-

Putting It All Together
CS 118

Peter Reiher

\

Computer Network Fundamentals

/ What have we learned? \

* We can communicate with another party over a
channel

* Channels have limited capacity to carry
information

* Many channels experience noise that alters
some signals

— Which reduces their capacity to carry information

* We can use encodings to overcome noise
\ — But there 1s a computable limit to that /

CS 118 Lecture 19
Winter 2016 Page 2

/ More things we’ve learned \

* Some channels can be shared by more than
two parties
* Which introduces a need for naming of the
parties
* We need methods to share such channels
— Either under the control of some party
— Or by some set of rules everyone follows

Lecture 19

CS 118
Winter 2016 Page 3

/ More things we’ve learned \

* Only a limited number of parties can share
realistic channels

— Not an approach that scales up too high

* To reach higher scale in participating parties,
we need to introduce relaying

— Having some parties pass on messages to others

* Relaying increases the need for naming

* And introduces many new 1ssues

CS 118 Lecture 19
Winter 2016 Page 4

/~ Things we’ve learned I

about relaying
* Relaying requires routing
— Figuring out how to pass on particular messages
* Relaying requires congestion control
— We’re sharing channels we don’t directly observe
— They have limited capacity
— We must make sure they aren’t overloaded
* Relaying magnifies security and privacy
problems

\ — Parties we don’t control handle our messages /

CS 118 Lecture 19
Winter 2016 Page 5

/ Protocols \

* Both direct communications and networking
require parties to follow rules

— Describing what each one does when
* Those rules are called protocols

* Usually, all parties must agree on the protocol
rules

* An individual party’s progress 1n a protocol
can be encoded as a finite state machine

\ /

CS 118 Lecture 19
Winter 2016 Page 6

/ Protocols and layers \

* No single protocol will work well 1n all
situations

* But we need to share a protocol to
communicate to someone else

— Who might be in a different situation

* Solve the problem with layered protocols
— A common high level protocol 1s shared

— Specialized lower level protocols handle different
\ situations /

CS 118 Lecture 19
Winter 2016 Page 7

/ Layering protocols \

* We need some way to compose layers of
protocols

— Rules for putting them together

* Recursion describes the basic method of
composing protocols

* We recurse down a protocol stack
* And back up again on the other side

\ /

CS 118 Lecture 19
Winter 2016 Page 8

/ Organizing layered protocols \

* In real use, our protocols follow an hourglass
shape
— Many choices at the top
— Few (one) choices in the middle
— Many choices at the bottom

* Thinking 1n terms of a DAG helps clarify the
choices and their implications

\ /

CS 118 Lecture 19
Winter 2016 Page 9

/ Layers and optimization \

* One job of a protocol layer is to improve an
underlying deficiency

— To change the network we have into the network
we want

e Deficiencies include:
— Capacity
— Latency
— Reliability

— Security and privacy

\e Optimizations are made at many layers /

CS 118 Lecture 19
Winter 2016 Page 10

/ Putting 1t together \

* Let’s go through an example
— An HTTP request

* Looking at the layers involved

* And their optimizations and behaviors

\ /

CS 118 Lecture 19
Winter 2016 Page 11

/ Our example \

Carol wants a web page
from www.funsite.com

To get there,
she’ll need to

use her wireless
LAN

\

CS 118

2 ~u

A

Here’s the server for

B

www.funsite.com

|

il

Then go through

two routers

.

Then go up
through the
server’s
protocol stack

/

Lecture 19

Winter 2016

Page 12

/ Getting started \

* Carol 1s running a web browser

* It generates a system call requesting a web
page

* That system call 1s translated by the OS to
require network activity

* Now we enter the realm of networking

\ /

CS 118 Lecture 19
Winter 2016 Page 13

-

\

CS 118

Winter 2016

Carol wants a web page Her browser asks the OS to send

from www.funsite.com an HTTP request message
What does an
HITP HTTP request

&

Starting at the top \

| 1essage look like?
Request line

Header lines /_\
That’s a form of

network address.

Request line indicates that
And includes the URL

Lecture 19

Page 14

/ Now what? \

* From a protocol stack perspective, we need to
determine 1f this layer can deliver it

 Well, can 1t?
 The local node i1sn’t the destination

* The HTTP layer doesn’t know how to forward
itself

* So, no, 1t can’t deliver 1t

\' Better go down the stack)

CS 118 Lecture 19
Winter 2016 Page 15

/ Moving down

So we’ve got an HTTP
message to send, and this
layer can’t handle 1t

&

Find a lower layer that
can help

\

CS 118

HTTP

OK, TCP can help

TCP 1s connection
oriented

Let’s assume we already
have our TCP connection

established

Stream
URL
URL-> TCP

/

Lecture 19

Winter 2016

Page 16

/ Getting the TCP address info \

e We’ve discussed this before
* The IP address 1s obtained by dynamic naming

— Translating the DNS name to an address

— Probably via either cache or a DNS request

* The port number 1s based on static naming
— HTTP 1s pre-defined to go to port 80

* We’ve got the name, so now we can build a
TCP message

\ /

CS 118 Lecture 19
Winter 2016 Page 17

/ Now something a bit funky \

* Remember the hourglass with the narrow
waist?

* That waist 1s the IP protocol
* Things right above it tend to use IP by default
* In particular, TCP does

* So if the IP address will appear 1n the IP
header, why 1nclude 1t in the TCP header?

* Well, let’s not (and we don’t) A cross-layer

optimization

\ — We’ll worry about the IP address later Y,

CS 118 Lecture 19
Winter 2016 Page 18

/ Other TCP operations \

 We do whatever our TCP FSM tells us to do,
now

Space-related

 We consider the send window optimizations
* And the congestion window
 [f either tells us not to send, we wait

— Saving this message

* If everything 1s OK to send more, we move
down the stack

\ /

CS 118 Lecture 19
Winter 2016 Page 19

/ Now what? \

* From a protocol stack perspective, we need to
determine 1f this layer can deliver it

 Well, can 1t?
 The local node i1sn’t the destination

* The TCP layer doesn’t know how to forward
itself

* So, no, 1t can’t deliver 1t

\' Better go down the stack)

CS 118 Lecture 19
Winter 2016 Page 20

/ Moving down \

So we’ve got a TCP
. TCP
message to send, and this
layer can’t handle 1t
(\ TCP likes to work with IP
S
So let’s drop the TCP

Find a lower layer that message to the IP level e

can help

In particular, let’s use
IPv4

\ /

CS 118 Lecture 19
Winter 2016 Page 21

/ Doing IP’s work \

* IP 1s a packet protocol
— Not a stream protocol

* It handles each packet independently

* So we don’t need any preparation to send out
this packet

e But...
e [P doesn’t itself forward data

\ /

CS 118 Lecture 19
Winter 2016 Page 22

/ Adding the IP header \

e The IP header will be used for network transit

* It must specify what’s needed to get from one
side of the network to the other

* In particular, a source and destination address
* We’ve got the source address by default

e We need a destination address

— We’ve got one, but 1t’s www.funsite.com

\ — We need an IP address /

CS 118 Lecture 19
Winter 2016 Page 23

/ Getting the IP address \

* We’ve got www.funsite.com and we want
something like 131.179.192.47

* We may have that information 1n a local file

— Like /etc/hosts Another space-
related optimization

* Or we may have cached it

— Having done the translation previously

* If not, we need to use DNS to look 1t up

— We won’t go into the details here

\ /

CS 118 Lecture 19
Winter 2016 Page 24

/ More IP work

* Fill in the rest of the header
— Time to live
— Flags
— Length
— Checksum
— Eftc.

* No flow control, no congestion control
— IP doesn’t do those

N Just get on with sending it

CS 118

\

Lecture 19

Winter 2016

Page 25

/ So what have we got so far? \

HTTP Body We started with an
HTTP request
HTTP Body We added an HTTP
header
We added a TCP
TCP HTTP Body beader
We added an IP
[P TCP HTTP Body header

\ /

CS 118 Lecture 19
Winter 2016 Page 26

/ Now what? \

* From a protocol stack perspective, we need to
determine 1f this layer can deliver it

 Well, can 1t?
* The local node 1sn’t the destination
* The IP layer doesn’t know how to relay 1tself

— Not mechanically, at least

e So, no, 1t can’t deliver 1t

\° Better go down the stack)

CS 118 Lecture 19
Winter 2016 Page 27

/ Moving down \

So we’ve got a IP
message to send, and this
layer can’t handle 1t

N
&
What protocol layer can

Find a lower layer that we 09 down to that might
can help help?

IP

We know 1t has to go off
node

The only one we have
here 1s 802.11

\ /

CS 118 Lecture 19
Winter 2016 Page 28

/ Doing 802.11°s work \

We need to translate the IP

address into an 802.11 MAC
address

PN L
:/‘_;ﬁ _g We have a table that shows us that

the MAC address of the access
point 1s what we should use

Now we have to build an 802.11
packet

\ /

CS 118 Lecture 19
Winter 2016 Page 29

/ So what have we got so far? \

HTTP Body
HTTP Body
TCP HTTP Body
IP TCP HTTP Body
802.11 IP TCP HTTP Body

\

CS 118

We started with an
HTTP request

We added an HTTP
header

We added a TCP
header

We added an IP
header

Now we add an
802.11 header

/

Lecture 19

Winter 2016

Page 30

/ Now what? \

* From a protocol stack perspective, we need to
determine 1f this layer can deliver it

 Well, can 1t?

* The local node 1sn’t the destination

* The 802.11 link layer sort of knows how to
deliver 1t

— More precisely, it knows 1t can hand it to the
wireless card and that will deliver it

\ /

CS 118 Lecture 19
Winter 2016 Page 31

/ Maybe not yet, though \

* Is the hardware ready?
* The wireless hardware might be busy already
* And any buffers 1t has might be full

* In which case, we can’t pass the packet down
yet

* But sooner or later, the hardware becomes free

* And we ship the packet off

\ /

CS 118 Lecture 19
Winter 2016 Page 32

/ One more wrinkle

Functionality specific
to this link and this
protocol layer

* The wireless medium 1s shared

 So we need to wait for the mediy to be free
* Using (for 802.11) a CSMA/

— Listen for a little while

{ protocol

— If no other transmission, then transmit the frame

* ACKs will tell us whether 1t got through

* Some (or all) of this link level protocol might
be bundled into the hardware

\ /

CS 118 Lecture 19
Winter 2016 Page 33

-

\

CS 118

A

«—

The next step

Now we’re at the wireless access point

Which, from a networking perspective, 1s

a node

So now we need to go up the stack at this

node
Is this message for me?

Go up the stack to check

In particular, pop off the 802.11

header and check the IP header
OK, not for me

\

/

Lecture 19

Winter 2016

Page 34

/ Now what? \

* We must relay so down the stack again

e This time, we have a choice
— Down to 802.11
— Down to (say) DSL

« How do we choose?
* We have a table that tells us

e The IP address 1sn’t in the direction of the
802.11 link

* It’s in the direction ot the DSL link)

CS 118 Lecture 19
Winter 2016 Page 35

/ The DSL lin

* This 1s a point-to-point link

So we don’t need the
functionality we
required for the
shared 802.11
channel.

* Typically, a separate (frequency de
channel 1n each direction

* So we’re treating this unidirecti¢’ 4l channel
kind of like a Shannon channel

— One sender, one receiver
— Sender controls use of the channel
— Recerver pulls out what sender puts in

\ — Assuming no noise Y,

Lecture 19

CS 118
Page 36

Winter 2016

/ Over the DSL link to router A \

* Everything gets optimized at router A
— We can’t afford to go up and down stacks

* Instead, we simply strip off the DSL headers

* And treat what we’ve got as an IP packet
— So 1t better be one

— That’s an 1implication of our narrow waist

* Consult a forwarding table and shoot it out the
door to router B

\ /

CS 118 Lecture 19
Winter 2016 Page 37

/ Where did that table come from‘.ﬁ

* How did router A know to send the packet to
router B?

* Rather than push 1t back out to the wireless
access point?

Which lives off to
the side and has
its own protocol

stack.

e Or send 1t to some other link?

* Router A has a forwarding table
* Where did that come from?

\' From a routing protocol (like BGP))

CS 118 Lecture 19
Winter 2016 Page 38

/ What’s being moved?

\

CS 118
Winter 2016

IP | TCP HTTP Body

The routers are moving this packet
Leaving aside link level headers
that they add and remove

Usually moves through mostly
unaltered

Except for the TTL field in the IP
header

Unless something special happens . . .

Like IP fragmentation

/

Lecture 19

Page 39

-

Finishing the journey

B
g @ The packet finally arrives at its
Siil_—

destination

IP

TCP

HTTP Body

\

CS 118

But we’re not close to done

\

/

Lecture 19

Winter 2016

Page 40

/ Up through the stack \

* The destination examines the packet
* Is 1t for me?
 YES!

* OK, but there are multiple destinations within

(14 29

me

— Remember internal addresses?
e Which one of those 1s it for?
\° Well, better go up through the stack to see)

CS 118 Lecture 19
Winter 2016 Page 41

/ Moving up

IP | TCP HTTP Body

More layer-
specific
optimizations

We’re done with the IP header, so get rid of it
OK, so it’s a TCP packet

Now we do TCP processing (handle receive/ /indow,
ACKs, etc.)

Playing our part in TCP flow control, congestion control,
and ordered delivery

What does the TCP header tell us to do next?

Move up a protocol layer to HTTP

\ /

CS 118 Lecture 19
Winter 2016 Page 42

/ Continuing to move up \

TCP HTTP Body

We’re done with the TCP header, so get rid of 1t

Hand the message up to an HTTP protocol layer
Probably implemented within a web server

That layer uses the HTTP header to handle networking issues

Then uses the body to deal with the actual business of
providing a web page

\ /

CS 118 Lecture 19
Winter 2016 Page 43

/ And then? \

The end-to-
end principle
1s at work
here

* There are ACKs and responses
— At various levels
— Perhaps a link level ACK to the last

— Certainly a TCP ACK to the sendr
* No IP ACK —IP doesn’t do ACKs

— Almost certainly a message(s) containing the
HTTP response

* Or possibly an error response

\

CS 118
Winter 2016

/

Lecture 19
Page 44

/ What else might be going on? \

* The wireless channel might be used by other
nodes

* Routers A and B might be handling other
traffic

— With different sources, destinations, or both

* Other sources might be sending messages to
the destination

* The destination machine might be busy with
other work

\e The real world is very complicated

CS 118

Winter 2016

Lecture 19
Page 45

/ Are we happy with our own \
transmission?

* We got reliable, in-order delivery of packets
representing HTTP requests

— From one end of the network to the other

* We ensured flow control and handled
congestion, 1f present

e What else could we want from our network?

\ /

CS 118 Lecture 19
Winter 2016 Page 46

/ Other things we might want \

* We might want compression
* We might want encryption

* We might want quality of service guarantees

* We might want more control over routing
* And we might want many other things
 How might we get them?

* New protocol layers, mostly

* Composed with the existing ones /

CS 118 Lecture 19
Winter 2016 Page 47

/ Summary \

* Modern networks are complex

* Much of the field concerns managing that
complexity

* Layering allows us to build protocols that
compartmentalize complexity

* Recursive composition of layers allows us to
handle heterogeneity in huge networks

* Layered protocols require many optimizations

\° Which introduces yet more complexity)

CS 118 Lecture 19
Winter 2016 Page 48

