
Lecture 4
Page 1

CS 118
Winter 2016

Multiparty Communications
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 4
Page 2

CS 118
Winter 2016

Outline

•  Extending 2-party model to N-party

•  A party has multiple receivers (other end)

•  A party has multiple senders (local end)

•  Multiples of information

Lecture 4
Page 3

CS 118
Winter 2016

Shannon Channel
•  Two preselected parties

– Homogenous endpoints

•  Unidirectional channel
– Preselected sender, preselected receiver

•  One predetermined sender, one
predetermined receiver

Lecture 4
Page 4

CS 118
Winter 2016

Shannon 2-party communication

•  We began by knowing:
–  Participating endpoints
– Communication channel

•  We didn’t know, but fixed:
– When the endpoints share state

•  So we need a handshake
•  Including “when they want to be active” vs. idle

– Whether something is lost
•  So we need timers

Lecture 4
Page 5

CS 118
Winter 2016

Decoupling party from channel

•  What if we want to talk to different parties?
– Sometimes we communicate with Twitter
– Sometimes we communicate with eBay
– Sometimes we communicate with Wikipedia

•  Don’t want a permanent, always-on channel to
each of them

•  How can we do better?
– “Detach” channel end from party

Lecture 4
Page 6

CS 118
Winter 2016

Channel vs. party

•  Shannon channel
–  Integrated with the endpoint (party)
– No choices – all information sent/received uses the

only channel there is

Lecture 4
Page 7

CS 118
Winter 2016

Separating the two

•  Need to treat what happens in the endpoint
(state to share) from the channel (because there
might be more than one)

Lecture 4
Page 8

CS 118
Winter 2016

Abstract network components

•  Endpoint
–  (“party”)
– Source or sink of state (“information”)

•  Link
–  (“channel”)
– Action at a distance (“symbol transfer”)

Lecture 4
Page 9

CS 118
Winter 2016

Components

Shannon
•  Party

•  Channel

•  Information

•  2-party interaction

Multiparty, modern terms
•  Endpoint, node, host

•  Link, hop

•  State, data

•  N-party interaction

Lecture 4
Page 10

CS 118
Winter 2016

Multiparty extensions
•  Which party you’re talking to

– Need to differentiate the receivers
– Names

•  How talk to multiple parties at once
–  Juggling multiple “senders”
–  Sockets

•  How to say the same thing multiple times
– Broadcast and multicast

Lecture 4
Page 11

CS 118
Winter 2016

Multiparty

•  Multiple endpoints
–  All connected
–  By separate 2-party

channels
–  Using a single protocol

Lecture 4
Page 12

CS 118
Winter 2016

Multiparty assumptions

•  Multiple parties

•  Using ONE common protocol

•  Connected by direct 2-party channels
–  I.e., fully-connected topology
– Each channel disjoint from the others

•  In state
•  In inputs and outputs

Lecture 4
Page 13

CS 118
Winter 2016

Why is this networking?
•  Networking

–  Methods to enable
communication between
varying sets of indirectly
connected parties that don’t
share a single protocol

•  A small increment
–  ONE protocol for now
–  Direct 2-party channels for

now
–  (we’ll get to the other parts

later…)

Lecture 4
Page 14

CS 118
Winter 2016

Importance of multiparty

•  Varying participants
– Pairs communicating change

•  Varying view of state
– Subsets of state, potential overlap, etc.

•  More power
– Can share with more than one other party

Lecture 4
Page 15

CS 118
Winter 2016

The need for names

•  Each source can interact with N-1
receivers
– How are receivers differentiated?

•  Each uses a different channel
•  But how do we specify which channel is

which?

Need some sort of identifier to indicate
which channel (indicating which

receiver)

Lecture 4
Page 16

CS 118
Winter 2016

A simple case

•  One sender
•  How do we identify one of the two possible

receivers?

Lecture 4
Page 17

CS 118
Winter 2016

What can the name apply to?

•  Identifier can mean several things at once:
– Channels
– Endpoints

•  WHY?
– Consider a fully-connected network
– For each source, channel:endpoint is 1:1

Foo

Lecture 4
Page 18

CS 118
Winter 2016

Names for receivers
•  Index

–  A number that corresponds to the channel/endpoint

•  Port
–  An OS-centric type of name specifying what the OS should connect the

channel to
•  Channel

–  Used more generically

•  Socket
–  Originally (1974 TCP) meant one end of 2-party
–  Unix/BSD copied the term (1983)
–  Now means a LOT more

•  Large data structure with many parts
•  A “socket descriptor”, i.e., a pointer to that structure

Lecture 4
Page 19

CS 118
Winter 2016

Receiver naming requirements
•  How unique?

–  Each party needs to
differentiate N-1 receivers

–  Names need to be unique
within that set

–  NO need (yet) for names to be
unique within the set of all
parties

•  You can call me Ray,
or you can call me J,
or you can call be Ray J,
or you can call me RJ, …

Lecture 4
Page 20

CS 118
Winter 2016

Receiver name examples

•  One sender can name
the other ends it can talk
to

Bob

Ted

Carol Alice

Ishmael

Lecture 4
Page 21

CS 118
Winter 2016

Receiver name examples

•  Another sender can do
the same thing
–  But possibly with

different names
–  Its names need not match

anyone else’s

•  Names are local
–  To the sender and

receiver

Bob

Ted

Carol Alice

Ishmael

2

3

5 7

11

Paul
George

John

Ringo

Pete

Lecture 4
Page 22

CS 118
Winter 2016

Multiple senders

•  A party can have multiple senders (local end)
•  Like my computer talking to multiple web

sites

Lecture 4
Page 23

CS 118
Winter 2016

Concurrency

•  How does a party deal with multiple
communications?
– The channels – need to “keep ‘em separated”
– Need to decouple the channel from the party itself

•  Socket
– A “disembodied” communication endpoint within

a party

Lecture 4
Page 24

CS 118
Winter 2016

What’s inside the party?

•  Originate/terminate communication
– State to be shared

•  Where’s that state?
– Part of finite state machine (a process) within the

party
– Outside the party

•  We can treat this as output/input of a FSM that relays
that info to the channel

Lecture 4
Page 25

CS 118
Winter 2016

How many machines are there?

•  Strictly, one
– Multiple FSMs can be modeled as one FSM

•  Simpler to think of them as independent
– A set of FSMs, running concurrently

•  Multiprocessing
– And/or running as if concurrent with each other

•  Multiprogramming
– And/or having internal concurrent components

•  Multitasking / multithreading

Lecture 4
Page 26

CS 118
Winter 2016

So what else do we have to name?

•  On the machine (or state)
– Process/thread identifier
– State identifiers

•  Why?
– Need to know which portion of the party’s state

interacts with a given channel

Lecture 4
Page 27

CS 118
Winter 2016

Internal naming requirements

•  How unique?
– Each party needs to differentiate some number of

“FSMs” (sets of states)
– Names need to be unique within that set
– NO need for names to be unique within the set of

all parties
•  Will there ever be such a need?
•  State is always local to the endpoint

Lecture 4
Page 28

CS 118
Winter 2016

Summary of multiparty naming

•  Need a way to pick an outgoing channel/
receiver
– An internal channel index

•  A way to pick a subset of internal state/
machine
– An internal machine index

BOTH ARE INTERNAL ONLY

Lecture 4
Page 29

CS 118
Winter 2016

Multiples of communications

•  Each party usually wants to communicate to
multiple other parties

•  Sometimes 1-to-1
•  Sometimes same info to many others

Lecture 4
Page 30

CS 118
Winter 2016

Shannon channel

•  Unicast
– 1:1

•  Two parties share state
– Pick which two
– Just communicate

•  State now shared!

Lecture 4
Page 31

CS 118
Winter 2016

Multiple receivers

•  Broadcast (1:N)
– Send same info. on all channels
– Every party in the network has the same info.

•  Multicast (1:M)
– Broadcast on a subset of channels

Lecture 4
Page 32

CS 118
Winter 2016

Broadcast

•  Share state everywhere
– No need to pick
– Need to replicate

•  Multiple communication
•  Multiple information

Lecture 4
Page 33

CS 118
Winter 2016

Broadcast

•  State now shared
– When?

Need to coordinate
– How to coordinate?

•  Three-way handshake
•  Chang’s “Echo alg.”

Lecture 4
Page 34

CS 118
Winter 2016

Complexities of communications
copying

•  Atomicity
– Losses don’t correlate across channels
– Might link “all-or-none” behavior

•  Synchrony
– Knowing all the receivers have the info at the same

time
– Having them know that
– Having you know that

•  Efficiency
–  Send one to each receiver? Can we do better?

Lecture 4
Page 35

CS 118
Winter 2016

Multicast

•  Share with a subset
– How to pick?
– Who picks?

•  Similar to broadcast
– Need to replicate
– Need to coordinate

Lecture 4
Page 36

CS 118
Winter 2016

Multicast

•  Things get worse…
– Subset can change

•  Add parties
•  Remove parties

Lecture 4
Page 37

CS 118
Winter 2016

Multicast complexities

•  Group selection
– How do you indicate the subset desired?
– Who picks? Sender or receivers?

•  Changes in group
– Members join
– Members leave

Lecture 4
Page 38

CS 118
Winter 2016

Full pairwise connectivity

•  One topology
– Full, 1-hop connectivity
– Simple to understand

•  Expensive to maintain and use
•  Hard to add new members

Lecture 4
Page 39

CS 118
Winter 2016

Problems with this picture

• 

Lecture 4
Page 40

CS 118
Winter 2016

What can we share?

•  Endpoints
– We’re already doing that
– Multiprocessing, multiprogramming, etc.
– The rest is for CS 111 (Operating Systems)

•  Virtualization (abstraction!)
•  Resource sharing within a FSM

•  Channels
– Let’s explore…

Lecture 4
Page 41

CS 118
Winter 2016

Sharing a channel

•  Sharing in different directions
– Full-duplex

•  Shared outgoing destination
– A way to support broadcast/multicast

•  Shared incoming source
– To gather information from multiple sources

Lecture 4
Page 42

CS 118
Winter 2016

The big reason

Scale

Lecture 4
Page 43

CS 118
Winter 2016

Scale
•  A relationship between two variables and their

ratio
– An independent variable that changes arbitrarily
– A dependent variable that is expressed in terms of

the independent one
 y = f(x)

•  The ratio grows in some way:

€

y
x

=
f (x)
x

€

f (x)
x

≤ c * g(x) where c is a positive constant

•  We say f(x) is bounded by O(g(x))

Lecture 4
Page 44

CS 118
Winter 2016

Scale magnitude
•  Growth is bounded

–  No increase
•  Unlimited messaging at no extra cost

–  Logarithmic increase
•  Phone numbers –one digit gets 10x more numbers

–  Linear increase
•  6 phones cost roughly 6x one phone

–  Polynomial increase
•  Every new person in the room adds N possible pairings

–  Exponential increase
•  Not as bounded!

–  Beyond exponential increase
•  Even worse, like factorial

y = c logkx

y = cx

y = cxk

y = ckcx

y = cxcx

Lecture 4
Page 45

CS 118
Winter 2016

Why do we care?

• 

Lecture 4
Page 46

CS 118
Winter 2016

2-party sharing
•  2-party channel

•  Let’s make it two way:

•  How?

Lecture 4
Page 47

CS 118
Winter 2016

Signals in different directions
•  Some types of particles don’t interfere

– Bosons: pass right through each other

•  Others do interfere
– Fermions: collide (Pauli exclusion principle)

Lecture 4
Page 48

CS 118
Winter 2016

For those that interfere,

•  Keep them separated
•  By space

– Two simplex channels
– Back where we started!

•  By time
– “Timesharing”
– Time-division

Lecture 4
Page 49

CS 118
Winter 2016

Time sharing control

•  Prior agreement
–  I.e., embedded in the protocol description
– Requires a common time event (synchronization)

•  Central controller
– One side controls the communication

We’ll see more general cases later

Lecture 4
Page 50

CS 118
Winter 2016

N-party sharing: 1 to N

•  Share an outgoing
channel

•  One channel to several
destinations

Lecture 4
Page 51

CS 118
Winter 2016

1:N – How?

•  Receivers all see what transmitter sent
– “Non-destructive” reads

•  Which receivers accept the symbols?
– All of them (“native” multicast/broadcast)

Lecture 4
Page 52

CS 118
Winter 2016

Non-destructive reads

•  Read by one receiver doesn’t affect others
– Typical case

•  Two ways:
– Groups of identical symbols (e.g., particles)
– Perfect copies (measurement doesn’t alter value)

•  Allows sharing to assume broadcast messages
– Can simplify the sharing protocol

Lecture 4
Page 53

CS 118
Winter 2016

Destructive reads
•  Read by one (or a subset) of receivers

–  Rare
•  How?

–  Observer effect (read affects value)
–  E.g., quantum state, collect majority of particles, etc.

•  Usually considered undesirable
–  Non-determinism – can’t control which receiver reads
–  Prevents using broadcast for sharing protocol

•  Can be useful for security
–  Tamper evidence if expect only one receiver
–  Quantum cryptography, e.g.

Lecture 4
Page 54

CS 118
Winter 2016

Limiting 1:N transmissions

•  How can a sender control which receiver gets
the message?
– Transmit on different channels
– Transmit at different times
– Transmit different symbol sets (“languages”)
– Label the transmission destination (names)

All can be internal to the source
I.e., this is the easy part

Lecture 4
Page 55

CS 118
Winter 2016

N-party sharing: N to 1

•  Share an incoming
channel

•  One channel from
several sources

Lecture 4
Page 56

CS 118
Winter 2016

N:1 – How?

•  Receiver sees what all transmitters sent
– Technically difficult, at the particle level
– Collisions between particles
– Or confusion of who sent which particle
– One of them

•  But which one?

Lecture 4
Page 57

CS 118
Winter 2016

Limiting N:1 transmissions

•  How can transmitters avoid collisions?
– Transmit on different channels
– Transmit at different times
– Transmit different symbol sets (“languages”)

•  How can a receiver determine transmitter?
–  (all of the above)
– Label the transmission source (names)

Why is this harder than 1:N?

Lecture 4
Page 58

CS 118
Winter 2016

N:1 is harder than 1:N

•  1:N
–  Coordinate use internal

to the source
•  Time, symbol set

–  Naming needs to be
coordinated with receiver

•  Need to use IDs the
receiver recognizes

•  But each set is unique in
the context of that sender

•  N:1
–  Coordinate use between

sources
•  Time, symbol set

–  Coordinate naming
•  Converse of 1:N naming,

but name attached by
sender

•  How does sender know it
has a unique name?

Lecture 4
Page 59

CS 118
Winter 2016

N-party sharing: N to N

•  • 

Lecture 4
Page 60

CS 118
Winter 2016

The ultimate shared channel

•  One channel
– All parties transmit on
– All parties receive from

•  Minimizes link cost
– One link to add

one node

Lecture 4
Page 61

CS 118
Winter 2016

Single shared channel examples

•  Freespace
– Diffuse infrared
– Omidirectional RF

•  Wired
– Bus
– Ethernet

•  Fiber
–  Individual fibers to a passive coupler

Lecture 4
Page 62

CS 118
Winter 2016

N:N – combine rules
•  1:N – control receiver

–  Transmit on different
channels

–  Transmit at different times
–  Transmit different symbol

sets (“languages”)
–  Label the destination

•  N:1 – avoid collision
(control transmitter)
–  Transmit on different

channels
–  Transmit at different times
–  Transmit different symbol

sets (“languages”)

•  N:1 – identify source
–  (all of the above)
–  Label the source

Lecture 4
Page 63

CS 118
Winter 2016

Summary

•  Channel sharing affects network size
– Distance, number of parties

•  Shared channels requires shared namespaces
– Networking required internal names
– Sharing requires coordinated names

•  Sharing requires mechanism
– Protocols to manage the network, not just to share

endpoint state

