
Lecture 15
Page 1 CS 136, Fall 2014

Web Security
Computer Security

Peter Reiher
December 9, 2014

Lecture 15
Page 2 CS 136, Fall 2014

Web Security

•  Lots of Internet traffic is related to the
web

•  Much of it is financial in nature
•  Also lots of private information flow

around web applications
•  An obvious target for attackers

Lecture 15
Page 3 CS 136, Fall 2014

The Web Security Problem
•  Many users interact with many servers
•  Most parties have little other relationship
•  Increasingly complex things are moved via the

web
•  No central authority
•  Many developers with little security experience
•  Many critical elements originally designed with no

thought to security
•  Sort of a microcosm of the overall security

problem

Lecture 15
Page 4 CS 136, Fall 2014

Aspects of the Web Problem

Lecture 15
Page 5 CS 136, Fall 2014

Who Are We Protecting?

The server

From
the

client

The client

From the server
The clients

From each other

A client’s interaction
with one server

From his interaction
with another server

Everyone
From the network

Lecture 15
Page 6 CS 136, Fall 2014

What Are We Protecting?

•  The client’s private data
•  The server’s private data
•  The integrity (sometimes also secrecy)

of their transactions
•  The client and server’s machines
•  Possibly server availability

– For particular clients?

Lecture 15
Page 7 CS 136, Fall 2014

Some Real Threats

•  Buffer overflows and other compromises
– Client attacks server

•  Web based social engineering attacks
– Client or server attacks client

•  SQL injection
– Client attacks server

•  Malicious downloaded code
– Server attacks client

Lecture 15
Page 8 CS 136, Fall 2014

More Threats
•  Cross-site scripting

– Clients attack each other
•  Threats based on non-transactional

nature of communication
– Client attacks server

•  Denial of service attacks
– Threats on server availability

(usually)

Lecture 15
Page 9 CS 136, Fall 2014

Yet More Threats
•  Browser security

– Protecting interactions from one site from
those with another

– One server attacks client’s interactions
with another

•  Data transport issues
– The network attacks everyone else

•  Certificates and trust issues
– Varied, but mostly server attacks client

Lecture 15
Page 10 CS 136, Fall 2014

Compromise Threats

•  Much the same as for any other
network application

•  Web server might have buffer overflow
– Or other remotely usable flaw

•  Not different in character from any
other application’s problem
– And similar solutions

Lecture 15
Page 11 CS 136, Fall 2014

What Makes It Worse

•  Web servers are complex
•  They often also run supporting code

– Which is often user-visible
•  Large, complex code base is likely to

contain such flaws
•  Nature of application demands

allowing remote use

Lecture 15
Page 12 CS 136, Fall 2014

Solution Approaches
•  Patching
•  Use good code base
•  Minimize code that the server executes
•  Maybe restrict server access

– When that makes sense
•  Lots of testing and evaluation

– Many tools for web server evaluation

Lecture 15
Page 13 CS 136, Fall 2014

Compromising the Browser

•  Essentially, the browser is an operating system
– You can do almost anything through a browser
–  It shares resources among different “processes”

•  But it does not have most OS security features
•  While having some of the more dangerous OS

functionality
– Like arbitrary extensibility
– And supporting multiple simultaneous mutually

untrusting processes

Lecture 15
Page 14 CS 136, Fall 2014

But My Browser Must Be OK . . .

•  After all, I see the little lock icon at the
bottom of the page

•  Doesn’t that mean I’m safe?
•  Alas, no
•  What does that icon mean, and what is

the security implication?

Lecture 15
Page 15 CS 136, Fall 2014

The Lock Icon

•  This icon is displayed by your browser
when a digital certificate checks out

•  A web site provided a certificate
attesting to its identity

•  The certificate was properly signed by
someone your browser trusts

•  That’s all it means

Lecture 15
Page 16 CS 136, Fall 2014

What Are the Implications?
•  All you know is that the web site is who it

claims to be
– Which might not be who you think it is
– Maybe it’s amozon.com, not
amazon.com

– Would you notice the difference?
•  Only to the extent that a trusted signer

hasn’t been careless or compromised
– Some have been, in the past

Lecture 15
Page 17 CS 136, Fall 2014

Another Browser Security Issue
•  What if you’re accessing your bank

account in one browser tab
•  And a site showing silly videos of cats

in another?
•  What if one of those videos contains an

attack script?
•  Can the evil cat script steal your bank

account number?

Lecture 15
Page 18 CS 136, Fall 2014

Same Origin Policy

•  Meant to foil such attacks
•  Built into all modern browsers

– And also things like Flash
•  Basically, pages from a single origin

can access each other’s stuff
•  Pages from a different origin cannot
•  Particularly relevant to cookies

Lecture 15
Page 19 CS 136, Fall 2014

Web Cookies
•  Essentially, data a web site asks your

browser to store
•  Sent back to that web site when you

ask for another service from it
•  Used to set up sessions and maintain

state (e.g., authentication status)
•  Lots of great information about your

interactions with sites in the cookies

Lecture 15
Page 20 CS 136, Fall 2014

Same Origin Policy and Cookies
•  Script from one domain cannot get the

cookies from another domain
– Prevents the evil cat video from

sending authenticated request to
empty your bank account

•  Domain defined by DNS domain
name, application protocol
– Sometimes also port

Lecture 15
Page 21 CS 136, Fall 2014

SQL Injection Attacks

•  Many web servers have backing
databases
– Much of their information stored in a

database
•  Web pages are built (in part) based on

queries to a database
– Possibly using some client input . . .

Lecture 15
Page 22 CS 136, Fall 2014

SQL Injection Mechanics

•  Server plans to build a SQL query
•  Needs some data from client to build it

– E.g., client’s user name
•  Server asks client for data
•  Client, instead, provides a SQL fragment
•  Server inserts it into planned query

– Leading to a “somewhat different” query

Lecture 15
Page 23 CS 136, Fall 2014

An Example

“select * from mysql.user

where username = ‘ “ . $uid . “ ‘ and
password=password(‘ “. $pwd “ ‘);”

•  Intent is that user fills in his ID and
password

•  What if he fills in something else?
‘or 1=1; -- ‘

Lecture 15
Page 24 CS 136, Fall 2014

What Happens Then?
• $uid has the string substituted, yielding
“select * from mysql.user

where username = ‘ ‘ or 1=1; -- ‘ ‘ and

password=password(‘ “. $pwd “ ‘);”

•  This evaluates to true
– Since 1 does indeed equal 1
– And -- comments out rest of line

•  If script uses truth of statement to determine
valid login, attacker has logged in

Lecture 15
Page 25 CS 136, Fall 2014

Basis of SQL Injection Problem
•  Unvalidated input
•  Server expected plain data
•  Got back SQL commands
•  Didn’t recognize the difference and went

ahead
•  Resulting in arbitrary SQL query being sent

to its database
– With its privileges

•  Unvalidated input

Lecture 15
Page 26 CS 136, Fall 2014

Some Example Attacks
•  130 million credit card numbers stolen in

2009 with SQL injection attack
•  Used to steal 1 million Sony passwords
•  Yahoo lost 450,000 passwords to a SQL

injection in 2012
•  Successful SQL injections on Bit9, British

Royal Navy, PBS
•  Ruby on Rails and Drupal content

management system had ones recently

Lecture 15
Page 27 CS 136, Fall 2014

Solution Approaches

•  Carefully examine all input
•  Use database access controls
•  Avoid using SQL in web interfaces
•  Parameterized variables

Lecture 15
Page 28 CS 136, Fall 2014

Examining Input for SQL
•  SQL is a well defined language
•  Generally web input shouldn’t be SQL
•  So look for it and filter it out
•  Problem: proliferation of different

input codings makes the problem hard
•  Problem: some SQL control characters

are widely used in real data
– E.g., apostrophe in names

Lecture 15
Page 29 CS 136, Fall 2014

Using Database Access Controls
•  SQL is used to access a database
•  Most databases have decent access

control mechanisms
•  Proper use of them limits damage of

SQL injections
•  Problem: may be hard to set access

controls to prohibit all dangerous
queries

Lecture 15
Page 30 CS 136, Fall 2014

Avoid SQL in Web Interfaces
•  Never build a SQL query based on user

input to web interface
•  Instead, use predefined queries that

users can’t influence
•  Typically wrapped by query-specific

application code
•  Problem: may complicate

development

Lecture 15
Page 31 CS 136, Fall 2014

Use Parameterized Variables

•  SQL allows you to set up code so
variables are bound parameters

•  Parameters of this kind aren’t
interpreted as SQL

•  Pretty much solves the problem, and is
probably the best solution

Lecture 15
Page 32 CS 136, Fall 2014

Malicious Downloaded Code
•  The web relies heavily on downloaded code

– Full language and scripting language
– Mostly scripts

•  Instructions downloaded from server to
client
– Run by client on his machine
– Using his privileges

•  Without defense, script could do anything

Lecture 15
Page 33 CS 136, Fall 2014

Types of Downloaded Code

•  Java
– Full programming language

•  Scripting languages
– JavaScript
– VB Script
– ECMAScript
– XSLT

Lecture 15
Page 34 CS 136, Fall 2014

Drive-By Downloads
•  Often, user must request that

something be downloaded
•  But not always

– Sometimes visiting a page or moving
a cursor causes downloads

•  These are called drive-by downloads
– Since the user is screwed just by

visiting the page

Lecture 15
Page 35 CS 136, Fall 2014

Solution Approaches
•  Disable scripts in your browser
•  Use secure scripting languages
•  Isolation mechanisms
•  Virus protection and blacklist

approaches
•  Parameterized variables

Lecture 15
Page 36 CS 136, Fall 2014

Disabling Scripts

•  Browsers (or plug-ins) can disable
scripts
– Selectively, based on web site

•  The bad script is thus not executed
•  Problem: Cripples much good web

functionality
– So users re-enable scripting

Lecture 15
Page 37 CS 136, Fall 2014

Use Secure Scripting Languages
•  Some scripting languages are less

prone to problems than others
•  Write your script in those
•  Problem: secure ones aren’t popular
•  Problem: many bad things can still be

done with “secure” languages
•  Problem: can’t force others to write

their scripts in these languages

Lecture 15
Page 38 CS 136, Fall 2014

Isolation Mechanisms

•  Architecturally arrange for all
downloaded scripts to run in clean VM
– Limiting the harm they can do

•  Problem: they might be able to escape
the VM

•  Problem: what if a legitimate script
needs to do something outside its VM?

Lecture 15
Page 39 CS 136, Fall 2014

Signatures and Blacklists

•  Identify known bad scripts
•  Develop signatures for them
•  Put them on a blacklist and distribute it

to others
•  Before running downloaded script,

automatically check blacklist
•  Problem: same as for virus protection

Lecture 15
Page 40 CS 136, Fall 2014

Cross-Site Scripting
•  XSS
•  Many sites allow users to upload information

– Blogs, photo sharing, Facebook, etc.
– Which gets permanently stored
– And displayed

•  Attack based on uploading a script
•  Other users inadvertently download it

– And run it . . .

Lecture 15
Page 41 CS 136, Fall 2014

The Effect of XSS

•  Arbitrary malicious script executes on
user’s machine

•  In context of his web browser
– At best, runs with privileges of the

site storing the script
– Often likely to run at full user

privileges

Lecture 15
Page 42 CS 136, Fall 2014

Non-Persistent XSS

•  Embed a small script in a link pointing
to a legitimate web page

•  Following the link causes part of it to
be echoed back to the user’s browser

•  Where it gets executed as a script
•  Never permanently stored at the server

Lecture 15
Page 43 CS 136, Fall 2014

Persistent XSS

•  Upload of data to a web site that stores
it permanently

•  Generally in a database somewhere
•  When other users request the

associated web page,
•  They get the bad script

Lecture 15
Page 44 CS 136, Fall 2014

Some Examples
•  Wordpress had a XSS bug in 2014
•  Multiple ones on Weather Channel web site

in 2014
•  Other XSS vulnerabilities discovered on

sites run by eBay, Symantec, PayPal,
Facebook, Amazon, Adobe, Microsoft,
Google Gmail, LinkedIn, the Scientology
website, thousands of others

•  D-Link router flaw exploitable through XSS

Lecture 15
Page 45 CS 136, Fall 2014

Why Is XSS Common?
•  Use of scripting languages widespread

– For legitimate purposes
•  Most users leave them enabled in their

browsers
•  Sites allowing user upload are very

popular
•  Only a question of getting user to run

your script

Lecture 15
Page 46 CS 136, Fall 2014

Typical Effects of XSS Attack

•  Most commonly used to steal personal
information
– That is available to legit web site
– User IDs, passwords, credit card

numbers, etc.
•  Such information often stored in

cookies at client side

Lecture 15
Page 47 CS 136, Fall 2014

Solution Approaches

•  Don’t allow uploading of anything
•  Don’t allow uploading of scripts
•  Provide some form of protection in

browser

Lecture 15
Page 48 CS 136, Fall 2014

Disallowing Data Uploading

•  Does your web site really need to allow
users to upload stuff?

•  Even if it does, must you show it to
other users?

•  If not, just don’t take any user input
•  Problem: Not possible for many

important web sites

Lecture 15
Page 49 CS 136, Fall 2014

Don’t Allow Script Uploading
•  A no-brainer for most sites

– Few web sites want users to upload
scripts, after all

•  So validate user input to detect and
remove scripts

•  Problem: Rich forms of data encoding
make it hard to detect all scripts

•  Good tools can make it easier

Lecture 15
Page 50 CS 136, Fall 2014

Protect the User’s Web Browser
•  Similar solutions as for any form of

protecting from malicious scripts
•  With the same problems:

– Best solutions cripple functionality
•  Firefox Content Security Policy

– Allows web sites to specify where
content can be loaded from

Lecture 15
Page 51 CS 136, Fall 2014

Cross-Site Request Forgery

•  CSRF
•  Works the other way around
•  An authenticated and trusted user

attacks a web server
– Usually someone posing as that user

•  Generally to fool server that the trusted
user made a request

Lecture 15
Page 52 CS 136, Fall 2014

CSRF in Action
•  Attacker puts link to (say) a bank on

his web page
•  Unsuspecting user clicks on the link
•  His authentication cookie goes with the

HTTP request
– Since it’s for the proper domain

•  Bank authenticates him and transfers
his funds to the attacker

Lecture 15
Page 53 CS 136, Fall 2014

Issues for CSRF Attacks
•  Not always possible or easy
•  Attacks sites that don’t check referrer header

– Indicating that request came from another
web page

•  Attacked site must allow use of web page to
allow something useful (e.g., bank withdrawal)

•  Must not require secrets from user
•  Victim must click link on attacker’s web site
•  And attacker doesn’t see responses

Lecture 15
Page 54 CS 136, Fall 2014

Exploiting Statelessness

•  HTTP is designed to be stateless
•  But many useful web interactions are

stateful
•  Various tricks used to achieve statefulness

– Usually requiring programmers to
provide the state

– Often trying to minimize work for the
server

Lecture 15
Page 55 CS 136, Fall 2014

A Simple Example

•  Web sites are set up as graphs of links
•  You start at some predefined point

– A top level page, e.g.
•  And you traverse links to get to other pages
•  But HTTP doesn’t “keep track” of where

you’ve been
– Each request is simply the name of a link

Lecture 15
Page 56 CS 136, Fall 2014

Why Is That a Problem?

•  What if there are unlinked pages on the
server?

•  Should a user be able to reach those
merely by naming them?

•  Is that what the site designers
intended?

Lecture 15
Page 57 CS 136, Fall 2014

A Concrete Example

•  The ApplyYourself system
•  Used by colleges to handle student

applications
•  For example, by Harvard Business

School in 2005
•  Once all admissions decisions made,

results available to students

Lecture 15
Page 58 CS 136, Fall 2014

What Went Wrong?
•  Pages representing results were created as

decisions were made
•  Stored on the web server

– But not linked to anything, since results
not yet released

•  Some appliers figured out how to craft
URLs to access their pages
– Finding out early if they were admitted

Lecture 15
Page 59 CS 136, Fall 2014

The Core Problem

•  No protocol memory of what came before
•  So no protocol way to determine that

response matches request
•  Could be built into the application that

handles requests
•  But frequently isn’t

– Or is wrong

Lecture 15
Page 60 CS 136, Fall 2014

Solution Approaches
•  Get better programmers

– Or better programming tools
•  Back end system that maintains and compares

state
•  Front end program that observes requests and

responses
– Producing state as a result

•  Cookie-based
– Store state in cookies (preferably encrypted)

Lecture 15
Page 61 CS 136, Fall 2014

Data Transport Issues

•  The web is inherently a network
application

•  Thus, all issues of network security are
relevant

•  And all typical network security
solutions are applicable

•  Where do we see problems?

Lecture 15
Page 62 CS 136, Fall 2014

(Non-) Use of Data Encryption

•  Much web traffic is not encrypted
– Or signed

•  As a result, it can be sniffed
•  Allowing eavesdropping, MITM

attacks, alteration of data in transit, etc.
•  Why isn’t it encrypted?

Lecture 15
Page 63 CS 136, Fall 2014

Why Web Sites Don’t Use
Encryption

•  Primarily for cost reasons
•  Crypto costs cycles
•  For high-volume sites, not encrypting

messages lets them buy fewer servers
•  They are making a cost/benefit analysis

decision
•  And maybe it’s right?

Lecture 15
Page 64 CS 136, Fall 2014

Problems With Not Using
Encryption

•  Sensitive data can pass in the clear
– Passwords, credit card numbers, SSNs,

etc.
•  Attackers can get information from

messages to allow injection attacks
•  Attackers can readily profile traffic

– Especially on non-secured wireless
networks

Lecture 15
Page 65 CS 136, Fall 2014

Firesheep
•  Many wireless networks aren’t encrypted
•  Many web services don’t use end-to-end

encryption for entire sessions
•  Firesheep was a demo of the dangers of those in

combination
•  Simple Firefox plug-in to scan unprotected

wireless nets for unencrypted cookies
– Allowing session hijacking attacks

•  When run in that environment, tended to be highly
successful

Lecture 15
Page 66 CS 136, Fall 2014

Why Does Session Hijacking
Work?

•  Web sites try to avoid computation costs of
encryption

•  So they only encrypt login
•  Subsequent HTTP messages

“authenticated” with a cookie
•  Anyone who has the cookie can authenticate
•  The cookie is sent in the clear . . .
•  So attacker can “become” legit user

Lecture 15
Page 67 CS 136, Fall 2014

Sometimes This Isn’t Enough
•  Especially powerful “attackers” can subvert

this process
– Man-in-the-middle attacks by ISPs
– NSA compromised key management
– NSA also spied on supposedly private

links
•  Usually impossible for typical criminal
•  Hard or impossible for a user to know if this

is going on

Lecture 15
Page 68 CS 136, Fall 2014

Using Encryption on the Web
•  Some web sites support use of HTTPS

– Which permits encryption of data
– Based on TLS/SSL

•  Performs authentication and two-way
encryption of traffic
– Authentication is certificate-based

•  HSTS (HTTP Strict Transport Security)
requires browsers to use HTTPS

Lecture 15
Page 69 CS 136, Fall 2014

Increased Use of Web Encryption
•  These and other problems have led

more major web sites to encrypt traffic
•  E.g., Google announced in 2014 it

would encrypt all search requests
•  Facebook and Twitter adopted HSTS

in 2014
•  Arguably, all web interactions should

be encrypted

Lecture 15
Page 70 CS 136, Fall 2014

Conclusion

•  Web security problems not inherently
different than general software security

•  But generality, power, ubiquity of the
web make them especially important

•  Like many other security problems,
constrained by legacy issues

