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We can lose packets for many 
reasons 

•  Corruption 
•  Not delivered to receiver 
•  Poor flow control 
•  But also because of overall network conditions 
•  If there’s too much traffic in the net, not all 

packets can be delivered 
– Can happen locally at one link or one part of 

network 
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Congestion control 

•  Receiver might be ready, but is the net? 
– Don’t want to overwhelm the network 

•  We have some windows 
– Send = how much info can be outstanding 
– Recv = how much info can be reordered 

•  Can isn’t the same as should 
How much SHOULD be outstanding? 
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A network problem 
•  Congestion control is not directly about the 

sender and receiver 
•  It’s about the network path they use 
– And share with others 

•  The shared paths can only handle so much 
traffic 

•  A given sender might send less 
•  But all the senders using the path in 

combination might overwhelm it 
– Perhaps just part of it 
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How to address the congestion 
control problem? 

•  A global problem, so perhaps a global 
solution? 

•  But who is in charge of the problem? 
•  And how does that party enforce its dictates? 
•  Instead, if everyone cooperates, maybe we can 

solve it without global control 
•  Everyone does his part to solve the problem, 

leading to a better global solution 
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But what can I do? 

•  You can only change your own behavior 
•  But if everyone does, that will reduce the 

congestion 
•  And life becomes better for everyone 
•  OK, so how do I change my behavior to help? 
•  And how much should I change it? 
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Recall the two windows 

•  Receiver window 
– Reorder out-of-order arrivals 
– Buffer messages until receiver catches up 

•  Send window 
– Hold for possible retry until ACKed 
– Emulate how the channel delays/stores messages 

in a pipeline until ACKed  
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Send window maximum 

•  Round-trip to the receiver 
– “BW * delay” product 
– Really “fill the pipe until you get an ACK”, 

presuming there isn’t any loss 

•  Once you fill the pipe, send at the rate you get 
ACKs 
– ACK clocking 
– Forces sender to pace to the receiver 
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TCP and congestion control 

•  TCP is one protocol that addresses congestion 
control 

•  Probably the most important congestion 
control factor in the Internet 

•  Essentially a cooperative approach 
•  When congestion occurs, all TCP senders slow 

down 
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TCP’s CWND 

•  Another window used by TCP 
•  Not the same as the send window 
•  Not intended to handle flow control 
•  Rather, to handle congestion control 
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TCP MSS and RTT 

•  Two important parameters for TCP use 
•  MSS – Maximum Segment Size 
– Biggest TCP payload you can fit into one IP packet 
– By default, 536 “octets” (essentially bytes) 
– Find it by trial and error 

•  RTT – Round Trip Time 
– Time to send a TCP packet and receive an ACK 
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Adjusting the congestion window 

•  TCP CWND management 
– CWND is the send window max 

•  Starts at 1, 4, 10K, or 10 packets 

•  Additive Increase 
– Until you see loss, increase CWND by a constant 

amount for every ACK 
•  Multiplicative decrease 
– When you see loss, halve CWND 
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AIMD feedback 

•  A conservative approach 

•  Grow slowly by probing 

•  Backoff faster than you grow if there’s signs of 
trouble 
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The slow start phase 

•  New TCP connection starts in a slow start 
phase 
– Until CWND reaches SSTRESH 

•  A parameter of TCP 

•  CWND grows by 1 for each ACK 
–  I.e., CWND doubles* each RTT 
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Why’s that exponential? 
•  Sender sends out some number of packets N 
– Without waiting for an ACK 

•  If all goes well, N ACKs come back quickly 
•  You add one to CWND for each ACK 
•  So the next time, you send out 2*N packets 
•  And expect back 2*N ACKS 
•  In which case, you add 2*N to CWND 
– Getting 4*N 

•  That’s exponential 
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Why does it stop? 

•  Either you hit the limit to change TCP 
congestion control behavior 
– Your CWND reaches SSTHRESH 

•  Or you time out waiting for an ACK 
– Assuming that the packet is lost  
– Due to congestion 
– Will that assumption always be true . . . ? 

•  In latter case, also halve SSTHRESH 
– Depending on TCP variant 
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Congestion avoidance phase 

•  Happens once SSTHRESH is reached 
•  Assumption is that there is no congestion so 

far 
•  Inch up a bit further to see if more can be sent 
– Until you reach MAX 

•  CWND grows by 1 for each RTT  
– NOT each ACK received 
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Visualization 
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Details 

•  CWND doesn’t double per RTT in slow start 
– Because receiver doesn’t ACK every segment 
–  It ACKs every other (“ACK compression”) 
– CWND increases by 50% each RTT in slow start 

•  This is one TCP variant 
– There are dozens, and they keep changing! 
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TCP’s biggest assumption 

•  TCP only knows: 
– What arrived 
– A timeout happened 

•  TCP measures: 
– RTT directly (timestamps) 

•  Based on sent packets and ACKs 
– Max receive window (window) 
– Network congestion (via timeout!) 
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What does a loss mean? 

•  Corruption 
– Should send more, i.e., send another copy 

•  Congestion 
– Should send less 

•  TCP assumes loss implies congestion 
–  I.e., the more conservative interpretation 
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Impact of loss=congestion 

•  TCP works poorly when corruption is high 
–  I.e., wireless networks 
– When corruption is not due to load 

•  TCP is aggressive 
–  It keeps sending more until something is lost 
– Two TCP flows always fight each other 

•  But TCP loses to cheaters 
– TCP backs off 
– Others might not 
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Congestion control algorithms 

•  Many of them 
– Lots of variations 
– Lots of incremental tweaks 
– Many based on fluid flow, feedback theory 
– Many based on whomever types it in… 
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Latency management 

•  Networks have buffers 
– Buffers adjust for bursts 

•  Most networks “tail drop” 
–  I.e., keep as many messages as the buffer can hold, 

and drop ones that arrive once full 

•  Tail drop favors keeping buffers full 
– Full buffers mean high delays 
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Solutions to latency management 

•  Explicit network congestion signals 
– Routers tell endpoints when buffers are filling 

•  Progressive loss 
– Drop probability increases as buffer grows 
– Don’t just wait for “full” and drop all 
– “Random Early Drop” and variants 
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Explicit congestion notification 
(ECN) 

•  ECN routers (relays) indicate congestion 
– Mark instead of drop 
–  Implies space to hold marked packets 
–  So really more like “mark before drop” 
– E.g., mark packets arriving when queue is more than 

half full 

•  Endpoints react to ECN flags as if congestion was 
noticed 
–  For TCP, ECN makes the CWND smaller 
– TCP can react to congestion without losing packets 
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What if ECN isn’t available? 

•  Tail-drop queue 
– Do not drop if there’s room 
– Drop if queue is full 

•  Random Early Detection 
– Drop probability increases 

as queue grows 
– Various curves 
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Better buffering 

•  Relays can cause problems 
– Connections compete one packet at a time 

– Maybe separate buffering by connections is better 
•  “Fair queuing” 

– Need better use of buffers 
•  Memory is cheap, but has a cost 
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Space 

•  Compression 

•  Caching 
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Compression 

•  Translate a set of long messages into a set of short 
ones 
– Take a set of messages 
– Represent frequent ones with fewer bits,  

longer ones with more bits 

•  Translate a long message into a short one 
– Take a set of groups of symbols in a message 
– Represent frequent groups with fewer bits,  

longer ones with more bits 
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Compression examples 

•  Web traffic 
•  E-mail 
•  TCP/IP headers 
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Web traffic 

•  HTTP 1.1 
– Compress content of responses 
– E.g., zip images, large text areas 
–  Inside Google Chrome browser 

•  HTTP 2.0 
– Compress headers 
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E-mail 

•  By the program 
– Postscript, Word 

•  By the user in advance 
– Zip folders 

•  By the email system 
– Compress attachments 
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TCP/IP headers 

•  Compress the TCP and IP headers 
– 40 bytes down to 16 
– Most of the header is predictable within a single 

connection 

•  Typical for PPP and SLIP (dial-up lines) 
–  I.e., over path that doesn’t examine the header 
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TCP/IP compression 

•  When is it useful? 
– What benefit? 

•  For 40B ACK packets, saves 60% 
•  For 512B payload data, saves 4% 
•  For 1500B segments (Ethernet), saves 1.6% 

– Where useful? 
•  ACK-only, BW-limited returns 
•  For 2400bps modems (1990), saves 87ms 
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Required compression information 

•  Patterns and frequencies of those patterns 
– Usually from a set of previous messages 

•  E.g., Morse code 
– Or from previous use on this channel 

•  E.g., LZW, used in GIFs 
– Or just obvious patterns 

•  Run-length encoding, used for faxes and JPEG 
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Compression trade-offs 

•  Trade (consume) 
–  Effort 

•  CPU works harder 

–  Energy 
•  CPU burns power 

–  Time 
•  Encode/decode needs to 

delay the stream 
•  Encode/decode operation 

takes time 

•  Gain (produce) 
–  Space 

•  Smaller message takes up 
less memory 

–  Capacity 
•  Smaller message uses less 

bandwidth 

–  Time 
•  Smaller message takes 

less time to transfer 
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Compression caveats 

•  Works once 
– Compression removes patterns 
– Works at only ONE layer or over ONE hop 

•  Obscures information 
– Can’t modify or easily read until undone 
– Uncompress/recompress is expensive 

•  Small returns if used on only part of large 
messages 
– HTTP/2 header compression is controversial 
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Caching 

•  Save via reuse 
– Over time within one stream 

•  If you have the answer from before, use it again 

– Across a set of streams 
•  Don’t ask if your friends know the answer 
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Caching examples 

•  Inside a protocol 
– TCP control block sharing, TCP/IP compression 

•  Content 
– ARP, DNS, Web 
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TCP control block sharing 

•  New connections start from “zero” 
– Why? 

•  New connections can reuse  
– From past (reuse CWND, RTT, MSS) 
– From peers (reuse RTT, MSS, split CWND) 
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Why reuse? 

•  Change is unlikely 
–  Path (routing) tends to be stable 
– Endpoints tend to be stable 
– Aggregate traffic patterns tend to be stable 
–  So RTT, MSS tend to be stable 

•  Why infer when you can share? 
– Endpoints within the same machine can share 
– No need to have CWNDs fight and balance; 

can just “split at start” 
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Net effect of TCP sharing 
•  Less blind probing 
–  No need to send large segments to find MSS 
–  No need to use RTT over-estimates 

•  No need to compete via loss 
–  Shared info can “rebalance” CWND 

•  Safe 
–  Tries to anticipate transients – only at connection start/end 
–  Tries to jump closer to convergence,  

then lets existing feedback take over 
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More complex sharing 

•  Endpoints within a LAN 
– Can share their experience 

– Can explicitly coordinate rather than compete 

•  Inherently harder 
– No longer just sharing information on a single 

computer 
– Which means it must be communicated 
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Information delineation 

•  Boundaries 

•  Flows 
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Boundaries 

•  Message vs. packet alternatives 
– Span: messages longer than a packet 

– Preserve: message matches packet 

– Pack: packet carries multiple messages 

– None: no boundary support (e.g., TCP) 
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Adding markers is easy… 

•  Length indicator 
– E-mail attachments, IP packets, HTTP chunks 
– Efficient (rapid jump), but fixed max 

•  Special symbols (“escape” sequences) 
– Not used for data 
– Arbitrary chunk size, but need to scan 
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Deciding marker use is hard 

•  Costs 
– Gathering small chunks can cause delays 
– Picking the wrong size increases overheads 
– Cost to split/merge or merge/split 

•  Risks 
– Lack of fate-sharing 

•  Different chunks via different paths 



Lecture 17 
Page 49 

CS 118 
Winter 2016  

Marker examples 

•  Length 
– Pack: HTTP, e-mail, SCTP 
– Preserve: UDP, DCCP 
– Span: ATM AAL5, IP frag., multipart MIME 

•  Special symbols (“escape” sequences) 
– ATM, Ethernet preamble 
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Flows 

•  Like a channel… 
–  Information shared between parties 

•  …with multiple viewpoints simultaneously 
– One channel 
– Several separate channels 
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Examples of multiple flows 

•  Multiplexing 

•  Striping (inverse multiplexing) 

•  Partitioning 
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Multiplexing 

•  Using one flow to emulate many 
– HTTP chunking and muxing 
– Allows one TCP connection to support concurrent 

web transfers 

•  Hazards 
– “Fair sharing” 
– Head-of-line blocking 
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Fair-sharing 
•  Merging multiple flows onto one 

–  Who goes next? 

•  Various strategies 
–  Shortest-first, largest-first, round-robin, proportional 

•  How is “fair” defined? 
–  Each according to their needs? 
–  Each gets the same? 

•  How is “each” defined? 
–  Per human? Per endpoint? Per application? 
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Head-of-line blocking 

•  Consider lines at a market 
– Large basket arrives before 2-item 
– BLOCKS system 

•  Avoiding HOL blocking? 
– Limit chunksize 

•  E.g., everyone pays 10 items at a time 
•  Leaves when done paying for entire basket 

– Use separate connections 
•  E.g., multiple TCP connections for web clients 
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Striping 

•  Making multiple channels appear as one 
–  Increased bandwidth 
–  Increased reliability  

•  Examples 
– Multipath TCP 
– SCTP 
– Various datacenter optimizations 
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Partitioning 

•  Split one info stream into separate ones 
– To avoid HOL blocking 
– To manage differently (loss vs. recovery) 

•  Examples 
– Teleconference audio vs. video  
– FTP control vs. content 
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Translation 

•  Formats 

•  Conversion 

•  Marshalling 
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Recall encodings 

•  Represent information with symbols 
– Various strategies 
– Earlier lectures focused on physical, error 

•  More encoding issues 
– More encoding variants 
– Coordinating the endpoints 
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Bit order and formats 

•  Many channels exchange bit sequences 
– Upper layers exchange bytes, words, etc. 
– What order? 

•  LSB vs. MSB 
– LSB-first: enables serial arithmetic 

•  Ethernet, Token bus 
– MSB-first:  

•  Token ring 
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On holy wars and  plea for peace 

•  Gulliver’s Travels 
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Endianess 
•  Big-endian: ABCD stored as A, B, C, D 
– The Internet 
– Motorola 68000, RISC (PowerPC, SPARC) 
– Telephone numbers 

•  Little-endian: ABCD stored as D, C, B, A 
–  Intel and AMD processors 

•  Both (configurable) 
– ARM 
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Conversion 

•  Host to net, net to host 
– Long, short, etc. 

– Converts from Internet (big-endian) to local 
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Marshalling 

•  Packing and unpacking 
– Format conversion 
– Sequencing 
– Labeling 

•  All for what? 
– Same as for a function call 
– A way to know the meaning of shared bits 
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Why is marshalling hard? 

•  Expensive 
– Conversion takes time 

•  Tedious 
– Many steps to mess up 

•  Exacting 
– All the steps have to match to work 



Lecture 17 
Page 65 

CS 118 
Winter 2016  

Summary 

•  Lots more optimizations and features 
– The details depend on the implementation 

•  Details matter and they don’t 
– Parties must agree on details to communicate 
– Detail differences affect performance 
– But particulars of details not always otherwise 

critical 
– Things can be done many ways 


