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/ Review: Comm. as shared state\

e Communication is less than most think

— Just syntax — not semantics or intent

Information 1s based on states
— Which 1s based on entropy (disorder)

e We can model how state evolves
— Each side models the other

— Successive steps in models are how we go from sharing
state to transferring files

* Noise decreases the information we can pass

\ — Encodings can correct errors /

-y — Butcannot break the Shannon limit Leotune 3
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/ Communication: Roadmap \

* The imperfect channel []

* Making the channel real

* Automating the channel

\ /
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/ What 1s “encoding a block™? \

 Forward error correction

— A way to detect and correct errors without asking
for more information

* Examples:
— Parity
— Majority
— Hamming
— Reed-Solomon

\ /
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/ Parity \

e Sender

— Add one bit to ensure a block has an EVEN (or
ODD) number of 1°s

— 01011 -> 010111

* Recerver
— Check to see 1f the pattern has the correct number
of I’s
— 010111 1s OK
— 011111 1s BAD

\ /
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/ What can parity help with? \

* Error detection
— Detects any ODD number of bit errors in the block

* Cost:
— One extra bit per block
e Limits:
— Won’t detect any EVEN number of errors
(regardless of parity type)
— Cannot correct the errors

\ /
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/ Majority

* Sender uses a repetition code
— E.g., send each bit three times

— 01011 -> 0001110001 11111
* Recerver uses majority voting

— For each triplet, pick the majority value
— 001117101117101171 becomes 01111

\
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/ What can majority help with \

¢ Error detection
— Detected when a group is not all the same
— Can locate errors to each group they occur

 Error correction
— YES, for k < g errors per group

« Cost:

— N times longer
* Limits:

— Very high cost

\ /
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/ Hamming \

* Combines parity with sets

e Sender

— Use the algorithm to generate parity codes within
various subsets of the bits

e Recelver

— Use the algorithm to check parity codes within
various subsets. When a parity check fails, it
indicates the bit position of the error

\ /
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/ A Hamming Code Example \

* Let’s say we have a 15 bit data item

dl d2 d3 d4 d5 d6 d7 d8 d9 d10 di1di12 di13 d14 di15

* We want to send it on a noisy channel and be
able to correct a 1-bit error

* Add 5 parity bits
— Why 5? We’ll see in a minute
* But don’t use them as a single 5-bit number

\° Have each parity bit cover a subset of the )
sus overall bits Lot
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/" Building the Hamming Code )

* We’re going to send 15 bits encoded as 20 bits
— Adding 5 parity bits to the 15 data bits

* Where do we put the 5 parity bits?

* Not at the end

» Scattered through the 20 bit encoded value
* OK, so which bits are parity bits?

* Any bit whose binary value for position contains only
one |
— Bit 1 (1), bit 2 (10), bit 4 (100), bit 8 (1000), bit 16 (10000)

\ /
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Adding the parity bits

\

dl d2 d3 d4 d5 d6 d7 d8 d9 d10 di1 d12 di3 di4 di15
pl p2 p4 p8 plé6

1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 10001 10010 10011 10100

1 2 3 4 5 6 7 8 9O [10[ 111213 (1415|1617 |18 19|20
pl | X X X X X X X X X X
p2 X | X X | X X | X X | X X | X
p4 X[ X| X| X X[ X |X|X X
p8 X | X| X| X| X|X|X]|X
plé6 X | X |X|X|X

\ What does each parity bit cover?

CS 118
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/ What do we mean by “cover”? \

* The parity bit is calculated in the usual way
* But considering only the bits 1t covers

* So each of the five parity bits 1s computed
differently

— Considering a different (but overlapping) set of
data bits

\ /
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/ What does this buy us? \

* If one bit 1s flipped, some parity bits will come
out wrong, when checked

 Which indicates that we had an error

* But we get more than that from a Hamming
code

* Let’s consider an example

\ /

CS 118 Lecture 3
Winter 2016 Page 14




/ Hamming code example \

* Data value:
001110100010110

* Add the parity bits
100170111101000100110

* That’s what you send

* Receiver checks using the same rules

* If all parity bits match, no single bit errors

\ /

CS 118 Lecture 3
Winter 2016 Page 15




/ What 1f there’s an error? \

* What if a single bit 1s flipped?
— Say, bit #3 changes from 0 to 1

10010111101000100110
10110111101000100110

1

* Now compute the parities on what you got

— They come outto: 01110

— But in the message we have: 10110

\ — Error occurred! /
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/ But we get even more info \

* Consider the parity bits alone
* Which bits didn’t match?

* Add their positions up:
—1+2=3

\° So we can correct 1t!

CS 118

|

110

110

* The first and second parity bits (pl and p2)

 The error was in the third bit of the 20 bits

Winter 2016
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/ Hamming \

Error detection
— Detects 1 and 2 bit errors

Error correction

— Corrects all 1 bit errors

* If more than one parity set is wrong, the parity numbers indicate
the incorrect bit position

* If only one parity set is wrong, then that parity bit itself is
incorrect

 Cost:
— log, N overhead
e Limits:
\ — Cannot correct more than one error /
CS 118 Lecture 3
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/ Reed-Solomon \

* Alot more complicated...

* Why interesting?
— Add t bits of overhead
— Detects up to t errors

— Corrects up to E‘ errors

— Works for burst (consecutive) errors too

\ /
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e Error

e ] oss

\
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Error vs. loss

— Symbols are received, but not what was sent

— Nothing is received

How do you detect a loss?

\
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/ The role of time \

* The only way to detect loss

— Timer expires

* Do you KNOW it was lost?
— Nope. Maybe just late.

\
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/ Dealing with loss \

* So what do you do?

* At some point, assume loss occurred
— Though perhaps 1t didn’t
* Then fix 1t!

— In a way that won’t cause problems 1if you’re
wrong

* ARQ: Automatic Repeat-reQuest

\ /
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4 ARQ N

* Sender
— Transmits info 1n blocks with IDs
— Keeps copies and retransmits on request

* Recelver
— Collects blocks and looks for missing IDs
* Typically gaps within received sequence

— Ask sender to help (requires reverse channel)
* What do you say?

* When do you say it?

\ /

CS 118 Lecture 3
Winter 2016 Page 23




/ ARQ variants \

Negative feedback (NACK) Positive feedback (ACK)

« Receiver reports the IDs lost * Receiver reports the IDs

— Explicit request to resend received
— Confirms receipt

— The IDs presumed lost .
— Implicit request to resend

— Messages could just be late . .
— No receiver timers

* Sender resends those * Sender resends IDs not

explicit requests

reported
— No sender timers — Looks for gaps
— IDs presumed lost
— IDs could be lost, but so could
\ NACK be /
CS 118 Lecture 3
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/ Variants of ARQ \

* Stop-and-go
— Positive feedback (ACK)
— IDis 1 bit
— Send ACK when block i1s received
— Also called “alternating bit”
* Go-back-N
— Positive feedback (ACK)
— ID 1s larger
— Send ACK when block is received
— Sender backs up to block after (ID+1) and resends
* Selective repeat
— Positive and/or negative (ACK/NACK)
— ID 1s large
\ — Sender retransmits only individual lost blocks /
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/ Reordering as error \

* When 1s a message lost?
— Or just late?

* What happens when messages are out of
order?

— Buffer them and reorder
— Should this be limited? HOW?

\ /
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/ Basic components of a channel\

* A signal to use to indicate symbols

* A media the signal propagates in

* A set of symbols

* A way to generate and receive symbols
* Direction

\ /
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/ How to create signals? \

* Move photons
e Move electrons

e Move atoms

— Motion waves (sound)
* Pressure waves 1n gas, liquid
* Transverse waves in solids

— Streams of atoms (water flow)

 Move collections of atoms
\ — Letters, flags, etc.
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/ Types of media \

* Unguided
— Transparent

— Mechanically conductive

e Guided

— Transparent
— Electrically conductive

\ /
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/ Freespace
* Unguided
— Transparent (includes vacuum)

— Mechanically conductive (except, a Vacuum)

* Propagation velocity
— Faster for EM
— Slower for sound

* Signals degrade over distance

* Need a clear path
— Not necessarily line-of-sight, though

CS 118
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/ Fibers

* Multi-mode
— Thick core
— Many paths
— Many wavelengths
* Single-mode
— Thin core
— Fewer paths
— Long-distance
* Hollow core
— Uses air as the medium

\
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— Like freespace, but “guided”
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/ Wires \

e Guided

e Conductive
— Maternial

* Superconductors (various)

* Silver, copper, gold, aluminum,...

* Number
— Single-wire (ground-return)

— Two-wire (direct return)

\ /
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/ Communication symbols \

* How we encode information on the signal

* Encodings do a lot for us
— Represent information
— Simplify generation
— Simplify reception

— Minimize errors

\ /
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/ Some Example Encodings \

* Amplitude shift keying
— Use different signal power/strength values as
symbols

* Return to zero
— High/low signal value shows encoding

— Signal value goes to zero between symbols

e Non-return to zero

— Using common clock to encode/decode

\* There are many others )
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/Generating and interpreting signaﬁ

* Strictly:

— Generation 1s a way to modulate non-varying sources to
generate symbol pattern sequences that correspond to
information patterns

* Practically:

— Generation 1s a way to translate one symbol sequence into
another

— Since the source has its own representation of a sequence
of symbols

* Interpretation 1s pretty much the same thing as
\ generation )

.. — Justa different direction Lecture 3
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/ Direction \

* We’re still talking about 2-party
communication...

* Using a single channel, which of them can
send to the other?

\ /
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/ Simplex \
* A channel transfers symbols 1n one direction

only ——

e How?

— Signal propagates in a medium

\ /
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/ Duplex \
* A channel simultaneously transfers symbols in

both directions ﬁ
 Hows —

1. Using one natively bidirectional channel and
transferring non-interfering particles

 EM, e.g., photons or RF
2. Using two simplex channels
* One 1n each direction

\ /
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/ Halt-duplex \

* Introduces sharing, but still 2-party
* How?
— Using one natively bidirectional channel

— Ensuring that the channel always contains only
symbols travelling in the same direction

e How do we ensure that?

— Need an automated mechanism to determine which
end “speaks” next

— One element of a protocol

\ /
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What Is a Protocol? \

* A set of rules, agreed 1n advance, that enable
communication

— Endpoints: the things that want to communicate

— Link: enables action at a distance between the two

endpoints

— Protocol: specifies how to automate how these

Interact

Lecture 3
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/How Do We Automate a Protocol?\

* Use a finite state machine
— One at each protocol participant, actually

* The “machine” 1s always 1n exactly one state
* There are a finite (and predefined) set of states

 Predefined actions cause transition from one of
the states to another

\ /
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/ Limits of FSMs \

e Cannot count

— Finite state, so limits on the count

* Cannot reverse or duplicate input

— Duplicate would be:
* AB -> ABAB

— Reverse would be:
 AB -> BA

\ /
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/ Why do we want a FSM? \

* Keep our state manageable!

* For networking, 1t’s enough
— We’re basically playing “do what I do”

\ /
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One type of FSM
Has states (S)
And transitions
— Triggered by inputs (I)
— Causing outputs (O)
Generally a convenient

type of FSM for
networking

Mealy machine

(start)




@aring simple state for networkir@

* A wants to communicate with B
— The goal 1s for A and B to share state

* Assume a perfect channel

— No errors, loss, reordering

\ /
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/ Simplest state

* Simplest case:

— Two states: “round” and
CCfunny97

— Do the names matter?

e A decides to be in one
of two states.
— The goal of
communication 1s for A

to make B in the same
state.

\
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round

funny

~
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/ A gets to change state \

* By itself, for some external reason

(start)

A button was pressed It's windy

funny

\ /
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/ B has a similar state \

e Names don’t have to match

(start)

cold

sharp

\ /
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/ B gets to change state too \

\

CS 118
Winter 2016

* Based on what it receives

(start)

cold

happy/-

sharp

I'Uby/-

Lecture 3
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/ How do we communicate? \

e Rules:

(start)

A button was pressed/happy

\

CS 118

A

round

funny

RUBY >
It's windy/ruby

HAPPY >

— Every time A changes state, 1t let’s B know

— Every time B finds out, 1t changes state to match

(start) B
cold

happy/- ruby/-
sharp

Winter 2016




/ Let’s do that again, more simply\

* A decides to toggle a switch UP or DOWN

— Causes A to change state

— Protocol makes B match A’s state
(start)

(start) A
(o) — O
UP/0 “ DOWN/1 > 0/- “ 1/-
(1) 1 ()

\ /
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/ When are we done? \

* When will the two states match?
— Some time after A changes state, B will follow

* How long?
— Who knows?

— But it’s a reliable channel, so it WILL change state
eventually

— Can we do better than that?

\ /
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/ Mutual state \

o States of A and B:

\ /
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/ Mutual state \

e States of A, B, A’s view of B, B’s view of A:

\ /
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/ Mutual state \

* Keep going!

— No limit to the mutual modeling

\ /
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\ /
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/ Limiting mutual state \

* Stop at one step
— Your state

— Your view of the other end’s state

\ /
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/ Simple communication with \

confirmation
 Still sending info just from A to B

— A models both sides

— B confirms when it has changed state

CS 118 Lecture 3
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/ Confirmation \

e How does A know B learned of the state
change?

* Positive acknowledgement
— ACK

— Confirms receipt of information

\ /
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/ Complication #1: imperfection \

* Real channels aren’t perfect

e Loss
— Need to handle that

e Error
— That can happen, too
— But detect and address it as loss

— Error you don’t detect 1sn’t an error (!)

* It’s the definition of your system . . .

\ /
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/ How do we detect 1oss? \

* Is it lost or just late?
* We can never know for sure

* We can only give up

— When timer expires, we declare “loss”

\ /
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/Simple communication with loss\

 Still sending info just from A to B

— Add repeats based on timeouts

1/Gotl

1/Gotl

\  But what if an ack 1s lost? /
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/ Time out on ACKSs, too \

* The three-way handshake (TWHS)

(start) (start)

CALL/1
1

CALL/1

1/0K 1/0K
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/ What’s magic about TWHS? \

A B
% o o>
@ o
@ (D
o

eeeeeee




/ What’s magic about TWHS? \

* Both sides have confirmed with each other
=
oo

J— —
! SN

\. We’ve achieved our limited mutual state m/
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/ Specifying a protocol
* States
— Endpoint values

* Symbols

— Messages “on the wire”

* Events
— Incoming
— Qutgoing
* Transition table

— Relates the above

Cs\gg All expressible as a state machine

\

Lecture 3
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/ [et’s break that down a bit more\

* States at the endpoints
* Symbols “on the wire”

* Events

— IN:
* Symbols received from the channel (receive) Unix receive()
* Symbols incoming at the sender Unix write() *
* Timer expires

— OUT:
* Symbols sent on the channel (transmit) Unix send()
* Symbols out from the receiver Unix read()*

* Timer is set
* Transition table
— Maps events and states to other events and new states

* these are used from outside the protocol,
so write() 1s when an external process sends data into the protocol

\ /
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« Remember
— They’re just NAMES
— It’s t
not t

TCP state diagram

CLOSED
4

'
LISTEN

SYN/SYN + ACK

Passtve open Close

Close

Send/SYN

Active open/SYN

ne relation,
e name,

: SYN/SYN + ACK
SYN_RCVD (=

ACK N

Close[FIN ESTABLISHED

that |

has meaning

FIN_WAIT_1

FIN/ACK
ACK
A\l

FIN_WAIT_2 CLOSING

’ ACK
FIN/ACK
TIME_WAIT

Y Close[FIN . FIN/ACK

SYN_SENT

SYN + ACK/ACK

CLOSE_WAIT

Close[FIN
Y

LAST_ACK

Timeout after two

\

segment lifetimes

CLOSED

Lecture 3

Page 68



\

CS 118
Winter 2016

— Two sets of handshakes

e What’s the rest?

| CLOSED

/" This should look familiar

A

* What have we seen before? ==«

'

LISTEN

Active open/SYN

— “‘corner cases’’

Close/FIN

Y

FIN_WAIT_1 4

1

FIN_WAIT_2

kFlf\',’A(’:K

ACK

WINTSYN + ACK Send|SYN
_ SYN/SYN + ACK
SYN_R(,V\/D 2 s
~"SYN + ACK/

CLOSING

ACK

Timeout after/tap

segment lifefimey |

CLOSE_WAIT

Y

Close[F

IN

LAST_ACK

l (Wl 7d

i \\V,I
Y

TIME_Wall \/

» CLOSED

S —|
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/ Complication #2: sharing complex \

state
 What if we want to share more than one bit?

* Share bulk by “leap-of-faith”

— Share a sequence of states

\ /
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/ What’s the leap of faith? \

* We already know how to share a bit

 To share more:

— First we agree on a first bit
* We’re both on the call

— Then we agree on each block of bits sent

* We’re really agreeing on one bit:
— Did you get that block?
— “That” defined by an ID (sequence number) and checksum

— Finally we agree we’re done

— We assume that if the above sequence is true, then the
\ file was communicated correctly /
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* Step through N 1tems

— Move forward once

confirmed

— Stepwise agreement
— End with a final Gotl

agreement

Sequence of states \

(start) [GO)/Call

<TO=/Call

Answer/Ready
<TO=/Stop

[FINISHED]/Stop




/T his 2-party stuff seems universal\

e It 1s!
— All protocols should be described the same way
* States
* Symbols (message formats)

e Events
e Transition tables

— State diagrams have familiar parts
* Three-way handshake

e Confirmed shared state

\ /
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L.ook at TCP

e States
— Connection status

« CLOSED, LISTEN,
SYNSENT, SYNRECD,
ESTABLISHED, ...

* Round-trip time, congestion
window, ...

— Blocks transferred

* Sequence number

* Symbols
— SYN, FIN, RST, ACK
— Block sequence 1D

\ — Data with checksum

* Events

— Input
* Message arrivals
* Timer expires
* Write events

— Qutput
* Message departure
* Timer to set
* Read events

 Transition table

— State + inputevent ->
newstate, outputevent

\
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/ Why 1s 1t hard? \

* Protocols can be large
— Made of famihiar parts

— But many such parts

* There’s more than 2 parties to consider

— And we’re getting to that soon too...

\ /
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/ Summary \

* Even noisy channels are useful

— And we can calculate exactly how useful

* Errors happen
— We can detect them
— We can correct them

* We use protocols to automate communication
— Which are implemented with finite state machines

\ /
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