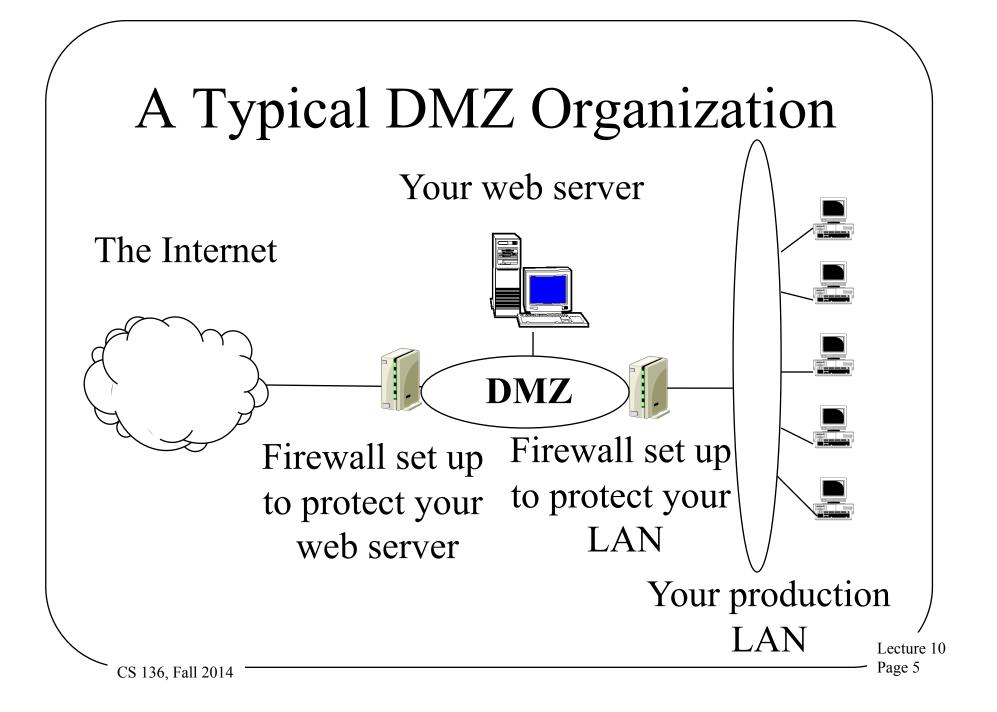
Network Security, Continued Computer Security Peter Reiher November 13, 2014

Firewall Configuration and Administration


- Again, the firewall is the point of attack for intruders
- Thus, it must be extraordinarily secure
- How do you achieve that level of security?

Firewall Location

- Clearly, between you and the bad guys
- But you may have some different types of machines/functionalities
- Sometimes makes sense to divide your network into segments
 - Typically, less secure public network and more secure internal network
 - -Using separate firewalls

Firewalls and DMZs

- A standard way to configure multiple firewalls for a single organization
- Used when organization runs machines with different openness needs
 - -And security requirements
- Basically, use firewalls to divide your network into segments

Advantages of DMZ Approach

- Can customize firewalls for different purposes
- Can customize traffic analysis in different areas of network
- Keeps inherently less safe traffic away from critical resources

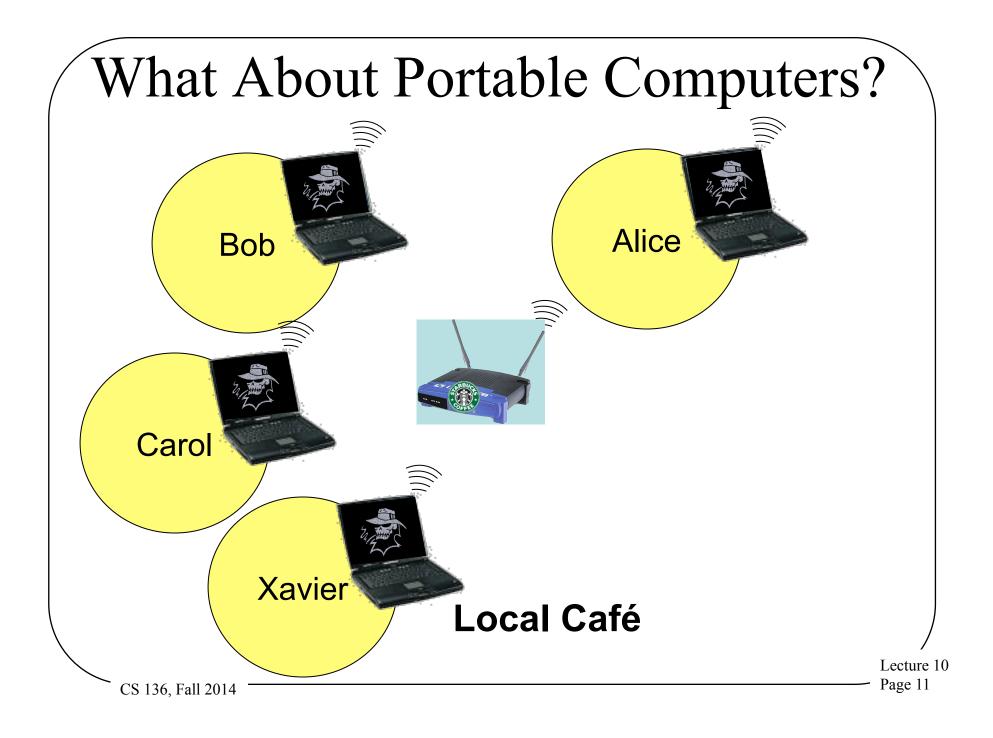
Dangers of a DMZ

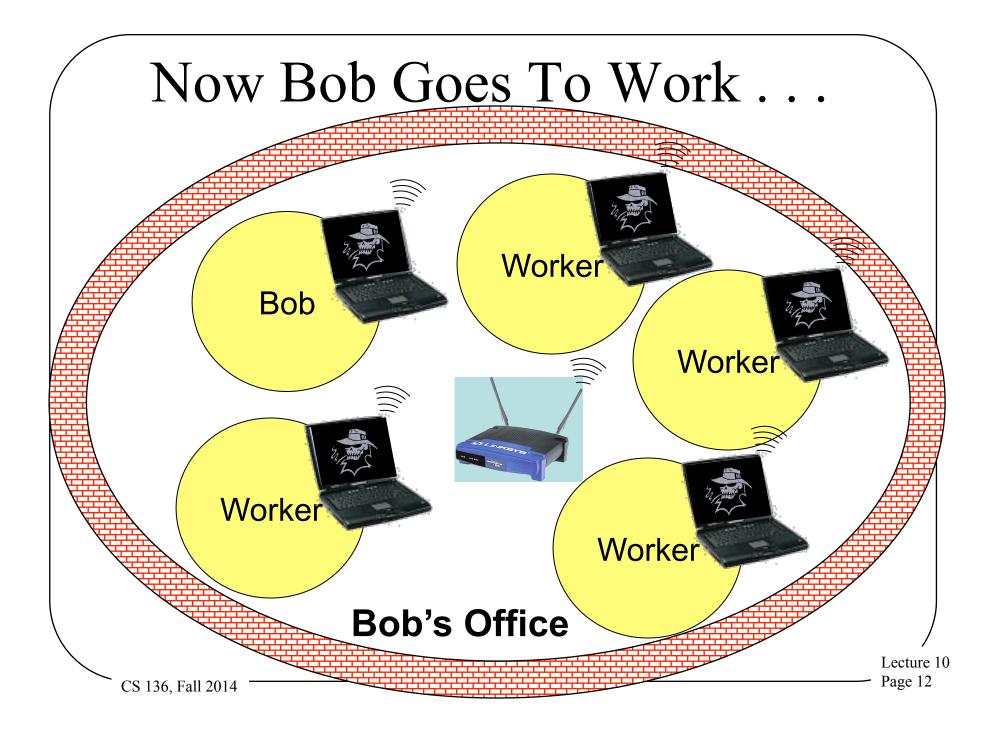
- Things in the DMZ aren't well protected
 - If they're compromised, provide a foothold into your network
- One problem in DMZ might compromise all machines there
- Vital that main network doesn't treat machines in DMZ as trusted
- Must avoid back doors from DMZ to network

CS 136, Fall 2014

Firewall Hardening

- Devote a special machine only to firewall duties
- Alter OS operations on that machine


 To allow only firewall activities
 And to close known vulnerabilities
- Strictly limit access to the machine
 Both login and remote execution


Keep Your Firewall Current

- New vulnerabilities are discovered all the time
- Must update your firewall to fix them
- Even more important, sometimes you have to open doors temporarily
 - Make sure you shut them again later
- Can automate some updates to firewalls
- How about getting rid of old stuff?

Closing the Back Doors

- Firewall security is based on assumption that all traffic goes through the firewall
- So be careful with:
 - Wireless connections
 - Portable computers
 - Sneakernet mechanisms and other entry points
- Put a firewall at <u>every</u> entry point to your network
- And make sure <u>all</u> your firewalls are up to date

How To Handle This Problem?

- Essentially *quarantine* the portable computer until it's safe
- Don't permit connection to wireless access point until you're satisfied that the portable is safe

– Or put them in constrained network

• Common in Cisco, Microsoft, and other companies' products

-Network access control

Single Machine Firewalls

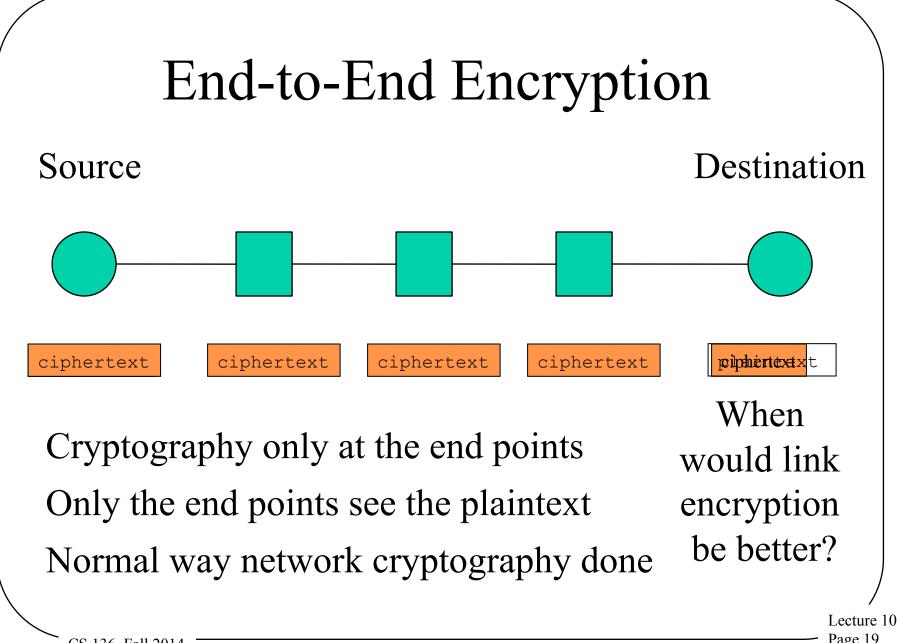
- Instead of separate machine protecting network,
- A machine puts software between the outside world and the rest of machine
- Under its own control
- To protect itself
- Available on most modern systems

Pros and Cons of Individual Firewalls

+Customized to particular machine -Specific to local software and usage +Under machine owner's control +Can use in-machine knowledge for its decisions +May be able to do deeper inspection +Provides defense in depth CS 136, Fall 2014

Cons of Personal Firewalls -Only protects that machine


- -Less likely to be properly configured
 - -Since most users don't understand security well
 - -And/or don't view it as their job
 - -Probably set to the default
- On the whole, generally viewed as valuable


Lecture 10 Page 16

CS 136, Fall 2014

Encryption and Network Security

- Relies on the kinds of encryption algorithms and protocols discussed previously
- Can be applied at different places in the network stack
- With different effects and costs

Where Are the Endpoints, Anyway?

- If you do end-to-end encryption, where are the endpoints?
- The network layer end points?
- The transport layer end points?
- The application layer end points?
- Maybe not even end machine to end machine (e.g., VPNs)?
- Has serious implications for where you do cryptography
 - And keying and trust issues

IPsec

- Standard for applying cryptography at the network layer of IP stack
- Provides various options for encrypting and authenticating packets
 - -On end-to-end basis
 - -Without concern for transport layer (or higher)

What IPsec Covers

- Message integrity
- Message authentication
- Message confidentiality

What Isn't Covered

- Non-repudiation
- Digital signatures
- Key distribution
- Traffic analysis
- Handling of security associations
- Some of these covered in related standards

Some Important Terms for IPsec

 Security Association - "A Security Association (SA) is a simplex 'connection' that affords security services to the traffic carried by it."

– Basically, a secure one-way channel

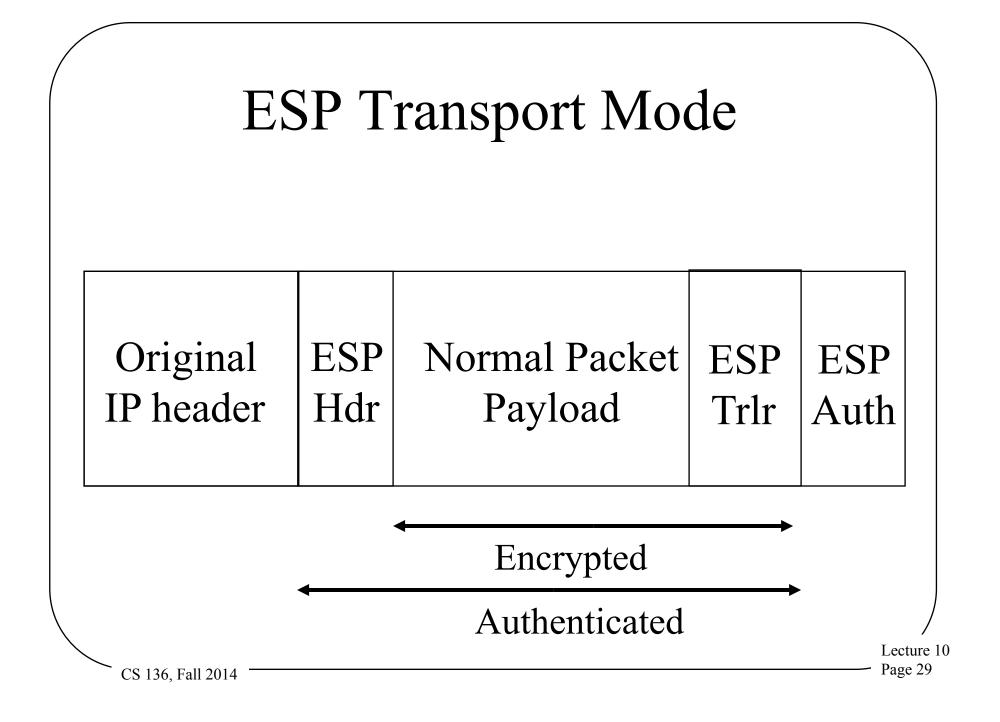
 SPI (Security Parameters Index) – Combined with destination IP address and IPsec protocol type, uniquely identifies an SA

General Structure of IPsec

- Really designed for end-to-end encryption

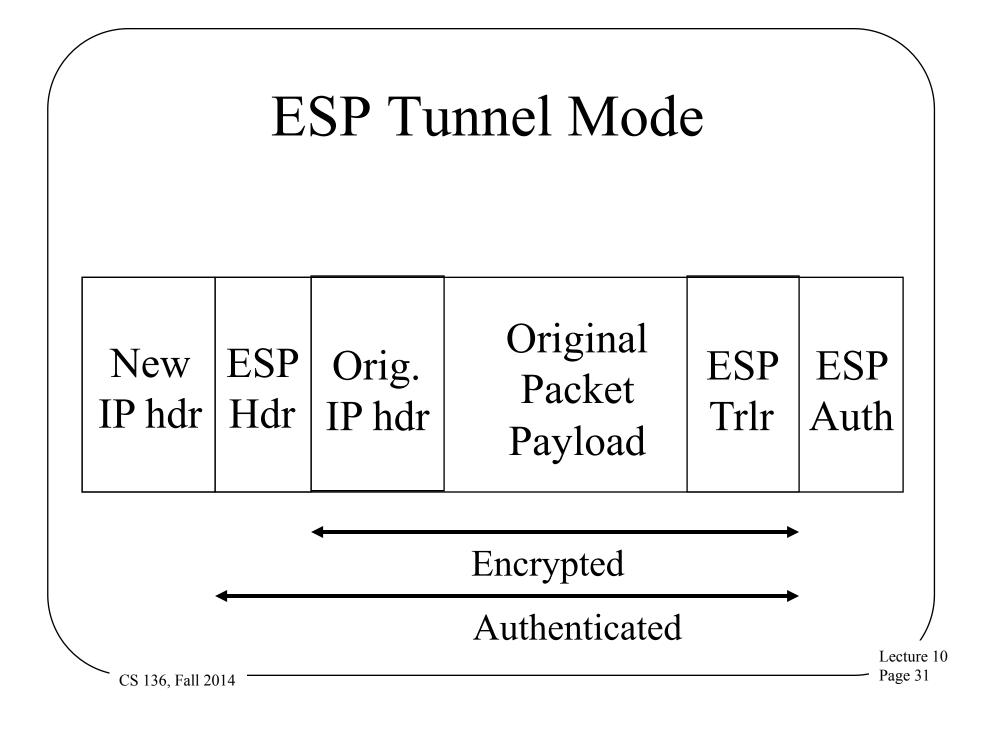
 Though could do link level
- Designed to operate with either IPv4 or IPv6
- Meant to operate with a variety of different ciphers
- And to be neutral to key distribution methods
- Has sub-protocols
 - -E.g., Encapsulating Security Payload

Encapsulating Security Payload (ESP) Protocol


- Encrypt the data and place it within the ESP
- The ESP has normal IP headers
- Can be used to encrypt just the payload of the packet
- Or the entire IP packet

ESP Modes

- Transport mode
 - Encrypt just the transport-level data in the original packet
 - -No IP headers encrypted
- Tunnel mode
 - -Original IP datagram is encrypted and placed in ESP
 - Unencrypted headers wrapped around ESP


ESP in Transport Mode

- Extract the transport-layer frame -E.g., TCP, UDP, etc.
- Encapsulate it in an ESP
- Encrypt it
- The encrypted data is now the last payload of a cleartext IP datagram

Using ESP in Tunnel Mode

- Encrypt the IP datagram
 - -The entire datagram
- Encapsulate it in a cleartext IP datagram
- Routers not understanding IPsec can still handle it
- Receiver reverses the process

Uses and Implications of Tunnel Mode

- Typically used when there are security gateways between sender and receiver
 - And/or sender and receiver don't speak IPsec
- Outer header shows security gateway identities

– Not identities of real parties

• Can thus be used to hide some traffic patterns

What IPsec Requires

- Protocol standards
 - To allow messages to move securely between nodes
- Supporting mechanisms at hosts running IPsec
 - -E.g., a Security Association Database
- Lots of plug-in stuff to do the cryptographic heavy lifting

The Protocol Components

- Pretty simple
- Necessary to interoperate with non-IPsec equipment
- So everything important is inside an individual IP packet's payload
- No inter-message components to protocol
 - Though some security modes enforce inter-message invariants

The Supporting Mechanisms

- Methods of defining security associations
- Databases for keeping track of what's going on with other IPsec nodes
 - To know what processing to apply to outgoing packets
 - To know what processing to apply to incoming packets

Plug-In Mechanisms

- Designed for high degree of generality
- So easy to plug in:
 - -Different crypto algorithms
 - -Different hashing/signature schemes
 - -Different key management mechanisms

Status of IPsec

- Accepted Internet standard
- Widely implemented and used
 - Supported in Windows 2000, XP, Vista, Windows 7, Windows 8
 - In Linux 2.6 (and later) kernel
- The architecture doesn't require everyone to use it
- RFC 3602 on using AES in IPsec still listed as "proposed"
- AES will become default for ESP in IPsec

SSL and TLS

- SSL Secure Socket Layer
- TLS Transport Layer Security
- The common standards for securing network applications in Internet

-E.g., web browsing

• Essentially, standards to negotiate, set up, and apply crypto

The Basics of SSL

- Usually a client/server operation
- Client contacts server
- A negotiation over authentication, key exchange, and cipher takes place
- Authentication is performed and key agreed upon
- Then all packets are encrypted with that key and cipher at application level

Common Use

• Server authenticates to client using an X.509 certificate

-Typically, client not authenticated

- Though option allows it
- Client provides material to server to derive session key
- Client and server derive same session key, start sending encrypted packets

Crypto in TLS/SSL

- Several options supported
- RSA or elliptic curve for PK part
- AES, DES, 3DES, or others for session cryptography
- Not all are regarded as still secure
- Chosen by negotiation between client and server

Use of SSL/TLS

- The core crypto for web traffic
- Commonly used for many other encrypted communications
- Used in all major browsers
- Usually not part of OS per se
 But all major OSes include libraries

or packages that implement it

Security Status of SSL/TLS

- Kind of complex
- SSL is not very secure
- Early versions of TLS not so secure
- Later versions of TLS fairly secure

-Depending on cipher choice

• Recent chosen-plaintext attacks shown to work on all versions

-In special circumstances CS 136, Fall 2014

Virtual Private Networks

- VPNs
- What if your company has more than one office?
- And they're far apart?

-Like on opposite coasts of the US

- How can you have secure cooperation between them?
- Could use leased lines, but . . .

Encryption and Virtual Private Networks

- Use encryption to convert a shared line to a private line
- Set up a firewall at each installation's network
- Set up shared encryption keys between the firewalls
- Encrypt all traffic using those keys

Actual Use of Encryption in VPNs

- VPNs run over the Internet
- Internet routers can't handle fully encrypted packets
- Obviously, VPN packets aren't entirely encrypted
- They are encrypted in a tunnel mode
 Often using IPSec
- Gives owners flexibility and control

Key Management and VPNs

- All security of the VPN relies on key secrecy
- How do you communicate the key?
 - In early implementations, manually
 - Modern VPNs use IKE or proprietary key servers
- How often do you change the key?
 - IKE allows frequent changes

VPNs and Firewalls

- VPN encryption is typically done between firewall machines
 - VPN often integrated into firewall product
- Do I need the firewall for anything else?
- Probably, since I still need to allow non-VPN traffic in and out
- Need firewall "inside" VPN
 - Since VPN traffic encrypted
 - Including stuff like IP addresses and ports
 - "Inside" means "later in same box" usually

VPNs and Portable Computing

• Increasingly, workers connect to offices remotely

-While on travel

CS 136, Fall 2014

- -Or when working from home
- VPNs offer a secure solution
 - -Typically as software in the portable computer
- Usually needs to be pre-configured

VPN Deployment Issues

- Desirable not to have to pre-deploy VPN software
 - Clients get access from any machine
- Possible by using downloaded code
 - Connect to server, download VPN applet, away you go
 - Often done via web browser
 - Leveraging existing SSL code
 - Authentication via user ID/password
 - Implies you trust the applet . . .
- Issue of compromised user machine

CS 136, Fall 2014

Wireless Network Security

- Wireless networks are "just like" other networks
- Except . . .
 - -Almost always broadcast
 - -Generally short range
 - –Usually supporting mobility
 - -Often very open

Types of Wireless Networks

- 802.11 networks
 - Variants on local area network technologies
- Bluetooth networks
 - Very short range
- Cellular telephone networks
- Line-of-sight networks
 - Dedicated, for relatively long hauls
- Satellite networks

The General Solution For Wireless Security

- Wireless networks inherently less secure than wired ones
- So we need to add extra security
- How to do it?
- Link encryption
 - Encrypt traffic just as it crosses the wireless network

Decrypt it before sending it along

Why Not End-to-End Encryption?

- Some non-wireless destinations might not be prepared to perform crypto
 - -What if wireless user wants protection anyway?
- Doesn't help wireless access point provide exclusive access

-Any eavesdropper can use network

802.11 Security

- Originally, 802.11 protocols didn't include security
- Once the need became clear, it was sort of too late
 - -Huge number of units in the field
 - -Couldn't change the protocols
- So, what to do?

WEP

- First solution to the 802.11 security problem
- Wired Equivalency Protocol
- Intended to provide encryption in 802.11 networks
 - Without changing the protocol
 - So all existing hardware just worked
- The backward compatibility worked
- The security didn't

What Did WEP Do?

- Used stream cipher (RC4) for confidentiality
 - –With 104 bit keys
 - -Usually stored on the computer using the wireless network
 - -24 bit IV also used
- Used checksum for integrity

What Was the Problem With WEP?

- Access point generates session key from its own permanent key plus IV
 - Making replays and key deduction attacks a problem
- IV was intended to prevent that
- But it was too short and used improperly
- In 2001, WEP cracking method shown

– Took less than 1 minute to get key

WPA and WPA2

- Generates new key for each session
- Can use either TKIP or AES mode
- Various vulnerabilities in TKIP mode
- AES mode hasn't been cracked yet
 - -May be available for some WPA
 - -Definitely in WPA2

Honeypots and Honeynets

- A *honeypot* is a machine set up to attract attackers
- Classic use is to learn more about attackers
- Ongoing research on using honeypots as part of a system's defenses

Setting Up A Honeypot

- Usually a machine dedicated to this purpose
- Probably easier to find and compromise than your real machines
- But has lots of software watching what's happening on it
- Providing early warning of attacks

What Have Honeypots Been Used For?

- To study attackers' common practices
- There are lengthy traces of what attackers do when they compromise a honeypot machine
- Not clear these traces actually provided much we didn't already know

Honeynets

- A collection of honeypots on a single network
 - Maybe on a single machine with multiple addresses
 - More often using virtualization
- Typically, no other machines are on the network
- Since whole network is phony, all incoming traffic is probably attack traffic

What Can You Do With Honeynets?

- Similar things to honeypots
 - But at the network level
- Also good for tracking the spread of worms
 - Worm code typically visits them repeatedly
- Main tool for detecting and analyzing botnets
- Gives evidence of DDoS attacks
 - Through *backscatter*
 - -Based on attacker using IP spoofing

Honeynets and Botnets

- Honeynets widely used by security researchers to "capture" bots
- Honeynet is reachable from Internet
- Intentionally weakly defended
- Bots tend to compromise them
- Researcher gets a copy of the bot

Issues With Honeynet Research

• Don't want captured bot infecting others

-Or performing other attack activities

- So you need to prevent it from attacking out
- But you also need to see its control traffic

What To Do With a Bot?

- When the bot is captured, what do you do with it?
- Typically, analyze it
 - -Especially for new types of bots
 - -To find weaknesses
 - -And to track rest of botnet
- Analysis helpful for tracing "ancestry"

Do You Need A Honeypot?

- Not in the same way you need a firewall
- Only useful if your security administrator spending a lot of time watching things

– E.g., very large enterprises

- Or if your job is observing hacker activity
- Something that someone needs to be doing
 - Particularly, security experts watching the overall state of the network world
 - But not necessarily you