
Lecture 19
Page 1

CS 118
Winter 2016

Putting It All Together
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 19
Page 2

CS 118
Winter 2016

What have we learned?
•  We can communicate with another party over a

channel
•  Channels have limited capacity to carry

information
•  Many channels experience noise that alters

some signals
– Which reduces their capacity to carry information

•  We can use encodings to overcome noise
– But there is a computable limit to that

Lecture 19
Page 3

CS 118
Winter 2016

More things we’ve learned

•  Some channels can be shared by more than
two parties

•  Which introduces a need for naming of the
parties

•  We need methods to share such channels
– Either under the control of some party
– Or by some set of rules everyone follows

Lecture 19
Page 4

CS 118
Winter 2016

More things we’ve learned

•  Only a limited number of parties can share
realistic channels
– Not an approach that scales up too high

•  To reach higher scale in participating parties,
we need to introduce relaying
– Having some parties pass on messages to others

•  Relaying increases the need for naming
•  And introduces many new issues

Lecture 19
Page 5

CS 118
Winter 2016

Things we’ve learned
about relaying

•  Relaying requires routing
– Figuring out how to pass on particular messages

•  Relaying requires congestion control
– We’re sharing channels we don’t directly observe
– They have limited capacity
– We must make sure they aren’t overloaded

•  Relaying magnifies security and privacy
problems
– Parties we don’t control handle our messages

Lecture 19
Page 6

CS 118
Winter 2016

Protocols

•  Both direct communications and networking
require parties to follow rules
– Describing what each one does when

•  Those rules are called protocols
•  Usually, all parties must agree on the protocol

rules
•  An individual party’s progress in a protocol

can be encoded as a finite state machine

Lecture 19
Page 7

CS 118
Winter 2016

Protocols and layers

•  No single protocol will work well in all
situations

•  But we need to share a protocol to
communicate to someone else
– Who might be in a different situation

•  Solve the problem with layered protocols
– A common high level protocol is shared
– Specialized lower level protocols handle different

situations

Lecture 19
Page 8

CS 118
Winter 2016

Layering protocols

•  We need some way to compose layers of
protocols
– Rules for putting them together

•  Recursion describes the basic method of
composing protocols

•  We recurse down a protocol stack
•  And back up again on the other side

Lecture 19
Page 9

CS 118
Winter 2016

Organizing layered protocols

•  In real use, our protocols follow an hourglass
shape
– Many choices at the top
– Few (one) choices in the middle
– Many choices at the bottom

•  Thinking in terms of a DAG helps clarify the
choices and their implications

Lecture 19
Page 10

CS 118
Winter 2016

Layers and optimization
•  One job of a protocol layer is to improve an

underlying deficiency
– To change the network we have into the network

we want
•  Deficiencies include:

– Capacity
– Latency
– Reliability
– Security and privacy

•  Optimizations are made at many layers

Lecture 19
Page 11

CS 118
Winter 2016

Putting it together

•  Let’s go through an example
– An HTTP request

•  Looking at the layers involved
•  And their optimizations and behaviors

Lecture 19
Page 12

CS 118
Winter 2016

Our example
Carol wants a web page
from www.funsite.com

Here’s the server for
www.funsite.com

To get there,
she’ll need to

use her wireless
LAN

Then go through
two routers

Then go up
through the

server’s
protocol stack

A B

Lecture 19
Page 13

CS 118
Winter 2016

Getting started

•  Carol is running a web browser
•  It generates a system call requesting a web

page
•  That system call is translated by the OS to

require network activity
•  Now we enter the realm of networking

Lecture 19
Page 14

CS 118
Winter 2016

Starting at the top
Carol wants a web page
from www.funsite.com

HTTP

Her browser asks the OS to send
an HTTP request message

What does an
HTTP request

message look like?

Header

Body

Request line

Header lines

Request line indicates that it’s a GET request
And includes the URL

That’s a form of
network address.

Lecture 19
Page 15

CS 118
Winter 2016

Now what?

•  From a protocol stack perspective, we need to
determine if this layer can deliver it

•  Well, can it?
•  The local node isn’t the destination
•  The HTTP layer doesn’t know how to forward

itself
•  So, no, it can’t deliver it
•  Better go down the stack

Lecture 19
Page 16

CS 118
Winter 2016

Moving down
So we’ve got an HTTP

message to send, and this
layer can’t handle it

HTTP
Stream

URL
URL-> TCP

Hard state
TCP conn.

Find a lower layer that
can help

OK, TCP can help

TCP is connection
oriented

Let’s assume we already
have our TCP connection

established

Lecture 19
Page 17

CS 118
Winter 2016

Getting the TCP address info

•  We’ve discussed this before
•  The IP address is obtained by dynamic naming

– Translating the DNS name to an address
– Probably via either cache or a DNS request

•  The port number is based on static naming
– HTTP is pre-defined to go to port 80

•  We’ve got the name, so now we can build a
TCP message

Lecture 19
Page 18

CS 118
Winter 2016

Now something a bit funky
•  Remember the hourglass with the narrow

waist?
•  That waist is the IP protocol
•  Things right above it tend to use IP by default
•  In particular, TCP does
•  So if the IP address will appear in the IP

header, why include it in the TCP header?
•  Well, let’s not (and we don’t)

– We’ll worry about the IP address later

A cross-layer
optimization

Lecture 19
Page 19

CS 118
Winter 2016

Other TCP operations

•  We do whatever our TCP FSM tells us to do,
now

•  We consider the send window
•  And the congestion window
•  If either tells us not to send, we wait

– Saving this message
•  If everything is OK to send more, we move

down the stack

Space-related
optimizations

Lecture 19
Page 20

CS 118
Winter 2016

Now what?

•  From a protocol stack perspective, we need to
determine if this layer can deliver it

•  Well, can it?
•  The local node isn’t the destination
•  The TCP layer doesn’t know how to forward

itself
•  So, no, it can’t deliver it
•  Better go down the stack

Lecture 19
Page 21

CS 118
Winter 2016

Moving down
So we’ve got a TCP

message to send, and this
layer can’t handle it

TCP

Find a lower layer that
can help

TCP likes to work with IP

So let’s drop the TCP
message to the IP level

In particular, let’s use
IPv4

Packet
TCP

TCP->IPv4

IPv4

Hard state
TCP conn.

Lecture 19
Page 22

CS 118
Winter 2016

Doing IP’s work

•  IP is a packet protocol
– Not a stream protocol

•  It handles each packet independently
•  So we don’t need any preparation to send out

this packet
•  But . . .
•  IP doesn’t itself forward data

Lecture 19
Page 23

CS 118
Winter 2016

Adding the IP header

•  The IP header will be used for network transit
•  It must specify what’s needed to get from one

side of the network to the other
•  In particular, a source and destination address
•  We’ve got the source address by default
•  We need a destination address

– We’ve got one, but it’s www.funsite.com
– We need an IP address

Lecture 19
Page 24

CS 118
Winter 2016

Getting the IP address

•  We’ve got www.funsite.com and we want
something like 131.179.192.47

•  We may have that information in a local file
– Like /etc/hosts

•  Or we may have cached it
– Having done the translation previously

•  If not, we need to use DNS to look it up
– We won’t go into the details here

Another space-
related optimization

Lecture 19
Page 25

CS 118
Winter 2016

More IP work
•  Fill in the rest of the header

– Time to live
– Flags
– Length
– Checksum
– Etc.

•  No flow control, no congestion control
–  IP doesn’t do those

•  Just get on with sending it

Lecture 19
Page 26

CS 118
Winter 2016

So what have we got so far?

HTTP Body

TCP HTTP Body

TCP HTTP Body IP

We started with an
HTTP request

HTTP Body

We added an HTTP
header

We added a TCP
header

We added an IP
header

Lecture 19
Page 27

CS 118
Winter 2016

Now what?

•  From a protocol stack perspective, we need to
determine if this layer can deliver it

•  Well, can it?
•  The local node isn’t the destination
•  The IP layer doesn’t know how to relay itself

– Not mechanically, at least
•  So, no, it can’t deliver it
•  Better go down the stack

Lecture 19
Page 28

CS 118
Winter 2016

Moving down
So we’ve got a IP

message to send, and this
layer can’t handle it

IP

Find a lower layer that
can help

We know it has to go off
node

What protocol layer can
we go down to that might

help?

The only one we have
here is 802.11

Packet
IP

IPv4->802.11

802..11

IPv4

Lecture 19
Page 29

CS 118
Winter 2016

Doing 802.11’s work
We need to translate the IP

address into an 802.11 MAC
address

We have a table that shows us that
the MAC address of the access

point is what we should use

Now we have to build an 802.11
packet

A

Lecture 19
Page 30

CS 118
Winter 2016

So what have we got so far?

HTTP Body

TCP HTTP Body

TCP HTTP Body IP

We started with an
HTTP request

HTTP Body

We added an HTTP
header

We added a TCP
header

We added an IP
header

TCP HTTP Body IP 802.11
Now we add an
802.11 header

Lecture 19
Page 31

CS 118
Winter 2016

Now what?
•  From a protocol stack perspective, we need to

determine if this layer can deliver it
•  Well, can it?
•  The local node isn’t the destination
•  The 802.11 link layer sort of knows how to

deliver it
– More precisely, it knows it can hand it to the

wireless card and that will deliver it

Lecture 19
Page 32

CS 118
Winter 2016

Maybe not yet, though

•  Is the hardware ready?
•  The wireless hardware might be busy already
•  And any buffers it has might be full
•  In which case, we can’t pass the packet down

yet
•  But sooner or later, the hardware becomes free
•  And we ship the packet off

Lecture 19
Page 33

CS 118
Winter 2016

One more wrinkle

•  The wireless medium is shared
•  So we need to wait for the medium to be free
•  Using (for 802.11) a CSMA/CA protocol

– Listen for a little while
–  If no other transmission, then transmit the frame

•  ACKs will tell us whether it got through
•  Some (or all) of this link level protocol might

be bundled into the hardware

Functionality specific
to this link and this

protocol layer

Lecture 19
Page 34

CS 118
Winter 2016

The next step

Now we’re at the wireless access point
Which, from a networking perspective, is
a node
So now we need to go up the stack at this
node

Is this message for me?
Go up the stack to check
In particular, pop off the 802.11
header and check the IP header
OK, not for me

A

Lecture 19
Page 35

CS 118
Winter 2016

Now what?
•  We must relay so down the stack again
•  This time, we have a choice

– Down to 802.11
– Down to (say) DSL

•  How do we choose?
•  We have a table that tells us
•  The IP address isn’t in the direction of the

802.11 link
•  It’s in the direction of the DSL link

Lecture 19
Page 36

CS 118
Winter 2016

The DSL link
•  This is a point-to-point link
•  Typically, a separate (frequency defined)

channel in each direction
•  So we’re treating this unidirectional channel

kind of like a Shannon channel
– One sender, one receiver
– Sender controls use of the channel
– Receiver pulls out what sender puts in
– Assuming no noise

So we don’t need the
functionality we
required for the
shared 802.11

channel.

Lecture 19
Page 37

CS 118
Winter 2016

Over the DSL link to router A

•  Everything gets optimized at router A
– We can’t afford to go up and down stacks

•  Instead, we simply strip off the DSL headers
•  And treat what we’ve got as an IP packet

– So it better be one
– That’s an implication of our narrow waist

•  Consult a forwarding table and shoot it out the
door to router B

Lecture 19
Page 38

CS 118
Winter 2016

Where did that table come from?

•  How did router A know to send the packet to
router B?

•  Rather than push it back out to the wireless
access point?

•  Or send it to some other link?
•  Router A has a forwarding table
•  Where did that come from?
•  From a routing protocol (like BGP)

Which lives off to
the side and has
its own protocol

stack.

Lecture 19
Page 39

CS 118
Winter 2016

What’s being moved?
TCP HTTP Body IP

The routers are moving this packet
Leaving aside link level headers
that they add and remove

Usually moves through mostly
unaltered

Except for the TTL field in the IP
header

Unless something special happens . . .
Like IP fragmentation

Lecture 19
Page 40

CS 118
Winter 2016

Finishing the journey

TCP HTTP Body IP

The packet finally arrives at its
destination

But we’re not close to done

B

Lecture 19
Page 41

CS 118
Winter 2016

Up through the stack

•  The destination examines the packet
•  Is it for me?
•  YES!
•  OK, but there are multiple destinations within

“me”
– Remember internal addresses?

•  Which one of those is it for?
•  Well, better go up through the stack to see

Lecture 19
Page 42

CS 118
Winter 2016

Moving up
TCP HTTP Body IP

We’re done with the IP header, so get rid of it

TCP HTTP Body

What does the TCP header tell us to do next?

Move up a protocol layer to HTTP

Now we do TCP processing (handle receive window,
ACKs, etc.)

Playing our part in TCP flow control, congestion control,
and ordered delivery

OK, so it’s a TCP packet

More layer-
specific

optimizations

Lecture 19
Page 43

CS 118
Winter 2016

Continuing to move up

TCP HTTP Body HTTP Body HTTP Body

We’re done with the TCP header, so get rid of it

Hand the message up to an HTTP protocol layer
Probably implemented within a web server

That layer uses the HTTP header to handle networking issues

Then uses the body to deal with the actual business of
providing a web page

Lecture 19
Page 44

CS 118
Winter 2016

And then?

•  There are ACKs and responses
– At various levels
– Perhaps a link level ACK to the last router
– Certainly a TCP ACK to the sender

•  No IP ACK – IP doesn’t do ACKs

– Almost certainly a message(s) containing the
HTTP response
•  Or possibly an error response

The end-to-
end principle

is at work
here

Lecture 19
Page 45

CS 118
Winter 2016

What else might be going on?
•  The wireless channel might be used by other

nodes
•  Routers A and B might be handling other

traffic
– With different sources, destinations, or both

•  Other sources might be sending messages to
the destination

•  The destination machine might be busy with
other work

•  The real world is very complicated

Lecture 19
Page 46

CS 118
Winter 2016

Are we happy with our own
transmission?

•  We got reliable, in-order delivery of packets
representing HTTP requests
– From one end of the network to the other

•  We ensured flow control and handled
congestion, if present

•  What else could we want from our network?

Lecture 19
Page 47

CS 118
Winter 2016

Other things we might want

•  We might want compression
•  We might want encryption
•  We might want quality of service guarantees
•  We might want more control over routing
•  And we might want many other things
•  How might we get them?
•  New protocol layers, mostly
•  Composed with the existing ones

Lecture 19
Page 48

CS 118
Winter 2016

Summary
•  Modern networks are complex
•  Much of the field concerns managing that

complexity
•  Layering allows us to build protocols that

compartmentalize complexity
•  Recursive composition of layers allows us to

handle heterogeneity in huge networks
•  Layered protocols require many optimizations
•  Which introduces yet more complexity

