4 N

Communications and Information
Sharing
CS 118
Computer Network Fundamentals
Peter Rether

eeeeeee

/ So What? \

* We can now say something about how much
information you can push through a channel

* Let the source have entropy H (bits per
symbol)

* Let the channel have capacity C (bits per
second)

* Then we can transmit C/H — € symbols per
second

— For arbitrarily small €

;78 But never more than C/H Lectune 2

Winter 2016 Page 22

-

Information

» Weighted sum of all probabilities

H = —Epi log, (p;)
l

~

Lecture 2

Page 23

/ Why negative? \

*pi=1

— Means log, (p;) is negative
— But entropy should be positive

« Smaller p; means more choice
— More choice should mean higher entropy

\ /

CS 118 Lecture 2
Winter 2016 Page 24

/ What about zero probabilities? \

« What if p,=0?
* Jog (0) 1s not defined
* But we’re summing p.log(p,)

lim plog(p) =0

p—>0+

* So treat p,log(p,) as 0 when p. =0

\ /

CS 118 Lecture 2
Winter 2016 Page 25

4 Predictability I

* What if we’re not sending random bits?
* Maybe it’s English text in ASCII
* Maybe 1t’s Morse code

* Then the p,(j)’s are not uniform

— Some symbols are more likely, given the symbols
already sent

— Entropy is lower than the max

— Meaning we can squeeze more information
\ through /

CS 118 Lecture 2
Winter 2016 Page 26

-

* Code representation:
—E o

CS 118

Morse code

Winter 2016

/

Lecture 2
Page 27

/ What 1f choices aren’t equal? \

* YELLO

— What comes next?

. PIT

— What comes next?

* “Next letter” in English 1sn’t 1 of 26
— Roughly 50% redundant

\ /

CS 118 Lecture 2
Winter 2016 Page 28

/ A look at Morse code again... \

\

CS 118

e Time units:
Dot=+¢
Dash = 3¢

Inter-symbol gap within a letter = ¢

Winter 2016

Lecture 2
Page 29

ﬂmerican English letter frequencies\

 Basic order:

CS 118

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0

etaoinshrdlcumwfgypbvkijxgqgz

Lecture 2

Winter 2016

Page 30

/How Do We Get More Through‘.ﬁ

* Encoding 1t properly
* In essence, “short” signals for common things
* Long signals for uncommon things

* E.g., Morse code

— Common letters are few dots and dashes

— Uncommon letters require more dots and dashes
— Each dot or dash takes up time on the line

— They didn’t do 1t perfectly . . .

\

CS 118 Lecture 2
Winter 2016 Page 31

/ Who Does This Coding?

\

CS 118
Winter 2016

Information Transmitter Receiver Destination
Source
€ ® C
And the receiver decodes

\

/

Lecture 2
Page 32

/ The perils of sharing \

* Shared state may be inaccurate
— Channel errors
— Time (1.e., ‘staleness’)

* Capacity 1s finite
— Nobody can know everything

\ /

CS 118 Lecture 2
Winter 2016 Page 33

/ Simple state \

\ /

CS 118 Lecture 2
Winter 2016 Page 34

ﬁow does communication affect state}

* Knowledge doesn’t stay still...

\ /

CS 118 Lecture 2
Winter 2016 Page 35

/ Effect of receiving

\

CS 118

Winter 2016

* Entropy decreases

— Recelver knows more about the transmitter

\

Lecture 2

Page 36

/ Effect of time \

* Entropy never decreases over time

— Usually increases

\ /

CS 118 Lecture 2
Winter 2016 Page 37

/ Effect of sending (1) \

* Sending information about your state

\ /

CS 118 Lecture 2
Winter 2016 Page 38

/ Effect of sending (2) \

* Entire system entropy never decreases

— Receiver’s model of transmitter entropy decreases
in entropy, so sender’s model of recerver MUST
Increase in entropy

CS 118 Lecture 2
Winter 2016 Page 39

/ Putting 1t all together — CTP \

* Character transfer protocol
— (we’re creating this as an example)

— Sending a message one letter at a time

* Assume a perfect channel

— No errors 1n transmission, ever

\ /

CS 118 Lecture 2
Winter 2016 Page 40

/ CTP events \

* Starting condition
— Both sides share rules (protocol)

— And share endpoint info (link)

\ /

CS 118 Lecture 2
Winter 2016 Page 41

/ CTP rules \

* Both endpoints start in the state:
— NOT-CONNECTED

* Use phone-call protocol to get to:
— CONNECTED

 Connected transmitter
— sends characters one a time

 Connected recerver
— receives characters one at a time until CLOSED

At EOF

— transmitter closes connection

\ /

CS 118 Lecture 2
Winter 2016 Page 42

/F rom not-connected to connected\

* Simple phone-call protocol
— Transmitter 1nitiates, waits for response

— Receiver responds when asked

— Once confirmed, both sides enter CONNECTED
state

Remember — perfect channel,
so no need for timeouts or exceptions

\ /

CS 118 Lecture 2
Winter 2016 Page 43

/ Simple transfer \

 Character at a time
— Transmitter sends characters 1n order

— Recerver collects characters and places them 1n
order

e What state 1s shared?
— CONNECTED state
— The character

\ /

CS 118 Lecture 2
Winter 2016 Page 44

/ From connected to closed \

* Final change 1n shared state
* Lets recerver know

— Transfer can be stopped

— Message 1s complete

\ /

CS 118 Lecture 2
Winter 2016 Page 45

/ CTP evolution \

* Successive increased shared state:
— Agree to change from not-connected to connected
* Using the phone-call protocol
— Agree on each character sent

* In a perfect channel, nothing 1s lost or reordered, so
transmitter knows what receiver gets (i.e., agreement
always happens)

— Agree to end transfer

\ /

CS 118 Lecture 2
Winter 2016 Page 46

/ Limits of CTP \

* Assumes a perfect channel
— Ignores loss, reordering, flow control, etc.

e Inetfficient

— The agreed state 1s augmented one character at a
time

\ /

CS 118 Lecture 2
Winter 2016 Page 47

/ Once closed, what do we know?\

* The message!
— WHY? — the succession of shared state

\ /

CS 118 Lecture 2
Winter 2016 Page 48

/" Back to predictability

* We know more than we think
— Can send groups of characters

— Can confirm using “checksums”

\ /

CS 118 Lecture 2
Winter 2016 Page 49

/ Putting it all together — FTP \

e A more efficient version of CTP

\ /

CS 118 Lecture 2
Winter 2016 Page 50

/ Starting point \

* Share protocol rules
* Already know each other’s endpoint

* Know we’re using those rules
— TCP port 22

\ /

CS 118 Lecture 2
Winter 2016 Page 51

/F rom not-connected to connected\

* Uses TCP’s version of the phone-call protocol:
— Transmitter sends SYN
— Receiver sends SYN-ACK

— Once confirmed, both sides enter ESTABLISHED
TCP state

* What’s the difference?
— Over a perfect channel, NOTHING

\ /

CS 118 Lecture 2
Winter 2016 Page 52

/W hat about an imperfect channel?\

\

CS 118

Winter 2016

Some characters might be dropped
—“Hello” becomes “Hell”

Some characters might be changed

—“F ar” becomes “F ur”

Some characters might be added

—“Heat”becomes “Heart”
Or maybe 1t came through unchanged

How can the receiver know what happened?

/

Lecture 2
Page 53

/ Better transfer \

 Block at a time

— Transmitter sends characters in order inside blocks,
labeled with a checksum

— Receiver collects blocks, verifies checksums, and
places them in order

 What state 1s shared?
— Connection state
— The CHECKSUMS!

\ /

CS 118 Lecture 2
Winter 2016 Page 54

/ FTP evolution \

 Successive increased shared state:

— Agree to change from IDLE to ESTABLISHED
* Using the TCP protocol

— Agree on each checksum sent

— Agree to end transfer

\ /

CS 118 Lecture 2
Winter 2016 Page 55

/ From connected to closed \

* Final change 1n shared state
* Lets recerver know

— Transfer can be stopped

— Message 1s complete — WHY?

\ /

CS 118 Lecture 2
Winter 2016 Page 56

/ FTP’s leap of faith \

* Correct file transfer IFF:
— Sequence of correct blocks

— Each block 1s correct IFF checksum i1s correct

CS 118 Lecture 2
Winter 2016 Page 57

/Examples of FTP-like exchanges\

e File transfer

* Web request/response
* Netflix

\ /

CS 118 Lecture 2
Winter 2016 Page 58

/ What other states can we add? \

* Pacing
— How fast does the transfer go?

— At constant or changing tempo?

* Number of outstanding messages
— Messages sent but not yet received
— Or perhaps received, but not yet acknowledged

* Amount of reordering

\ /

CS 118 Lecture 2
Winter 2016 Page 59

/ What should you assume? \

* As little as possible!

\ /

CS 118 Lecture 2
Winter 2016 Page 60

/ Postel Principle \

* Be conservative in what you do...
— Transmit only what you think will help

— Transmit only what you expect will be understood

* Be liberal 1n what you tolerate.

— If a message could mean multiple things, allow as
many as possible

— Do not assume malice where incompetence will
suffice (errors happen)

\ /

CS 118 Lecture 2
Winter 2016 Page 61

-

Information

» Weighted sum of all probabilities

H = —Epi log, (p;)
l

~

Lecture 2

Page 62

/ Why exactly this function? \

* H is continuous

1
n
— More choice should mean more entropy

» Cascaded choices act like weighted sums
(3541 (7) 3 (53)
2
\ <'“" W aga . /

* If p; are equal () then H increases with n

CS 118 Lecture 2
Winter 2016 Page 63

/ Unbalanced tree of 32 choices \

L& 1 bit (avg)
Jﬁ ﬁ 0.5 bit (avg)

| h Lﬂ 0.25 bit (avg)
‘—4——1 0.125 bit (av
Consider putting a new item in ~-2mre Lm (avg)

one of the yellow bins; for every 2 2
32 items, the count indicates D '
how many end up in that bin. ~{_0morebits_| 1.875 bits (avg)
The bin use is heavily biased in
this example. How many bits are /
\needed to classify the item?
CS 118 Lecture 2

Winter 2016 Page 64

/ Unbalanced tree — weighted sum\

¢ _ 16l 16 +81 3 +41 (4)
— 7327982\ 32) T 32792137) T327952\33

L2 (2. 2 (2
32 062\37) T 32798213,

H=—(0.5(-1) + 0.25(-1) + 0.125(=3) + 0.0625(—4)
+0.0625(—4))

H=-(-05-0.50-0.375—- 0.25 —0.25)

H = 1.875

\ /

CS 118 Lecture 2
Winter 2016 Page 65

/ Balanced tree of 32 choices \

Consider putting a new item in one of the blue bins; for
every 32 items, the count indicates how many end up in
that bin. This time the counts per bin are the same, and
the number of bins used is maximized. How many bits
are needed to classify the item now?

\

CS 118

. R .
: e . . s .
ﬁ Ls. _ s ~
" O W O W S
= ha faia B K “I:
fiww

1 bit (avg)
1 bit (avg)
1 bit (avg)
1 bit (avg)
1 bit (avg)

> 5 bits (avQ)

/

Lecture 2

Winter 2016

Page 66

/ Balanced tree — weighted sum \
COH=-32 (%logz (3%))
0= Lh(Lds)

H=5

* For 32 choices, that’s the maximum entropy

\ /

CS 118 Lecture 2
Winter 2016 Page 67

/W hat 1f only 1 of 32 was possible?\

* Let’s say 31 values have zero probability and
one value has probability 1

H =-1llog,1+31*0log, 0

H=0+31*%0
e SOH=0

— As expected, when there’s no choice

\ /

CS 118 Lecture 2
Winter 2016 Page 68

-

Information

\

CS 118
Winter 2016

The Perfect Channel

Source

Transmitter

info

—>

Encoded
info

Recelver

Destination

info
—

The channel never alters the encoded information

The transmitter and receiver always convert perfectly
back and forth

\

/

Lecture 2

Page 69

/ The Noisy Channel \

Information Transmitter Receiver Destination
Source
Raw Encoded Raw
info info info
Y -1 >

Raw # Raw
info info

\ /

CS 118 Lecture 2
Winter 2016 Page 70

/ What 1s a noisy channel? \

A channel that introduces errors into
transmission

— What 1s sent 1s not always what 1s received
* Noise can be of arbitrary nature
— Always or sometimes

— Affects some or all of message

* The capacity of a noisy channel 1s the
maximum rate at which useful information can
be transmitted

.\, — Information not altered by the noise L

Winter 2016 Page 71

/ Equivocation \

* A situation where a received symbol might
have been caused by more than one sent
symbol

* E.g., you gota 1, but I might have sent either 0
or 1

* How did that happen?
* Noise 1n the channel

— Possibly altering my intended signal

\ /

CS 118 Lecture 2
Winter 2016 Page 72

/ Consider three cases

* 0% change
— 0->0, 1->1
— No noise
* 100% change
— 0->1,1->0
— All the symbols change, but there’s no ambiguity!
— No noise!
* 50% change
— 0->(0,1), 1->(0,1)
— The symbols change with max randomness!
— All noise — NO way to recover

\

CS 118

\

/

Lecture 2

Winter 2016

Page 73

/ Consider a matrix of choices \

-
b d

\ /

CS 118 Lecture 2
Winter 2016 Page 74

-

Senda0

\

CS 118

What does 1t mean?

e bk ¢ Sender transmits 0
— (atc)/(atb+ctd) sent as 0

— a/(at+c) recetved as 0
a C — c/(atc) received as 1

* Sender transmits 1
— (b+d)/(at+b+c+d) sent as 1
— b/(b+d) received as 0
— d/(b+d) received as 1

b d

~

/

Lecture 2

Winter 2016

Page 75

/ What does 1t mean 2.0? \

— a/(at+b) sent as 0
Senda0 a C — b/(atb) sent as 1

* Recever gets 1
— (ctd)/(atb+ctd) rec’d as 1
— c¢/(ct+d) sent as 0
— d/(ctd) sent as 1

\

CS 118
Winter 2016

| e o Recerver gets 0
— (atb)/(atb+ctd) rec’d as 0

/

Lecture 2
Page 76

/ Perfect Channel \

1 0
0 1
\ No noise)

Winter 2016 Page 77

/ Swap the choices \

0 1
1 0
\ No noise)

Winter 2016 Page 78

/ Merge things \

\ Total noise — no communication)

CS 118 Lecture 2
Winter 2016 Page 79

/ Split things . . . \

\ More complex noise . . . y

CS 118 Lecture 2
Winter 2016 Page 80

What 1s the capacity of

this last channel?

* How many bits per second are we effectively
communicating?

* Rate of channel = H(x) + H(y) - H(X,y)

— Intuitively, the bits per second that the sender and
receiver ‘“‘share”

* Let’s calculate that for our example
— Using information from the matrix

— Working on the assumption that the sender 1s
\ equally likely to send O or 1 Y,

CS 118 Lecture 2
Winter 2016 Page 81

/ So what 1s the conditional

entropy for this channel?
* First we need the entropy of the source
* Hx)=1
— Since two equally likely signals

* We also need the entropy of the receiver

— More complex calculation, but H(y) comes out
to .81

* And the joint entropy H(X,y)

— That’s 1.5 (also a bit more complex to calculate)

\ /

CS 118 Lecture 2
Winter 2016 Page 82

/ Where did I get those numbers‘?\

\

CS 118

Winter 2016

I hope you understand where H(x) = 1 came
from

But where did that .81 and 1.5 come from?

From simple (if tedious) probability
calculations

Laid out in Shannon’s paper
You should try these for yourself

Lecture 2
Page 83

/ Working it out \

* R=H(X)+ H(y) -HXxy)
* R=1+.81-15

« R=.131
* We’re effectively communicating around 1/3
of a bit per second

\ /

CS 118 Lecture 2
Winter 2016 Page 84

/ But. .. \

 What do I do with this result?

* It means, sort of, the bit I got 1s about 1/3
likely to be correct

« How can I know when it 1s and when 1t 1sn’t?
* [can’t, really
* But I can use encoding to improve my odds

* [can create a code that will help correct the
€ITOrS

\ /

CS 118 Lecture 2
Winter 2016 Page 85

/ However, . .. \

* No matter how clever my code 1s, I don’t get to
cheat on Shannon’s limit

* On average, I will need to send ~3 1/3 encoded
bits to transmit 1 actual bit more reliably

* When you work out my rate, 1t’s still .31 bits
per second

* And 1f I’'m not maximally clever, 1t will be less
* NEVER more

\ /

CS 118 Lecture 2
Winter 2016 Page 86

/ Summary \

« Communication is less than most think

— Just syntax — not semantics or intent

* Information 1s based on states
— Which 1s based on entropy (disorder)

* We can model how state evolves
— Each side models the other

— Successive steps in models are how we go from sharing
state to transferring files

* Noise decreases the information we can pass

— Encodings can correct errors
\ — But cannot break the Shannon Iimit /

Lecture 2

CS 118
Page 87

Winter 2016

