
Lecture 13
Page 1 CS 136, Fall 2014

Secure Programming
Computer Security

Peter Reiher
December 2, 2014

Lecture 13
Page 2 CS 136, Fall 2014

Outline

•  Introduction
•  Principles for secure software
•  Choosing technologies
•  Major problem areas
•  Evaluating program security

Lecture 13
Page 3 CS 136, Fall 2014

Introduction

•  How do you write secure software?
•  Basically, define security goals
•  And use techniques that are likely to

achieve them
•  Ideally, part of the whole process of

software development
– Not just some tricks programmers use

Lecture 13
Page 4 CS 136, Fall 2014

Designing for Security

•  Often developers design for functionality
– “We’ll add security later”

•  Security retrofits have a terrible reputation
– Insecure designs offer too many attack

opportunities
•  Designing security from the beginning

works better

Lecture 13
Page 5 CS 136, Fall 2014

For Example,

•  Windows 95 and its descendants
•  Not designed with security in mind
•  Security professionals assume any

networked Windows 95 machine can
be hacked
– Despite later security retrofits

Lecture 13
Page 6 CS 136, Fall 2014

Defining Security Goals

•  Think about which security properties are relevant
to your software
– Does it need limited access?
– Privacy issues?
–  Is availability important?

•  And the way it interacts with your environment
– Even if it doesn’t care about security, what

about the system it runs on?

Lecture 13
Page 7 CS 136, Fall 2014

Security and Other Goals

•  Security is never the only goal of a
piece of software

•  Usually not the primary goal
•  Generally, secure software that doesn’t

meet its other goals is a failure
•  Consider the degree of security

required as an issue of risk

Lecture 13
Page 8 CS 136, Fall 2014

Managing Software Security Risk
•  How much risk can this software tolerate?
•  What compromises can you make to

minimize that risk?
– Often other goals conflict with security
– E.g., should my program be more usable

or require strong authentication?
•  Considering tradeoffs in terms of risks can

clarify what you need to do

Lecture 13
Page 9 CS 136, Fall 2014

Risk Management and Software
Development

•  Should consider security risk as part of your
software development model

•  E.g., in spiral model, add security risk
analysis phase to the area of spiral where
you evaluate alternatives

•  Considering security and risks early can
avoid pitfalls later

•  Returning to risk when refining is necessary

Lecture 13
Page 10 CS 136, Fall 2014

Incorporating Security Into Spiral
Model of SW Development

Include
security in

the risks you
consider

At all passes
through the

spiral

Lecture 13
Page 11 CS 136, Fall 2014

But How Do I Determine Risk?
•  When you’re just thinking about a big new

program, how can you know about its risks?
•  Well, do the best you can

– Apply your knowledge and experience
– Really think about the issues and problems
– Use a few principles and tools we’ll discuss

•  That puts you ahead of 95% of all developers
•  You can’t possibly get it all right, but any

attention to risk is better than none

Lecture 13
Page 12 CS 136, Fall 2014

Design and Security Experts

•  Someone on a software development team
should understand security
– The more they understand it, the better
– Ideally, someone on team should have

explicit security responsibility
•  Experts should be involved in all phases

– Starting from design

Lecture 13
Page 13 CS 136, Fall 2014

Principles for Secure Software

•  Following these doesn’t guarantee
security

•  But they touch on the most commonly
seen security problems

•  Thinking about them is likely to lead to
more secure code

Lecture 13
Page 14 CS 136, Fall 2014

1. Secure the Weakest Link

•  Don’t consider only a single possible
attack

•  Look at all possible attacks you can
think of

•  Concentrate most attention on most
vulnerable elements

Lecture 13
Page 15 CS 136, Fall 2014

For Example,
•  Those attacking your web site are not likely

to break transmission cryptography
– Switching from DES to AES probably

doesn’t address your weakest link
•  Attackers are more likely to use a buffer

overflow to break in
– And read data before it’s encrypted
– Prioritize preventing that

Lecture 13
Page 16 CS 136, Fall 2014

2. Practice Defense in Depth

•  Try to avoid designing software so failure
anywhere compromises everything

•  Also try to protect data and applications
from failures elsewhere in the system

•  Don’t let one security breach give away
everything

Lecture 13
Page 17 CS 136, Fall 2014

For Example,
•  You write a routine that validates all input

properly
•  All other routines that are supposed to get input

should use that routine
•  Worthwhile to have those routines also do some

validation
– What if there’s a bug in your general routine?
– What if someone changes your code so it

doesn’t use that routine for input?

Lecture 13
Page 18 CS 136, Fall 2014

3. Fail Securely

•  Security problems frequently arise
when programs fail

•  Often fail into modes that aren’t secure
•  So attackers cause them to fail

– To see if that helps them
•  So make sure that when ordinary

measures fail, the backup is secure

Lecture 13
Page 19 CS 136, Fall 2014

For Example,

•  A major security flaw in typical Java RMI
implementations

•  If server wants to use security protocol
client doesn’t have, what happens?
– Client downloads it from the server
– Which it doesn’t trust yet . . .

•  Malicious entity can force installation of
compromised protocol

Lecture 13
Page 20 CS 136, Fall 2014

4. Use Principle of Least
Privilege

•  Give minimum access necessary
•  For the minimum amount of time required
•  Always possible that the privileges you give

will be abused
– Either directly or through finding a

security flaw
•  The less you give, the lower the risk

Lecture 13
Page 21 CS 136, Fall 2014

For Example,
•  Say your web server interacts with a backend

database
•  It only needs to get certain information from the

database
– And uses access control to determine which

remote users can get it
•  Set access permissions for database so server can

only get that data
•  If web server hacked, only part of database is at

risk

Lecture 13
Page 22 CS 136, Fall 2014

5. Compartmentalize

•  Divide programs into pieces
•  Ensure that compromise of one piece

does not automatically compromise
others

•  Set up limited interfaces between
pieces
– Allowing only necessary interactions

Lecture 13
Page 23 CS 136, Fall 2014

For Example,
•  Web browsers have a compartmentalization

problem
– Multiple windows are typically open
– Each may have bits of code run by different

parties
– How to keep your bank account and your LoL

cats separated?
•  Modern browsers have some useful features
•  Research systems like Asbestos allow finer

granularity compartmentalization

Lecture 13
Page 24 CS 136, Fall 2014

6. Value Simplicity

•  Complexity is the enemy of security
•  Complex systems give more

opportunities to screw up
•  Also, harder to understand all “proper”

behaviors of complex systems
•  So favor simple designs over complex

ones

Lecture 13
Page 25 CS 136, Fall 2014

For Example,
•  Re-use components when you think they’re secure
•  Use one implementation of encryption, not several

–  Especially if you use “tried and true” implementation
•  Build code that only does what you need

–  Implementation of exactly what you need are safer than
“Swiss army knife” approaches

•  Choose simple algorithms over complex algorithms
–  Unless complex one offers necessary advantages
–  “It’s somewhat faster” usually isn’t a necessary

advantage
–  And “it’s a neat new approach” definitely isn’t

Lecture 13
Page 26 CS 136, Fall 2014

Especially Important When
Human Users Involved

•  Users will not read documentation
– They’ll ignore pop-ups and warnings
– They will prioritize getting the job done

over security
•  So designs requiring complex user decisions

usually fail
– Make the obvious thing to do the secure

thing, as well

Lecture 13
Page 27 CS 136, Fall 2014

7. Promote Privacy

•  Avoid doing things that will
compromise user privacy

•  Don’t ask for data you don’t need
•  Avoid storing user data permanently

– Especially unencrypted data
•  There are strong legal issues related to

this, nowadays

Lecture 13
Page 28 CS 136, Fall 2014

For Example,
•  Google’s little war driving incident
•  They drove around many parts of the world

to get information on Wifi hotspots
•  But they simultaneously were sniffing and

storing packets from those networks
•  And gathered a lot of private information
•  They got into a good deal of trouble . . .

Lecture 13
Page 29 CS 136, Fall 2014

8. Remember That Hiding
Secrets is Hard

•  Assume anyone who has your program can
learn everything about it

•  “Hidden” keys, passwords, certificates in
executables are invariably found

•  Security based on obfusticated code is
always broken

•  Just because you’re not smart enough to
crack it doesn’t mean the hacker isn’t, either

Lecture 13
Page 30 CS 136, Fall 2014

For Example,
•  Passwords often “hidden” in executables

– GarretCom network switches tried to do
this in SCADA control systems

– Allowed escalation of privilege if one had
any login account

•  Android apps containing private keys are in
use (and are compromised)

•  Ubiquitous in digital rights management
– And it never works

Lecture 13
Page 31 CS 136, Fall 2014

9. Be Reluctant to Trust
•  Don’t automatically trust things

– Especially if you don’t have to
•  Remember, you’re not just trusting the

honesty of the other party
– You’re also trusting their caution

•  Avoid trusting users you don’t need to trust,
too
– Doing so makes you more open to social

engineering attacks

Lecture 13
Page 32 CS 136, Fall 2014

For Example,

•  Why do you trust that shrinkwrapped
software?

•  Or that open source library?
•  Must you?
•  Can you design the system so it’s

secure even if that component fails?
•  If so, do it

Lecture 13
Page 33 CS 136, Fall 2014

10. Use Your Community
Resources

•  Favor widely used and respected
security software over untested stuff
– Especially your own . . .

•  Keep up to date on what’s going on
– Not just patching
– Also things like attack trends

Lecture 13
Page 34 CS 136, Fall 2014

For Example,

•  Don’t implement your own AES code
•  Rely on one of the widely used

versions
•  But also don’t be too trusting

– E.g., just because it’s open source
doesn’t mean it’s more secure

Lecture 13
Page 35 CS 136, Fall 2014

Choosing Technologies
•  Different technologies have different

security properties
– Operating systems
– Languages
– Object management systems
– Libraries

•  Important to choose wisely
– Understand the implications of the choice

Lecture 13
Page 36 CS 136, Fall 2014

Choices and Practicalities
•  You usually don’t get to choose the OS
•  The environment you’re writing for dictates

the choice
– E.g., commercial software often must be

written for Windows
– Or Linux is the platform in your company

•  Might not get choice in other areas, either
– But exercise it when you can

Lecture 13
Page 37 CS 136, Fall 2014

Operating System Choices
•  Rarely an option, and does it matter anyway?
•  Probably not, any more

–  All major choices have poor security histories
•  No, Linux is not necessarily safer than Windows

–  All have exhibited lots of problems
–  In many cases, problems are in the apps, anyway

•  Exception if you get to choose a really trusted platform
–  E.g., SE Linux or Trusted Solaris

•  Not perfect, but better
•  At a cost in various dimensions

Lecture 13
Page 38 CS 136, Fall 2014

Language Choices

•  More likely to be possible
– Though often hard to switch from

what’s already being used
•  If you do get the choice, what should it

be?

Lecture 13
Page 39 CS 136, Fall 2014

C and C++

•  Probably the worst security choice
•  Far more susceptible to buffer

overflows than other choices
•  Also prone to other reliability problems
•  Often chosen for efficiency

– But is efficiency that important for
your application?

Lecture 13
Page 40 CS 136, Fall 2014

Java
•  Less susceptible to buffer overflows
•  Also better error handling than C/C++
•  Has special built-in security features

– Which aren’t widely used
•  But has its own set of problems
•  E.g., exception handling issues
•  And issues of inheritance
•  19 serious security flaws between 1996 and 2001
•  Multiple serious security problems in recent years

Lecture 13
Page 41 CS 136, Fall 2014

Scripting Languages

•  Depends on language
•  Javascript and CGIbin have awful

security reputations
•  Perl offers some useful security

features
•  But there are some general issues

Lecture 13
Page 42 CS 136, Fall 2014

General Security Issues for
Scripting Languages

•  Might be security flaws in their interpreters
– More likely than in compilers

•  Scripts often easily examined by attackers
– Obscurity of binary is no guarantee, but it is an

obstacle
•  Scripting languages often used to make system

calls
–  Inherently dangerous, esp. things like eval()

•  Many script programmers don’t think about
security at all

Lecture 13
Page 43 CS 136, Fall 2014

Open Source vs. Closed Source
•  Some argue open source software is

inherently more secure
•  The “many eyes” argument –

– Since anyone can look at open source
code,

– More people will examine it
– Finding more bugs
– Increasing security

Lecture 13
Page 44 CS 136, Fall 2014

Is the “Many Eyes” Argument
Correct?

•  Probably not
•  At least not in general
•  Linux has security bug history similar to

Windows
•  Other open source projects even worse

– Often, nobody really looks at the code
– Which is no better than closed source
– OpenSSL and Heartbleed, for instance

Lecture 13
Page 45 CS 136, Fall 2014

The Flip Side Argument
•  “Hackers can examine open source software

and find its flaws”
•  Well, Windows’ security history is not a

recommendation for this view
– Last month, Microsoft announced patches

for 14 security flaws
•  Most commonly exploited flaws can be

found via black-box approach
– E.g., typical buffer overflows
– 

Lecture 13
Page 46 CS 136, Fall 2014

The Upshot?

•  No solid evidence that open source or
closed source produces better security

•  Major exception is crypto
– At least for crypto standards
– Maybe widely used crypto packages
– Criticality and limited scope means

many eyeballs will really look at it

Lecture 13
Page 47 CS 136, Fall 2014

One More Consideration
•  The Snowden leaks suggest many

companies put trapdoors in software
– Especially security-related software

•  When it’s closed source, nobody else
can check that

•  When it’s open source, maybe they can
– Emphasis on the “maybe,” though

Lecture 13
Page 48 CS 136, Fall 2014

Major Problem Areas for
Secure Programming

•  Certain areas of programming have
proven to be particularly prone to
problems

•  What are they?
•  How do you avoid falling into these

traps?

Lecture 13
Page 49 CS 136, Fall 2014

Example Problem Areas
•  Buffer overflows and other input verification issues
•  Error handling
•  Access control issues
•  Race conditions
•  Use of randomness
•  Proper use of cryptography
•  Trust
•  Variable synchronization
•  Variable initialization
•  There are others . . .

Lecture 13
Page 50 CS 136, Fall 2014

Buffer Overflows
•  The poster child of insecure

programming
•  One of the most commonly exploited

types of programming error
•  Technical details of how they occur

discussed earlier
•  Key problem is language does not

check bounds of variables

Lecture 13
Page 51 CS 136, Fall 2014

Preventing Buffer Overflows
•  Use a language with bounds checking

– Most modern languages other than C
and C++ (and assembler)

– Not always a choice
– Or the right choice

•  Check bounds carefully yourself
•  Avoid constructs that often cause

trouble

Lecture 13
Page 52 CS 136, Fall 2014

Problematic Constructs for
Buffer Overflows

•  Most frequently C system calls:
– gets(), strcpy(), strcat(),
sprintf(), scanf(),
sscanf(), fscanf(),
vfscanf(),vsprintf(),
vscanf(), vsscanf(),
streadd(), strecpy()

– There are others that are also risky

Lecture 13
Page 53 CS 136, Fall 2014

Why Are These Calls Risky?
•  They copy data into a buffer
•  Without checking if the length of the data

copied is greater than the buffer
•  Allowing overflow of that buffer
•  Assumes attacker can put his own data into

the buffer
– Not always true
– But why take the risk?

Lecture 13
Page 54 CS 136, Fall 2014

What Do You Do Instead?
•  Many of the calls have variants that

specify how much data is copied
– If used properly, won’t allow the

buffer to overflow
•  Those without the variants allow

precision specifiers
– Which limit the amount of data

handled

Lecture 13
Page 55 CS 136, Fall 2014

Is That All I Have To Do?

•  No
•  These are automated buffer overflows
•  You can easily write your own
•  Must carefully check the amount of

data you copy if you do
•  And beware of integer overflow

problems

Lecture 13
Page 56 CS 136, Fall 2014

An Example

•  Actual bug in OpenSSH server:

u_int nresp;
. . .
nresp = packet_get_int();
If (nresp > 0) {
 response = xmalloc(nresp * sizeof(char *));
 for (i=0; i<nresp;i++)
 response[i] = packet_get_string(NULL);

}
packet_check_eom();

Lecture 13
Page 57 CS 136, Fall 2014

Why Is This a Problem?

• nresp is provided by the user
–  nresp = packet_get_int();

•  But we allocate a buffer of nresp
entries, right?
–  response = xmalloc(nresp * sizeof(char *));

•  So how can that buffer overflow?
•  Due to integer overflow

Lecture 13
Page 58 CS 136, Fall 2014

How Does That Work?
•  The argument to xmalloc() is an

unsigned int
•  Its maximum value is 232-1

– 4,294,967,295
• sizeof(char *) is 4
•  What if the user sets nresp to

0x40000020?
•  Multiplication is modulo 232 . . .

– So 4 * 0x40000020 is 0x80

Lecture 13
Page 59 CS 136, Fall 2014

What Is the Result?

•  There are 128 entries in response[]
•  And the loop iterates hundreds of

millions of times
– Copying data into the “proper place”

in the buffer each time
•  A massive buffer overflow

Lecture 13
Page 60 CS 136, Fall 2014

Other Programming Tools for
Buffer Overflow Prevention

•  Software scanning tools that look for buffer
overflows
– Of varying sophistication

•  Use a C compiler that includes bounds
checking
– Typically offered as an option

•  Use integrity-checking programs
– Stackguard, Rational’s Purity, etc.

Lecture 13
Page 61 CS 136, Fall 2014

Canary Values
•  One method of detecting buffer

overflows
•  Akin to the “canary in the mine”
•  Place random value at end of data

structure
•  If value is not there later, buffer

overflow might have occurred
•  Implemented in language or OS

Lecture 13
Page 62 CS 136, Fall 2014

Data Execution Prevention (DEP)
•  Buffer overflows typically write executable

code somewhere
•  DEP prevents this

– Page is either writable or executable
•  So if overflow can write somewhere, can’t

execute the code
•  Present in Windows, Mac OS, etc.
•  Doesn’t help against some advanced

techniques

Lecture 13
Page 63 CS 136, Fall 2014

Randomizing Address Space
(ASLR)

•  Address Space Layout Randomization
•  Randomly move around where things are stored

– Base address, libraries, heaps, stack
•  Making it hard for attacker to write working

overflow code
•  Used in Windows, Linux, MacOS
•  Not always used, not totally effective

– Several recent Windows problems from
programs not using ASLR

