
Lecture 3
Page 1

CS 118
Winter 2016

Communications Channels
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 3
Page 2

CS 118
Winter 2016

Review: Comm. as shared state
•  Communication is less than most think

–  Just syntax – not semantics or intent
•  Information is based on states

–  Which is based on entropy (disorder)

•  We can model how state evolves
–  Each side models the other
–  Successive steps in models are how we go from sharing

state to transferring files

•  Noise decreases the information we can pass
–  Encodings can correct errors
–  But cannot break the Shannon limit

Lecture 3
Page 3

CS 118
Winter 2016

Communication: Roadmap

•  The imperfect channel

•  Making the channel real

•  Automating the channel

Lecture 3
Page 4

CS 118
Winter 2016

What is “encoding a block”?

•  Forward error correction
– A way to detect and correct errors without asking

for more information

•  Examples:
– Parity
– Majority
– Hamming
– Reed-Solomon

Lecture 3
Page 5

CS 118
Winter 2016

Parity

Lecture 3
Page 6

CS 118
Winter 2016

What can parity help with?

•  Error detection
– Detects any ODD number of bit errors in the block

•  Cost:
– One extra bit per block

•  Limits:
– Won’t detect any EVEN number of errors

(regardless of parity type)
– Cannot correct the errors

Lecture 3
Page 7

CS 118
Winter 2016

Majority

Lecture 3
Page 8

CS 118
Winter 2016

What can majority help with

• 

Lecture 3
Page 9

CS 118
Winter 2016

Hamming

•  Combines parity with sets

•  Sender
– Use the algorithm to generate parity codes within

various subsets of the bits
•  Receiver

– Use the algorithm to check parity codes within
various subsets. When a parity check fails, it
indicates the bit position of the error

Lecture 3
Page 10

CS 118
Winter 2016

A Hamming Code Example

•  Let’s say we have a 15 bit data item

•  We want to send it on a noisy channel and be
able to correct a 1-bit error

•  Add 5 parity bits
– Why 5? We’ll see in a minute

•  But don’t use them as a single 5-bit number
•  Have each parity bit cover a subset of the

overall bits

d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

Lecture 3
Page 11

CS 118
Winter 2016

Building the Hamming Code
•  We’re going to send 15 bits encoded as 20 bits

–  Adding 5 parity bits to the 15 data bits
•  Where do we put the 5 parity bits?
•  Not at the end
•  Scattered through the 20 bit encoded value
•  OK, so which bits are parity bits?
•  Any bit whose binary value for position contains only

one 1
–  Bit 1 (1), bit 2 (10), bit 4 (100), bit 8 (1000), bit 16 (10000)

Lecture 3
Page 12

CS 118
Winter 2016

Adding the parity bits
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

p1 p2 p4 p8 p16
1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100

p1

p2

p4

p8

p16

What does each parity bit cover?

x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x x

x x x x x x x x

x x x x x

Lecture 3
Page 13

CS 118
Winter 2016

What do we mean by “cover”?

•  The parity bit is calculated in the usual way
•  But considering only the bits it covers
•  So each of the five parity bits is computed

differently
– Considering a different (but overlapping) set of

data bits

Lecture 3
Page 14

CS 118
Winter 2016

What does this buy us?

•  If one bit is flipped, some parity bits will come
out wrong, when checked

•  Which indicates that we had an error
•  But we get more than that from a Hamming

code
•  Let’s consider an example

Lecture 3
Page 15

CS 118
Winter 2016

Hamming code example

•  Data value:

•  Add the parity bits

•  That’s what you send
•  Receiver checks using the same rules
•  If all parity bits match, no single bit errors

0 0 1 1 1 0 1 0 0 0 1 0 1 1 0

1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0

Lecture 3
Page 16

CS 118
Winter 2016

What if there’s an error?

•  What if a single bit is flipped?
– Say, bit #3 changes from 0 to 1

•  Now compute the parities on what you got
– They come out to:
– But in the message we have:
– Error occurred!

1 0 0 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0

1 0 1 1 0 1 1 1 1 0 1 0 0 0 1 0 0 1 1 0

0 1 1 1 0

1 0 1 1 0

Lecture 3
Page 17

CS 118
Winter 2016

But we get even more info
•  Consider the parity bits alone
•  Which bits didn’t match?

•  The first and second parity bits (p1 and p2)
•  Add their positions up:

– 1 + 2 = 3
•  The error was in the third bit of the 20 bits
•  So we can correct it!

0 1 1 1 0

1 0 1 1 0

Lecture 3
Page 18

CS 118
Winter 2016

Hamming

Lecture 3
Page 19

CS 118
Winter 2016

Reed-Solomon

• 

Lecture 3
Page 20

CS 118
Winter 2016

Error vs. loss

•  Error
– Symbols are received, but not what was sent

•  Loss
– Nothing is received

How do you detect a loss?

Lecture 3
Page 21

CS 118
Winter 2016

The role of time

•  The only way to detect loss
– Timer expires

•  Do you KNOW it was lost?
– Nope. Maybe just late.

Lecture 3
Page 22

CS 118
Winter 2016

Dealing with loss

•  So what do you do?
•  At some point, assume loss occurred

– Though perhaps it didn’t

•  Then fix it!
–  In a way that won’t cause problems if you’re

wrong
•  ARQ: Automatic Repeat-reQuest

Lecture 3
Page 23

CS 118
Winter 2016

ARQ

•  Sender
– Transmits info in blocks with IDs
– Keeps copies and retransmits on request

•  Receiver
– Collects blocks and looks for missing IDs

•  Typically gaps within received sequence
– Ask sender to help (requires reverse channel)

•  What do you say?
•  When do you say it?

Lecture 3
Page 24

CS 118
Winter 2016

ARQ variants

Negative feedback (NACK)
•  Receiver reports the IDs lost

–  Explicit request to resend
–  The IDs presumed lost
–  Messages could just be late

•  Sender resends those
explicit requests
–  No sender timers

Positive feedback (ACK)
•  Receiver reports the IDs

received
–  Confirms receipt
–  Implicit request to resend
–  No receiver timers

•  Sender resends IDs not
reported
–  Looks for gaps
–  IDs presumed lost
–  IDs could be lost, but so could

NACK be

Lecture 3
Page 25

CS 118
Winter 2016

Variants of ARQ
•  Stop-and-go

–  Positive feedback (ACK)
–  ID is 1 bit
–  Send ACK when block is received
–  Also called “alternating bit”

•  Go-back-N
–  Positive feedback (ACK)
–  ID is larger
–  Send ACK when block is received
–  Sender backs up to block after (ID+1) and resends

•  Selective repeat
–  Positive and/or negative (ACK/NACK)
–  ID is large
–  Sender retransmits only individual lost blocks

Lecture 3
Page 26

CS 118
Winter 2016

Reordering as error

•  When is a message lost?
– Or just late?

•  What happens when messages are out of
order?
– Buffer them and reorder
– Should this be limited? HOW?

Lecture 3
Page 27

CS 118
Winter 2016

Basic components of a channel

•  A signal to use to indicate symbols
•  A media the signal propagates in
•  A set of symbols
•  A way to generate and receive symbols
•  Direction

Lecture 3
Page 28

CS 118
Winter 2016

How to create signals?

•  Move photons
•  Move electrons
•  Move atoms

– Motion waves (sound)
•  Pressure waves in gas, liquid
•  Transverse waves in solids

– Streams of atoms (water flow)
•  Move collections of atoms

– Letters, flags, etc.

Lecture 3
Page 29

CS 118
Winter 2016

Types of media

•  Unguided
– Transparent
– Mechanically conductive

•  Guided
– Transparent
– Electrically conductive

Lecture 3
Page 30

CS 118
Winter 2016

Freespace
•  Unguided

– Transparent (includes vacuum)
– Mechanically conductive (except a vacuum)

•  Propagation velocity
– Faster for EM
– Slower for sound

•  Signals degrade over distance
•  Need a clear path

– Not necessarily line-of-sight, though

Lecture 3
Page 31

CS 118
Winter 2016

Fibers
•  Multi-mode

–  Thick core
–  Many paths
–  Many wavelengths

•  Single-mode
–  Thin core
–  Fewer paths
–  Long-distance

•  Hollow core
–  Uses air as the medium
–  Like freespace, but “guided”

Lecture 3
Page 32

CS 118
Winter 2016

Wires

•  Guided
•  Conductive

– Material
•  Superconductors (various)
•  Silver, copper, gold, aluminum,…

•  Number
– Single-wire (ground-return)
– Two-wire (direct return)

Lecture 3
Page 33

CS 118
Winter 2016

Communication symbols
•  How we encode information on the signal
•  Encodings do a lot for us

– Represent information
– Simplify generation
– Simplify reception
– Minimize errors

Lecture 3
Page 34

CS 118
Winter 2016

Some Example Encodings
•  Amplitude shift keying

–  Use different signal power/strength values as
symbols

•  Return to zero
– High/low signal value shows encoding
– Signal value goes to zero between symbols

•  Non-return to zero
– Using common clock to encode/decode

•  There are many others

Lecture 3
Page 35

CS 118
Winter 2016

Generating and interpreting signals
•  Strictly:

–  Generation is a way to modulate non-varying sources to
generate symbol pattern sequences that correspond to
information patterns

•  Practically:
–  Generation is a way to translate one symbol sequence into

another
–  Since the source has its own representation of a sequence

of symbols

•  Interpretation is pretty much the same thing as
generation
–  Just a different direction

Lecture 3
Page 36

CS 118
Winter 2016

Direction

•  We’re still talking about 2-party
communication…

•  Using a single channel, which of them can
send to the other?

Lecture 3
Page 37

CS 118
Winter 2016

Simplex

•  A channel transfers symbols in one direction
only

•  How?
– Signal propagates in a medium

Lecture 3
Page 38

CS 118
Winter 2016

Duplex

•  A channel simultaneously transfers symbols in
both directions

•  How?
1.  Using one natively bidirectional channel and

transferring non-interfering particles
•  EM, e.g., photons or RF

2.  Using two simplex channels
•  One in each direction

Lecture 3
Page 39

CS 118
Winter 2016

Half-duplex

•  Introduces sharing, but still 2-party
•  How?

– Using one natively bidirectional channel
– Ensuring that the channel always contains only

symbols travelling in the same direction
•  How do we ensure that?

– Need an automated mechanism to determine which
end “speaks” next

– One element of a protocol

Lecture 3
Page 40

CS 118
Winter 2016

What Is a Protocol?

•  A set of rules, agreed in advance, that enable
communication
– Endpoints: the things that want to communicate
– Link: enables action at a distance between the two

endpoints
– Protocol: specifies how to automate how these

interact

Lecture 3
Page 41

CS 118
Winter 2016

How Do We Automate a Protocol?

•  Use a finite state machine
– One at each protocol participant, actually

•  The “machine” is always in exactly one state
•  There are a finite (and predefined) set of states
•  Predefined actions cause transition from one of

the states to another

Lecture 3
Page 42

CS 118
Winter 2016

Limits of FSMs

•  Cannot count
– Finite state, so limits on the count

•  Cannot reverse or duplicate input
– Duplicate would be:

•  AB -> ABAB

– Reverse would be:
•  AB -> BA

Lecture 3
Page 43

CS 118
Winter 2016

Why do we want a FSM?

•  Keep our state manageable!

•  For networking, it’s enough
– We’re basically playing “do what I do”

Lecture 3
Page 44

CS 118
Winter 2016

Mealy machine

•  One type of FSM
•  Has states (S)
•  And transitions

–  Triggered by inputs (I)
–  Causing outputs (O)

•  Generally a convenient
type of FSM for
networking

Lecture 3
Page 45

CS 118
Winter 2016

Sharing simple state for networking

•  A wants to communicate with B
– The goal is for A and B to share state

•  Assume a perfect channel
– No errors, loss, reordering

Lecture 3
Page 46

CS 118
Winter 2016

Simplest state

•  Simplest case:
–  Two states: “round” and

“funny”
–  Do the names matter?

•  A decides to be in one
of two states.
–  The goal of

communication is for A
to make B in the same
state.

Lecture 3
Page 47

CS 118
Winter 2016

A gets to change state

•  By itself, for some external reason

Lecture 3
Page 48

CS 118
Winter 2016

B has a similar state

•  Names don’t have to match

Lecture 3
Page 49

CS 118
Winter 2016

B gets to change state too

•  Based on what it receives

Lecture 3
Page 50

CS 118
Winter 2016

How do we communicate?

•  Rules:
– Every time A changes state, it let’s B know
– Every time B finds out, it changes state to match

RUBY	

HAPPY	

A B

Lecture 3
Page 51

CS 118
Winter 2016

Let’s do that again, more simply

•  A decides to toggle a switch UP or DOWN
– Causes A to change state
– Protocol makes B match A’s state

0	

1	

A B

Lecture 3
Page 52

CS 118
Winter 2016

When are we done?

•  When will the two states match?
– Some time after A changes state, B will follow

•  How long?
– Who knows?
– But it’s a reliable channel, so it WILL change state

eventually
– Can we do better than that?

Lecture 3
Page 53

CS 118
Winter 2016

Mutual state

•  States of A and B:

A	 B	

Lecture 3
Page 54

CS 118
Winter 2016

Mutual state

•  States of A, B, A’s view of B, B’s view of A:

A	 B	

B	 A	

Lecture 3
Page 55

CS 118
Winter 2016

Mutual state

•  Keep going!
– No limit to the mutual modeling

A	 B	

B	 A	
A B

Lecture 3
Page 56

CS 118
Winter 2016

Yikes!

Lecture 3
Page 57

CS 118
Winter 2016

Limiting mutual state

•  Stop at one step
– Your state
– Your view of the other end’s state

A	 B	
A’s	view	of	

B	
B’s	view	of	

A	

Lecture 3
Page 58

CS 118
Winter 2016

Simple communication with
confirmation

•  Still sending info just from A to B
– A models both sides
– B confirms when it has changed state

0	

1	

A

Got0	

Got1	

B

Lecture 3
Page 59

CS 118
Winter 2016

Confirmation

•  How does A know B learned of the state
change?

•  Positive acknowledgement
– ACK
– Confirms receipt of information

Lecture 3
Page 60

CS 118
Winter 2016

Complication #1: imperfection

•  Real channels aren’t perfect
•  Loss

– Need to handle that

•  Error
– That can happen, too
– But detect and address it as loss
– Error you don’t detect isn’t an error (!)

•  It’s the definition of your system . . .

Lecture 3
Page 61

CS 118
Winter 2016

How do we detect loss?

•  Is it lost or just late?
•  We can never know for sure
•  We can only give up

– When timer expires, we declare “loss”

Lecture 3
Page 62

CS 118
Winter 2016

Simple communication with loss

•  Still sending info just from A to B
– Add repeats based on timeouts

0	

Got0	

A B

•  But what if an ack is lost?

Lecture 3
Page 63

CS 118
Winter 2016

Time out on ACKs, too

•  The three-way handshake (TWHS)

1	

DONE	

OK	

Lecture 3
Page 64

CS 118
Winter 2016

What’s magic about TWHS?

1	

DONE	

OK	

0		 0		
1	 0		

1		 1		

0		0		

0		1		

1		1		

A B

Lecture 3
Page 65

CS 118
Winter 2016

What’s magic about TWHS?

•  Both sides have confirmed with each other

1	

DONE	

OK	

0		 0		
1	 0		

1		 1		

0		0		

0		1		

1		1		

•  We’ve achieved our limited mutual state

Lecture 3
Page 66

CS 118
Winter 2016

Specifying a protocol
•  States

– Endpoint values

•  Symbols
– Messages “on the wire”

•  Events
–  Incoming
– Outgoing

•  Transition table
– Relates the above

•  All expressible as a state machine

Lecture 3
Page 67

CS 118
Winter 2016

Let’s break that down a bit more
•  States at the endpoints
•  Symbols “on the wire”
•  Events

–  IN:
•  Symbols received from the channel (receive) Unix receive()
•  Symbols incoming at the sender Unix write()*
•  Timer expires

–  OUT:
•  Symbols sent on the channel (transmit) Unix send()
•  Symbols out from the receiver Unix read()*
•  Timer is set

•  Transition table
–  Maps events and states to other events and new states

* these are used from outside the protocol,
so write() is when an external process sends data into the protocol

Lecture 3
Page 68

CS 118
Winter 2016

TCP state diagram

•  Remember
– They’re just NAMES
–  It’s the relation,

not the name,
that has meaning

Lecture 3
Page 69

CS 118
Winter 2016

This should look familiar

•  What have we seen before?
– Two sets of handshakes

•  What’s the rest?
– “corner cases”

Lecture 3
Page 70

CS 118
Winter 2016

Complication #2: sharing complex
state

•  What if we want to share more than one bit?
•  Share bulk by “leap-of-faith”

– Share a sequence of states

Lecture 3
Page 71

CS 118
Winter 2016

What’s the leap of faith?

•  We already know how to share a bit
•  To share more:

–  First we agree on a first bit
•  We’re both on the call

– Then we agree on each block of bits sent
•  We’re really agreeing on one bit:

–  Did you get that block?
–  “That” defined by an ID (sequence number) and checksum

–  Finally we agree we’re done
– We assume that if the above sequence is true, then the

file was communicated correctly

Lecture 3
Page 72

CS 118
Winter 2016

Sequence of states

•  Step through N items
–  Move forward once

confirmed
–  Stepwise agreement
–  End with a final

agreement

Lecture 3
Page 73

CS 118
Winter 2016

This 2-party stuff seems universal

•  It is!
– All protocols should be described the same way

•  States
•  Symbols (message formats)
•  Events
•  Transition tables

– State diagrams have familiar parts
•  Three-way handshake
•  Confirmed shared state

Lecture 3
Page 74

CS 118
Winter 2016

Look at TCP
•  States

–  Connection status
•  CLOSED, LISTEN,

SYNSENT, SYNRECD,
ESTABLISHED, …

•  Round-trip time, congestion
window, …

–  Blocks transferred
•  Sequence number

•  Symbols
–  SYN, FIN, RST, ACK
–  Block sequence ID
–  Data with checksum

•  Events
–  Input

•  Message arrivals
•  Timer expires
•  Write events

–  Output
•  Message departure
•  Timer to set
•  Read events

•  Transition table
–  State + inputevent ->

newstate, outputevent

Lecture 3
Page 75

CS 118
Winter 2016

Why is it hard?

•  Protocols can be large
– Made of familiar parts
– But many such parts

•  There’s more than 2 parties to consider
– And we’re getting to that soon too…

Lecture 3
Page 76

CS 118
Winter 2016

Summary

•  Even noisy channels are useful
– And we can calculate exactly how useful

•  Errors happen
– We can detect them
– We can correct them

•  We use protocols to automate communication
– Which are implemented with finite state machines

