
Lecture 14
Page 1 CS 136, Fall 2014

Secure Programming, Continued
Computer Security

Peter Reiher
December 4, 2014

Lecture 14
Page 2 CS 136, Fall 2014

Outline

•  Introduction
•  Principles for secure software
•  Major problem areas

Lecture 14
Page 3 CS 136, Fall 2014

Example Problem Areas
•  Buffer overflows
•  Error handling
•  Access control issues
•  Race conditions
•  Use of randomness
•  Proper use of cryptography
•  Trust
•  Input verification
•  Variable synchronization
•  Variable initialization

Lecture 14
Page 4 CS 136, Fall 2014

Error Handling

•  Error handling code often gives
attackers great possibilities

•  It’s rarely executed and often untested
•  So it might have undetected errors
•  Attackers often try to compromise

systems by forcing errors

Lecture 14
Page 5 CS 136, Fall 2014

A Typical Error Handling
Problem

•  Not cleaning everything up
•  On error conditions, some variables don’t

get reset
•  If error not totally fatal, program continues

with old values
•  Could cause security mistakes

– E.g., not releasing privileges when you
should

Lecture 14
Page 6 CS 136, Fall 2014

Some Examples

•  Remote denial of service attack on
Apache HTTP server due to bad error
handling (2010)

•  Internet Explorer arbitrary code
execution flaw (2007)
– Use-after-free bug in script error

handling code

Lecture 14
Page 7 CS 136, Fall 2014

Checking Return Codes
•  A generalization of error handling
•  Always check return codes
•  A security program manager for Microsoft

said this is his biggest problem
•  Very dangerous to bull ahead if it turns out

your call didn’t work properly
•  Example: Nagios XI didn’t check the return

value of setuid() call, allowing
privilege escalation

Lecture 14
Page 8 CS 136, Fall 2014

Access Control Issues
•  Programs usually run under their user’s

identity with his privileges
•  Some programs get expanded

privileges
– Setuid programs in Unix, e.g.

•  Poor programming here can give too
much access

Lecture 14
Page 9 CS 136, Fall 2014

An Example Problem

•  A program that runs setuid and allows
a shell to be forked
– Giving the caller a root environment

in which to run arbitrary commands
•  Buffer overflows in privileged

programs usually give privileged
access

Lecture 14
Page 10 CS 136, Fall 2014

A Real World Example
• /sbin/dump from NetBSD
•  Ran setgid as group tty

– To notify sysadmins of important events
– Never dropped this privilege

•  Result: dump would start program of
user’s choice as user tty
– Allowing them to interact with other

user’s terminals

Lecture 14
Page 11 CS 136, Fall 2014

What To Do About This?
•  Avoid running programs setuid

– Or in other OSs’ high privilege modes
•  If you must, don’t make them root-owned

– Remember, least privilege
•  Change back to the real caller as soon as

you can
– Limiting exposure

•  Use virtualization to compartmentalize

Lecture 14
Page 12 CS 136, Fall 2014

Virtualization Approaches
•  Run stuff in a virtual machine

– Only giving access to safe stuff
•  Hard to specify what’s safe
•  Hard to allow safe interactions between

different VMs
•  VM might not have perfect isolation

Lecture 14
Page 13 CS 136, Fall 2014

Race Conditions
•  A common cause of security bugs
•  Usually involve multiprogramming or

multithreaded programs
•  Caused by different threads of control

operating in unpredictable fashion
– When programmer thought they’d

work in a particular order

Lecture 14
Page 14 CS 136, Fall 2014

What Is a Race Condition?
•  A situation in which two (or more)

threads of control are cooperating or
sharing something

•  If their events happen in one order, one
thing happens

•  If their events happen in another order,
something else happens

•  Often the results are unforeseen

Lecture 14
Page 15 CS 136, Fall 2014

Security Implications of Race
Conditions

•  Usually you checked privileges at one
point

•  You thought the next lines of code
would run next
– So privileges still apply

•  But multiprogramming allows things to
happen in between

Lecture 14
Page 16 CS 136, Fall 2014

The TOCTOU Issue

•  Time of Check to Time of Use
•  Have security conditions changed

between when you checked?
•  And when you used it?
•  Multiprogramming issues can make

that happen
•  Sometimes under attacker control

Lecture 14
Page 17 CS 136, Fall 2014

A Short Detour
•  In Unix, processes can have two associated user

IDs
– Effective ID
– Real ID

•  Real ID is the ID of the user who actually ran it
•  Effective ID is current ID for access control

purposes
•  Setuid programs run this way
•  System calls allow you to manipulate it

Lecture 14
Page 18 CS 136, Fall 2014

Effective UID and Access
Permissions

•  Unix checks accesses against effective
UID, not real UID

•  So setuid program uses permissions for
the program’s owner
– Unless relinquished

•  Remember, root has universal access
privileges

Lecture 14
Page 19 CS 136, Fall 2014

An Example

•  Code from Unix involving a temporary
file

•  Runs setuid root
res = access(“/tmp/userfile”, R_OK);

If (res != 0)
 die(“access”);

fd = open(“/tmp/userfile”,O_RDONLY);

Lecture 14
Page 20 CS 136, Fall 2014

What’s (Supposed to Be) Going
on Here?

•  Checked access on /tmp/userfile to make
sure user was allowed to read it
– User can use links to control what this file is

•  access() checks real user ID, not effective one
– So checks access permissions not as root, but as

actual user
•  So if user can read it, open file for read

– Which root is definitely allowed to do
•  Otherwise exit

Lecture 14
Page 21 CS 136, Fall 2014

What’s Really Going On Here?

•  This program might not run
uninterrupted

•  OS might schedule something else in
the middle

•  In particular, between those two lines
of code

Lecture 14
Page 22 CS 136, Fall 2014

How the Attack Works

•  Attacker puts innocuous file in
 /tmp/userfile

•  Calls the program
•  Quickly deletes file and replaces it

with link to sensitive file
– One only readable by root

•  If timing works, he gets secret contents

Lecture 14
Page 23 CS 136, Fall 2014

The Dynamics of the Attack

 /tmp/userfile

 res = access(“/tmp/userfile”, R_OK);
 if (res != 0)
 die(“access”);
 fd = open(“/tmp/userfile”,O_RDONLY);

/etc/secretfile

1.  Run program

2. Change file

Let’s try
that again!
One more
time!

Success!

Lecture 14
Page 24 CS 136, Fall 2014

How Likely Was That?
•  Not very

– The timing had to be just right
•  But the attacker can try it many times

– And may be able to influence system to make it
more likely

•  And he only needs to get it right once
•  Timing attacks of this kind can work

– Google Chrome had one in 2011
•  The longer between check and use, the more

dangerous

Lecture 14
Page 25 CS 136, Fall 2014

Some Types of Race Conditions
•  File races

– Which file you access gets changed
•  Permissions races

– File permissions are changed
•  Ownership races

– Who owns a file changes
•  Directory races

– Directory hierarchy structure changes

Lecture 14
Page 26 CS 136, Fall 2014

Preventing Race Conditions
•  Minimize time between security

checks and when action is taken
•  Be especially careful with files that

users can change
•  Use locking and features that prevent

interruption, when possible
•  Avoid designs that require actions

where races can occur

Lecture 14
Page 27 CS 136, Fall 2014

Randomness and Determinism

•  Many pieces of code require some
randomness in behavior

•  Where do they get it?
•  As earlier key generation discussion

showed, it’s not that easy to get

Lecture 14
Page 28 CS 136, Fall 2014

Pseudorandom Number
Generators

•  PRNG
•  Mathematical methods designed to

produce strings of random-like
numbers

•  Actually deterministic
– But share many properties with true

random streams of numbers

Lecture 14
Page 29 CS 136, Fall 2014

Attacks on PRNGs

•  Cryptographic attacks
– Observe stream of numbers and try

to deduce the function
•  State attacks

– Attackers gain knowledge of or
influence the internal state of the
PRNG

Lecture 14
Page 30 CS 136, Fall 2014

An Example

•  ASF Software’s Texas Hold’Em Poker
•  Flaw in PRNG allowed cheater to

determine everyone’s cards
– Flaw in card shuffling algorithm
– Seeded with a clock value that can

be easily obtained

Lecture 14
Page 31 CS 136, Fall 2014

Another Example

•  Flaw in Android random number
generator in 2013

•  Left Bitcoin wallets in that platform
vulnerable to theft
– By making it much easier to deduce

a secret key that used the RNG

Lecture 14
Page 32 CS 136, Fall 2014

How to Do Better?

•  Use hardware randomness, where
available

•  Use high quality PRNGs
– Preferably based on entropy

collection methods
•  Don’t use seed values obtainable

outside the program

Lecture 14
Page 33 CS 136, Fall 2014

Proper Use of Cryptography

•  Never write your own crypto functions if you have
any choice
– Another favorite piece of advice from industry

•  Never, ever, design your own encryption
algorithm
– Unless that’s your area of expertise

•  Generally, rely on tried and true stuff
– Both algorithms and implementations

Lecture 14
Page 34 CS 136, Fall 2014

Proper Use of Crypto

•  Even with good crypto algorithms (and
code), problems are possible

•  Proper use of crypto is quite subtle
•  Bugs possible in:

– Choice of keys
– Key management
– Application of cryptographic ops

Lecture 14
Page 35 CS 136, Fall 2014

An Example

•  An application where RSA was used to
distribute a triple-DES key

•  Seemed to work fine
•  Someone noticed that part of the RSA

key exchange was always the same
– That’s odd . . .

Lecture 14
Page 36 CS 136, Fall 2014

What Was Happening?
•  Bad parameters were handed to the RSA

encryption code
•  It failed and returned an error
•  Which wasn’t checked for

– Since it “couldn’t fail”
•  As a result, RSA encryption wasn’t applied

at all
•  The session key was sent in plaintext . . .

Lecture 14
Page 37 CS 136, Fall 2014

Trust Management

•  Don’t trust anything you don’t need to
•  Don’t trust other programs
•  Don’t trust other components of your

program
•  Don’t trust users
•  Don’t trust the data users provide you

Lecture 14
Page 38 CS 136, Fall 2014

Trust
•  Some trust required to get most jobs done
•  But determine how much you must trust the

other
– Don’t trust things you can independently

verify
•  Limit the scope of your trust

– Compartmentalization helps
•  Be careful who you trust

Lecture 14
Page 39 CS 136, Fall 2014

Two Important Lessons

1.  Many security problems arise
because of unverified assumptions

–  You think someone is going to do
something he actually isn’t

2.  Trusting someone doesn’t just mean
trusting their honesty

–  It means trusting their caution, too

Lecture 14
Page 40 CS 136, Fall 2014

 Input Verification
•  Never assume users followed any rules

in providing you input
•  They can provide you with anything
•  Unless you check it, assume they’ve

given you garbage
– Or worse

•  Just because the last input was good
doesn’t mean the next one will be

Lecture 14
Page 41 CS 136, Fall 2014

Treat Input as Hostile

•  If it comes from outside your control
and reasonable area of trust

•  Probably even if it doesn’t
•  There may be code paths you haven’t

considered
•  New code paths might be added
•  Input might come from new sources

Lecture 14
Page 42 CS 136, Fall 2014

For Example
•  Shopping cart exploits
•  Web shopping carts sometimes

handled as a cookie delivered to the
user

•  Some of these weren’t encrypted
•  So users could alter them
•  The shopping cart cookie included the

price of the goods . . .

Lecture 14
Page 43 CS 136, Fall 2014

What Was the Problem?

•  The system trusted the shopping cart cookie when
it was returned
– When there was no reason to trust it

•  Either encrypt the cookie
– Making the input more trusted
– Can you see any problem with this approach?

•  Or scan the input before taking action on it
– To find refrigerators being sold for 3 cents

Lecture 14
Page 44 CS 136, Fall 2014

Variable Synchronization

•  Often, two or more program variables
have related values

•  Common example is a pointer to a
buffer and a length variable

•  Are the two variables always
synchronized?

•  If not, bad input can cause trouble

Lecture 14
Page 45 CS 136, Fall 2014

An Example

•  From Apache web server
• cdata is a pointer to a buffer
• len is an integer containing the

length of that buffer
•  Programmer wanted to get rid of

leading and trailing white spaces

Lecture 14
Page 46 CS 136, Fall 2014

The Problematic Code
while (apr_isspace(*cdata))

 ++cdata;
while (len-- >0 &&

 apr_isspace(cdata[len]))
 continue;

cdata[len+1] = ‘/0’;

•  len is not decremented when leading white spaces are
removed
•  So trailing white space removal can overwrite end of buffer
with nulls
•  May or may not be serious security problem, depending on
what’s stored in overwritten area

Lecture 14
Page 47 CS 136, Fall 2014

Variable Synchronization and
Heartbleed

•  Heartbleed was essentially a variable
synchronization bug

•  One variable was an array of characters
•  A second variable was supposedly the

length of the array
•  Bug depended on not verifying that the

provided length matched the array size

Lecture 14
Page 48 CS 136, Fall 2014

Variable Initialization

•  Some languages let you declare
variables without specifying their
initial values

•  And let you use them without
initializing them
– E.g., C and C++

•  Why is that a problem?

Lecture 14
Page 49 CS 136, Fall 2014

A Little Example
main()

{

foo();

bar();

}

foo()

{

 int a;

 int b;

 int c;

 a = 11;

 b = 12;

 c = 13;

}

bar()

{

 int aa;

 int bb;

 int cc;

 printf("aa = %d\n",aa);

 printf("bb = %d\n",bb);

 printf("cc = %d\n",cc);

}

Lecture 14
Page 50 CS 136, Fall 2014

What’s the Output?

lever.cs.ucla.edu[9]./a.out
aa = 11

bb = 12

cc = 13

•  Perhaps not exactly what you might want

Lecture 14
Page 51 CS 136, Fall 2014

Why Is This Dangerous?

•  Values from one function “leak” into
another function

•  If attacker can influence the values in
the first function,

•  Maybe he can alter the behavior of the
second one

Lecture 14
Page 52 CS 136, Fall 2014

Variable Cleanup
•  Often, programs reuse a buffer or other memory

area
•  If old data lives in this area, might not be properly

cleaned up
•  And then can be treated as something other than

what it really was
•  E.g., bug in Microsoft TCP/IP stack

– Old packet data treated as a function pointer
•  Part of the Heartbleed problem, too

– Buffer not currently in use (but addressable)
contained old keys and passwords

Lecture 14
Page 53 CS 136, Fall 2014

Some Other Problem Areas

•  Handling of data structures
–  Indexing errors in DAEMON Tools, Oracle JRE

•  Arithmetic issues
–  Integer overflow in Microsoft Office graphics library
–  Signedness error in XnView

•  Errors in flow control
–  Samba error that causes loop to use wrong structure

•  Off-by-one errors
–  Denial of service flaw in Clam AV

Lecture 14
Page 54 CS 136, Fall 2014

Yet More Problem Areas
•  Memory management errors

– Use-after-free error in Internet Explorer
•  Null pointer dereferencing

– Xarrow SCADA system denial of service
•  Side effects
•  Punctuation errors
•  There are many others

Lecture 14
Page 55 CS 136, Fall 2014

Why Should You Care?

•  A lot of this stuff is kind of exotic
•  Might seem unlikely it can be

exploited
•  Sounds like it would be hard to exploit

without source code access
•  Many examples of these bugs probably

unexploitable

Lecture 14
Page 56 CS 136, Fall 2014

So . . .?
•  Well, that’s what everyone thinks before

they get screwed
•  “Nobody will find this bug”
•  “It’s too hard to figure out how to exploit

this bug”
•  “It will get taken care of by someone else”

– Code auditors
– Testers
– Firewalls

Lecture 14
Page 57 CS 136, Fall 2014

That’s What They Always Say

•  Before their system gets screwed
•  Attackers can be very clever

– Maybe more clever than you
•  Attackers can work very hard

– Maybe harder than you would
•  Attackers may not have the goals you

predict

Lecture 14
Page 58 CS 136, Fall 2014

But How to Balance Things?
•  You only have a certain amount of

time to design and build code
•  Won’t secure coding cut into that time?
•  Maybe
•  But less if you develop code coding

practices
•  If you avoid problematic things, you’ll

tend to code more securely

Lecture 14
Page 59 CS 136, Fall 2014

Some Good Coding Practices

•  Validate input
•  Be careful with failure conditions and

return codes
•  Avoid dangerous constructs

– Like C input functions that don’t
specify amount of data

•  Keep it simple

