OS at the bottom

/ Single User Vs. Multiple User \
Machines

* The majority of today’s computers usually
support a single user

* Some computers are still multi-user
— Often specialized servers

* Single user machines often run multiple
processes, though

— Often through downloaded code
 Increasing numbers of embedded machines
— Effectively no (human) user)

CS 136, Fall 2014 Page 5

/ {Trusted Computing} \

* Since OS security 1s vital, how can we
be sure our OS 1s secure?

 Partly a question of building 1n good
security mechanisms

* But also a question of making sure
you’re running the right OS

— And 1t’s unaltered

k That’s called trusted computing /

CS 136, Fall 2014 Page 6

/ How Do We Achieve Trusted \
Computing?

* From the bottom up

* We need hardware we can count on

* It can ensure the boot program behaves

 The boot can make sure we run the
right OS

» The OS will protect at the application
level /

CS 136, Fall 2014 Page 7

-

CS 136, Fall 2014

TPM and Bootstrap Security
Trusted Platform Module (TPM)

\

— Special hardware designed to improve OS

security

Proves OS was booted with a particular
bootstrap loader

— Using tamperproof HW and
cryptographic techniques

support

* Also provides secure key storage and crypto

4 N

TPM and the OS Itself

* Once the bootstrap loader 1s operating,
it uses TPM to check the OS

» Essentially, ensures that expected OS
was what got booted

* OS can request TPM to verity
applications it runs

* Remote users can request such
verifications, too /

CS 136, Fall 2014 Page 9

4 N

Transitive Trust in TPM

* You trust the app, because the OS says
to trust 1t

* You trust the OS, because the bootstrap
says to trust it

* You trust the bootstrap, because
somebody claims 1t’s OK

* You trust the whole chain, because you
trust the TPM hardware’s attestations /

Lecture 8
CS 136, Fall 2014 Page 10

Trust vs. Security
TPM doesn’t guarantee security
— It (to some extent) verifies trust

It doesn’t mean the OS and apps are secure,
or even non-malicious

It just verifies that they are versions you
have said you trust

Offers some protection against tampering
with software

But doesn’t prevent other bad behavior

CS 136, Fall 2014

Lecture
Page 11

\

8

-

CS 136, Fall 2014

Status of TPM

Hardware widely installed
—Not widely used
Microsoft Bitlocker uses 1t
—When available

A secure Linux boot loader and OS

work with 1t

* Some specialized software uses TPM

\

/

Lecture 8

Page 12

-

CS 136, Fall 2014

SecureBoot

* A somewhat different approach to

ensuring you boot the right thing

Built into the |

particular OS

* Designed by Microsoft

» Essentially, only allows booting of

versions

boot hardware and SW

\

Lecture 8

Page 13

-

CS 136, Fall 2014

Some Details of SecureBoot

Part of the Unified Extensible
Firmware Interface (UEFI)

—Replacement for BIOS

Microsoft insists on HW supporting
these features

* Only boots systems with pre-arranged

digital signatures
Some 1ssues of who can set those

\

Lecture 8

Page 14

/" (Authentication in Operating

5 Systems)
 The OS must authenticate all user
requests

—Otherwise, can’t control access to
critical resources

* Human users log in
—Locally or remotely
* Processes run on their behalf

—And request resources

CS 136, Fall 2014

Lecture 8
Page 15

-

CS 136, Fall 2014

In-Person User Authentication

Authenticating the physically present
user

Most frequently using password
techniques

Sometimes biometrics

To verity that a particular person 1s
sitting 1n front of keyboard and screen

\

/

Lecture 8

Page 16

-

Remote User Authentication

Many users access machines remotely
How are they authenticated?

Most typically by password
Sometimes via public key crypto

Sometimes at OS level, sometimes by a
particular process

— In latter case, what 1s their OS 1dentity?
— What does that imply for security?

CS 136, Fall 2014

Lecture 8
Page 17

4 N

Process Authentication

* Successful login creates a primal process

— Under ID of user who logged in

* The OS securely ties a process control block to the
process

— Not under user control
— Contains owner’s ID
* Processes can fork off more processes
— Usually child process gets same ID as parent

« Usually, special system calls can change a
process’ 1D e

CS 136, Fall 2014 Page 18

-

\

For Example,
Process X wants to open file Y for read
File Y has read permissions set for user
Bill
If process X belongs to user Bill,
system ties the open call to that user

And file system checks ID 1n open
system call to file system permissions

\ Other syscalls (e.g., RPC) similar /

ture 8

Lec

CS 136, Fall 2014 Page 19

-

CS 136, Fall 2014

{Protecting Memory}

* What 1s there to protect in memory?

Page tables and virtual memory
protection

Special security 1ssues for memory

Buftfer overtlows

\

Lecture 8

Page 20

4 N

What Is In Memory?

 Executable code

—Integrity required to ensure secure
operations

* Copies of permanently stored data

—Secrecy and integrity 1ssues

* Temporary process data
—Mostly integrity issues /

Lecture 8
CS 136, Fall 2014 Page 21

/ Mechanisms for Memory \
Protection
* Most general purpose systems provide some

memory protection

— Logical separation of processes that run
concurrently

* Usually through virtual memory methods

* Originally arose mostly for error
containment, not security

Lecture 8
CS 136, Fall 2014 Page 22

4 N

Paging and Security

Main memory 1s divided into page frames
Every process has an address space divided
into logical pages

For a process to use a page, it must reside 1n
a page frame

If multiple processes are running, how do
we protect their frames?

Lecture 8
CS 136, Fall 2014 Page 23

-

CS 136, Fall 2014

Protection of Pages

Each process 1s given a page table

— Translation of logical addresses into
physical locations

All addressing goes through page table
— At unavoidable hardware level

 If the OS 1s careful about filling in the page

tables, a process can’t even name other
processes’ pages

\

Lecture 8

Page 24

\

/Page Tables and Physical Pages

Process Page Tables Physical Page Frames
Any address

Process A

names goes
through the
green table

Any address
Process B
names goes
through the
blue table

They can’t
even name
cach other’s
Process B pages

Lecture 8
CS 136, Fall 2014 Page 25

/ Security Issues of Page Frame \

Reuse
* A common set of page frames is shared by
all processes

* The OS switches ownership of page frames
as necessary

 When a process acquires a new page frame,
it used to belong to another process

— Can the new process read the old data?

Lecture 8
CS 136, Fall 2014 Page 26

/ Reusing Pages \

Process Page Tables Physical Page Frames
—_— —> What
NN N happens now
e if Process A
— >
o> @ requests a
— X age?
Process A page:
Z="5. ian Procesds
Process B = = now rea
9
deallocates — Process B’s
a page >< deallocated
z:\ data?
Process B /

Lecture 8
CS 136, Fall 2014 Page 27

4 N

Strategies for Cleaning Pages

* Don’t bother

—Basic Linux strategy
» Zero on deallocation
» Zero on reallocation

e /€ero on use

* Clean pages 1n the background
—Windows strategy /

Lecture 8
CS 136, Fall 2014 Page 28

4 N

Special Interfaces to Memory

* Some systems provide a special interface to
memory

* [If the interface accesses physical memory,

— And doesn’t go through page table
protections,

— Then attackers can read the physical
memory

— Letting them figure out what’s there and
find what they’re looking for)

Lecture 8
CS 136, Fall 2014 Page 29

-

CS 136, Fall 2014

[Buffer Overﬂows}

One of the most common causes for
compromises of operating systems

* Due to a flaw 1n how operating systems

handle process inputs

—Or a flaw 1n programming languages
—Or a flaw 1n programmer training
—Depending on how you look at 1t

\

Lecture 8
Page 30

-

CS 136, Fall 2014

What Is a Buffer Overtlow?

A program requests imnput from a user

It allocates a temporary buffer to hold
the input data

It then reads all the data the user
provides into the buffer, but . . .

It doesn’t check how much data was
provided

\

Lecture 8

Page 31

-

J

For Example,

int main () {

char name[32];

printf (“Please type your name:
gets (name) ;

printf (“Hello, %s”, name);
return (0);

* What if the user enters more than 32 characters?

\\).
’

/

Lecture 8
Page 32

CS 136, Fall 2014

/ Well, What If the User Does?

* Code continues reading data into memory
» The first 32 bytes go into name buffer

— Allocated on the stack

— Close to record of current function
* The remaining bytes go onto the stack

— Right after name buffer

— Overwriting current function record

— Including the instruction pointer

\

Lecture 8

CS 136, Fall 2014

Page 33

-~

CS 136, Fall 2014

Why Is This a Security Problem?

The attacker can cause the function to
“return” to an arbitrary address

 But all attacker can do 1s run different code

than was expected

He hasn’t gotten 1nto anyone else’s
processes

— Or data

* So he can only fiddle around with his own

stuff, right?

\

Lecture 8

Page 34

-

* Well, yes

» That’s why a media player can write
configuration and data files

Is That So Bad?

up very carefully, a typical program
can write all 1ts user’s files

* Unless roles and access permissions set

\

Lecture 8

CS 136, Fall 2014

Page 35

/ The Core Buftfer Overtlow \
Security Issue

* Programs often run on behalf of others
— But using your 1dentity
* Maybe OK for you to access some data

* But s it OK for someone who you’re
running a program for to access 1t?

— Downloaded programs
— Users of web servers
— Many other cases)

Lecture 8
CS 136, Fall 2014 Page 36

/ Using Buffer Overtlows to \
Compromise Security

» Carefully choose what gets written into
the 1nstruction pointer

* So that the program jumps to
something you want to do

—Under the 1dentity of the program
that’s running

* Such as, execute a command shell

 Usually attacker provides this code /

Lecture 8
CS 136, Fall 2014 Page 37

-

Eftects of Buffer Overtlows

A remote or unprivileged local user runs a
program with greater privileges

If buffer overflow 1s 1n a root program, 1t
gets all privileges, essentially

Can also overwrite other stuff
— Such as heap variables

Common mechanism to allow attackers to
break into machines

\

Lecture 8

CS 136, Fall 2014

Page 38

4 N

Stack Overflows

The most common kind of buffer overflow
Intended to alter the contents of the stack
Usually by overflowing a dynamic variable
Usually with intention of jumping to exploit
code

— Though 1t could 1nstead alter parameters
or variables 1n other frames

— Or even variables 1n current frame)

Lecture 8
CS 136, Fall 2014 Page 39

4 N

Heap Overtlows

» Heap 1s used to store dynamically
allocated memory

» Buffers kept there can also overflow

* Generally doesn’t offer direct ability to
jump to arbitrary code

» But potentially quite dangerous

Lecture 8
CS 136, Fall 2014 Page 40

/ What Can You Do With Heap \
Overflows?

e Alter variable values
e “Edit” linked lists or other data structures

* If heap contains list of function pointers,
can execute arbitrary code

* Generally, heap overflows are harder to
exploit than stack overtflows

* But they exist

— E.g., Google Chrome one discovered
February 2012)

Lecture 8
CS 136, Fall 2014 Page 41

4 N

Some Recent Bufter Overtlows

» Watchguard Firewall

* Apple Quicktime

* Pidgin chat client

* Internet Explorer
—A heap overflow

» Adobe Flash Player

* Not as common as they used to be, but
still a real danger

Lecture 8
CS 136, Fall 2014 Page 42

/ Fixing Buffer Overtlows

« Write better code (check input lengths, etc.)
« Use programming languages that prevent them
e Add OS controls that prevent overwriting the stack

 Put things in different places on the stack, making it hard
to find the return pointer (e.g., Microsoft ASLR)

 Don’t allow execution from places in memory where
buffer overflows occur (e.g., Windows DEP)

— Or don’t allow execution of writable pages
 Why aren’t these things commonly done?
— Sometimes they are, but not always effective

 When not, presumably because programmers and
designers neither know nor care about security

\

Lecture 8

CS 136, Fall 2014

Page 43

/ /Protecting Interprocess \ \

 Communications |

* Operating systems provide various kinds of
Interprocess communications

— Messages
— Semaphores
— Shared memory
— Sockets
 How can we be sure they’re used properly?

CS 136, Fall 2014

/

Lecture 8
Page 44

4 N

IPC Protection Issues

 How hard 1t 1s depends on what you’re
worried about

* For the moment, let’s say we’re worried
about one process improperly using IPC to
get info from another

— Process A wants to steal information
from process B

 How would process A do that?

Lecture 8
CS 136, Fall 2014 Page 45

-

CS 136, Fall 2014

Message Security

Process A Cimme your Process B
secret
- <
That’s probably
not going to work

Can process B use message-based
IPC to steal the secret?

\

Lecture 8

Page 46

-

\

How Can B Get the Secret?

He can convince the system he’s A
— A problem for authentication
He can break into A’s memory

— That doesn’t use message IPC

— And 1s handled by page tables

He can forge a message from someone else to get
the secret

— But OS tags IPC messages with 1dentities

He can “eavesdrop” on someone else who gets the
secret Y,

Lecture 8

CS 136, Fall 2014 Page 47

/ Can an Attacker Really \
Eavesdrop on IPC Message?

* On a single machine, what 1s a message send,
really?

* A message 1s copied from a process buffer to an
OS buffer

— Then from the OS buffer to another process’
buffer

— Sometimes optimizations skip some copies

If attacker can’t get at processes’ internal buffers
and can’t get at OS buffers, he can’t “eavesdrop”

* Need to handle page reuse (discussed earlier) /

Lecture 8
CS 136, Fall 2014 Page 48

4 N

Other Forms of IPC

* Semaphores, sockets, shared memory, RPC
* Pretty much all the same

— Use system calls for access

— Which belong to some process

— Which belongs to some principal

— OS can check principal against access control
permissions at syscall time

— Ultimately, data 1s held in some type of
memory

* Which shouldn’t be improperly accessible /

Lecture 8
CS 136, Fall 2014 Page 49

ST R

1. Always possible that there’s a bug in the
operating system
— Allowing masquerading,
cavesdropping, etc.

— Or, 1f the OS 1tself 1s compromised, all
bets are off

2. What 1f 1t’s not a single machine?

3. What 1f the OS has to prevent cooperating
processes from sharing information? /

Lecture 8
CS 136, Fall 2014 Page 50

-

CS 136, Fall 2014

Distributed System Issues
What if your RPC 1s really remote?

Goal of RPC 1s to make remote access
transparent

—Looks “just like” local
The hard part 1s authentication

—The call didn’t come from your own
OS

—How do you authenticate its origin?

\

/

Lecture 8
Page 51

4 N

The Other Hard Case

Process A Process B

IIIII
llllll
IIIII
llllll
lllll
]]]]]]
IIIII
llllll
IIIII
llllll

lllll
]]]]]]
IIIII
llllll
IIIII

IIIIII

lllll
]]]]]]
IIIII
llllll
IIIII
llllll
lllll
]]]]]]
IIIII
llllll
IIIII
llllll
lllll
]]]]]]
IIIII
llllll
IIIII
llllll
lllll

Process A wants to tell the secret to process B
But the OS has been 1nstructed to prevent that

A necessary part of Bell-La Padula, e.g.
Can the OS prevent A and B from colluding

to get the secret to B? Lectne 8

CS 136, Fall 2014 Page 52

-

CS 136, Fall 2014

OS Control of Interactions

OS can “understand” the security policy

» Can maintain labels on files, process, data

pages, eftc.

* Can regard any IPC or I/O as a possible leak

of information
— To be prohibited 1f labels don’t allow 1t

\

Lecture 8

Page 53

-

CS 136, Fall 2014

Covert Channels

Tricky ways to pass information

» Requires cooperation of sender and

recelver

—Generally 1n active attempt to
decelve system

» Use something not ordinarily regarded

as a communications mechanism

\

Lecture 8

Page 54

CS 136, Fall 2014

]]
| |
10
]]
]]
]]
]]
_ RN

]]
]]
]]
]]
]]
]]
]]
ninj

Lecture 8
Page 55

-

CS 136, Fall 2014

Covert Channels in Computers

Generally, one process “sends’ a covert
message to another

— But could be computer to computer
How?

— Disk activity

— Page swapping

— Time slice behavior

— Use of a peripheral device

— Limited only by imagination

\

Lecture 8

Page 56

-

CS 136, Fall 2014

Handling Covert Channels

Relatively easy 1f you know details of
how the channel 1s used

— Put randomness/noise into channel to

wash out message

Hard to impossible 1f you don’t know
what the channel 1s

* Not most people’s problem

\

Lecture 8

Page 57

-

CS 136, Fall 2014

{ Stored Data Protection J

Files are a common example of a typically
shared resource

If an OS supports multiple users, it needs to
address the question of file protection

Simple read/write access control
What else do we need to do?
Protect the raw disk or SSD

\

Lecture 8
Page 58

» Data stored on disk 1s subject to many risks
— Improper access through OS flaws
— But also somehow directly accessing the
disk
 If the OS protections are bypassed, how can
we protect data?

 How about 1f we store 1t 1n encrypted form?

/

Lecture 8
CS 136, Fall 2014 Page 59

/ An Example of an Encrypted File \

System Issues for
encrypted file
systems:
When does the
cryptography occur?
Sqanséds Where does the
Mt key come from?
- What is the
granularity of

cryptography? /

Lecture 8
CS 136, Fall 2014 Page 60

4 N

When Does Cryptography Occur?

» Transparently when a user opens a file?
— In disk drive?
—In OS?
— In file system?
* By explicit user command?
— Or always, implicitly?
 How long is the data decrypted?
* Where does 1t exist in decrypted form?

Lecture 8
CS 136, Fall 2014 Page 61

4 N

Where Does the Key Come From?

* Provided by human user?
» Stored somewhere 1n file system?
* Stored on a smart card?

» Stored 1n the disk hardware?
» Stored on another computer?

* Where and for how long do we store
the key? y

Lecture 8
CS 136, Fall 2014 Page 62

/ What Is the Granularity of \
Cryptography?

* An entire disk?

* An entire file system?

* Per file?

* Per block?

» Consider both 1n terms of:

—How many keys?

—When 1s a crypto operation applied? /

Lecture 8
CS 136, Fall 2014 Page 63

/ What Are You Trying to Protect \
Against With Crypto File Systems?

* Unauthorized access by improper users?

— Why not just access control?
* The operating system itself?

— What protection are you really getting?

— Unless you’re just storing data on the machine
« Data transfers across a network?

— Why not just encrypt while 1n transit?

« Someone who accesses the device not using the
OS?

— A realistic threat in your environment? /

Lecture 8
CS 136, Fall 2014 Page 64

-

CS 136, Fall 2014

Full Disk Encryption

 All data on the disk 1s encrypted
» Data 1s encrypted/decrypted as 1t

enters/leaves disk

* Primary purpose 1s to prevent improper

access to stolen disks

—Designed mostly for portable
machines (laptops, tablets, etc.)

\

/

Lecture 8

Page 65

« HW advantages:
— Faster
— Totally transparent, works for any OS
— Setup probably easier
e HW disadvantages:
— Not ubiquitously available today
— More expensive (not that much, though)

— Might not fit into a particular machine
— Backward compatibility

"HW Vs. SW Full Disk Encryption

CS 136, Fall 2014

Lecture 8
Page 66

/ Example of Hardware Full Disk \

Encryption
* Seagate’s Momentus 7200 FDE.2 line

» Hardware encryption for entire disk
— Using AES

* Key accessed via user password, smart card,
or biometric authentication

— Authentication information stored
internally on disk

— Check performed by disk, pre-boot
» .15 Gbytes/sec sustained transfer rate
* Primarily for laptops /

Lecture 8
CS 136, Fall 2014 Page 67

/ Example of Software Full Disk \

Encryption

Microsoft BitlLocker

Doesn’t encrypt quite the whole drive
— Unencrypted partition holds bootstrap
Uses AES for cryptography

Key stored either in special hardware or
USB drive

Microsoft claims “single digit percentage”
overhead

— One independent study claims 12%

CS 136, Fall 2014

Lecture 8
Page 68

