-

\

Layer Optimization: Congestion

Control
CS 118

Computer Network Fundamentals

Peter Reiher

/ We can lose packets for many \

reasons
* Corruption

 Not delivered to receiver
e Poor flow control
 But also because of overall network conditions

e If there’s too much traffic in the net, not all
packets can be delivered

— Can happen locally at one link or one part of
network

CS 118 Lecture 17
Winter 2016 Page 2

/ Congestion control \

* Recerver might be ready, but 1s the net?
— Don’t want to overwhelm the network

 We have some windows
— Send = how much info can be outstanding

— Recv = how much info can be reordered
e Can 1sn’t the same as should
\ How much SHOULD be outstanding?

CS 118 Lecture 17
Winter 2016 Page 3

/ A network problem

sender and receiver

— And share with others

* The shared paths can only
traffic

* But all the senders using

* Congestion control 1s not directly about the

* It’s about the network path they use

handle so much

* A given sender might send less

ne path 1n

\ combination might overw!
sus — Perhaps just part of it

nelm 1t

\

Lecture 17

Winter 2016

Page 4

/ How to address the congestion \
control problem?

* A global problem, so perhaps a global
solution?

* But who 1s in charge of the problem?
* And how does that party enforce its dictates?

* Instead, if everyone cooperates, maybe we can
solve 1t without global control

* Everyone does his part to solve the problem,
\ leading to a better global solution Y,

CS 118 Lecture 17
Winter 2016 Page 5

/ But what can I do? \

* You can only change your own behavior

* But if everyone does, that will reduce the
congestion

* And life becomes better for everyone
* OK, so how do I change my behavior to help?
* And how much should I change it?

\ /

CS 118 Lecture 17
Winter 2016 Page 6

/ Recall the two windows \

e Receiver window
— Reorder out-of-order arrivals

— Buffer messages until receiver catches up

* Send window
— Hold for possible retry until ACKed

— Emulate how the channel delays/stores messages
in a pipeline until ACKed

\ /

CS 118 Lecture 17
Winter 2016 Page 7

/ Send window maximum \

* Round-trip to the receiver
— “BW * delay” product

— Really “fill the pipe until you get an ACK”,
presuming there 1sn’t any loss

* Once you fill the pipe, send at the rate you get
ACKs

— ACK clocking
— Forces sender to pace to the receiver

\ /

CS 118 Lecture 17
Winter 2016 Page 8

/ TCP and congestion control \

* TCP 1s one protocol that addresses congestion
control

* Probably the most important congestion
control factor in the Internet

* Essentially a cooperative approach

* When congestion occurs, all TCP senders slow
down

\ /

CS 118 Lecture 17
Winter 2016 Page 9

/ TCP’s CWND \

* Another window used by TCP
 Not the same as the send window
 Not intended to handle flow control

* Rather, to handle congestion control

\ /

CS 118 Lecture 17
Winter 2016 Page 10

/ TCP MSS and RTT \

* Two important parameters for TCP use

* MSS — Maximum Segment Size
— Biggest TCP payload you can fit into one IP packet
— By default, 536 “octets” (essentially bytes)
— Find 1t by trial and error

* RTT — Round Trip Time
— Time to send a TCP packet and receive an ACK

\ /

CS 118 Lecture 17
Winter 2016 Page 11

/Adjusting the congestion windovxx

 TCP CWND management
— CWND 1s the send window max
 Starts at 1, 4, 10K, or 10 packets
e Additive Increase

— Until you see loss, increase CWND by a constant
amount for every ACK

* Multiplicative decrease
— When you see loss, halve CWND

\ /

CS 118 Lecture 17
Winter 2016 Page 12

/ AIMD feedback \

* A conservative approach
* Grow slowly by probing

* Backoff faster than you grow if there’s signs of
trouble

\ /

CS 118 Lecture 17
Winter 2016 Page 13

-

\

CS 118
Winter 2016

The slow start phase

e New TCP connection starts 1in a slow start
phase

— Until CWND reaches SSTRESH

* A parameter of TCP

* CWND grows by 1 for each ACK
— L.e., CWND doubles* each RTT

\

Lecture 17

Page 14

/ Why’s that exponential? \

* Sender sends out some number of packets N
— Without waiting for an ACK

 If all goes well, N ACKs come back quickly
* You add one to CWND for each ACK
* So the next time, you send out 2*N packets
* And expect back 2*N ACKS
* In which case, you add 2*N to CWND

— Getting 4*N
\e That’s exponential /

CS 118 Lecture 17
Winter 2016 Page 15

/ Why does it stop? \

* Either you hit the limit to change TCP
congestion control behavior

— Your CWND reaches SSTHRESH

* Or you time out waiting for an ACK
— Assuming that the packet 1s lost
— Due to congestion
— Will that assumption always be true . . . ?

 In latter case, also halve SSTHRESH
\ — Depending on TCP variant /

CS 118 Lecture 17
Winter 2016 Page 16

/ Congestion avoidance phase \

* Happens once SSTHRESH 1is reached

* Assumption 1s that there 1s no congestion so
far

* Inch up a bit further to see if more can be sent
— Until you reach MAX

* CWND grows by 1 for each RTT
— NOT each ACK received

\ /

CS 118 Lecture 17
Winter 2016 Page 17

\

CS 118
Winter 2016

Congestion window (kilobytes)

44

40

Visualization

Timeout

e

Threshold

Threshold

6 8 10 12 14 16 18 20 22 24
Transmission number

/

Lecture 17
Page 18

/ Details \

* CWND doesn’t double per RTT 1n slow start
— Because receiver doesn’t ACK every segment
— It ACKSs every other (“ACK compression’)
— CWND increases by 50% each RTT 1n slow start

e This 1s one TCP variant

— There are dozens, and they keep changing!

\ /

CS 118 Lecture 17
Winter 2016 Page 19

/ TCP’s biggest assumption \

* TCP only knows:
— What arrived
— A timeout happened

e TCP measures:

— RTT directly (timestamps)
* Based on sent packets and ACKs

— Max receive window (window)

\ — Network congestion (via timeout!) /

CS 118 Lecture 17
Winter 2016 Page 20

/ What does a loss mean? \

* Corruption
— Should send more, 1.e., send another copy

* Congestion
— Should send less

* TCP assumes loss implies congestion

— I.e., the more conservative interpretation

\ /

CS 118 Lecture 17
Winter 2016 Page 21

/ Impact of loss=congestion \

* TCP works poorly when corruption 1s high
— |.e., wireless networks

— When corruption is not due to load

* TCP 1s aggressive
— It keeps sending more until something 1s lost
— Two TCP flows always fight each other

e But TCP loses to cheaters
— TCP backs off
\ — Others might not /

CS 118 Lecture 17
Winter 2016 Page 22

/ Congestion control algorithms \

* Many of them
— Lots of variations
— Lots of incremental tweaks
— Many based on fluid flow, feedback theory
— Many based on whomever types it in...

WELL? WHAT DO 1 ONCE READ THAT GIVEN BUT WHAT ABOUT
YOU THINK OF MY INFINITE TIME, A MY POEM ?
NEW POEM ? THOUSAND MONKEYS WITH /

TYPEWRITERS WOULD

EVENTUALLY WRITE THE

ENTIRE WORKS OF THREE MONKEYS,

SHAKESPEARE . TEN MINUTES.
. /;@A._

5-15 5.Nams |

U EIpUlE nieg Do) 408 O

Ig |
CS 118 Lecture 17
Winter 2016 Page 23

/ Latency management \

* Networks have buffers
— Buffers adjust for bursts

* Most networks “tail drop”

— I.e., keep as many messages as the buffer can hold,
and drop ones that arrive once full

 Tail drop favors keeping buffers full
— Full buffers mean high delays

CS 118 Lecture 17
Winter 2016 Page 24

/Solutions to latency management\

* Explicit network congestion signals
— Routers tell endpoints when buffers are filling

* Progressive loss
— Drop probability increases as buffer grows
— Don’t just wait for “full” and drop all

— “Random Early Drop” and variants

\ /

CS 118 Lecture 17
Winter 2016 Page 25

/ Explicit congestion notification \
(ECN)

* ECN routers (relays) indicate congestion
— Mark 1nstead of drop
— Implies space to hold marked packets
— So really more like “mark before drop”

— E.g., mark packets arriving when queue 1s more than
half full

* Endpoints react to ECN flags as 1f congestion was
noticed

— For TCP, ECN makes the CWND smaller
\ — TCP can react to congestion without losing packets /

CS 118 Lecture 17
Winter 2016 Page 26

/ What if ECN 1sn’t available? \

* Tail-drop queue
— Do not drop 1f there’s room

— Drop if queue 1s full

* Random Early Detection

— Drop probability increases
as queue grows

— Various curves

\ /

CS 118 Lecture 17
Winter 2016 Page 27

/ Better buifering \

* Relays can cause problems

— Connections compete one packet at a time

— Maybe separate buffering by connections 1s better

* “Fair queuing”

— Need better use of buffers

* Memory is cheap, but has a cost

\ /

CS 118 Lecture 17
Winter 2016 Page 28

/ Space \

* Compression

* Caching

\ /

CS 118 Lecture 17
Winter 2016 Page 29

/ Compression \

* Translate a set of long messages 1nto a set of short
ones
— Take a set of messages

— Represent frequent ones with fewer bits,
longer ones with more bits

* Translate a long message into a short one
— Take a set of groups of symbols in a message

— Represent frequent groups with fewer bits,
longer ones with more bits

\ /

CS 118 Lecture 17
Winter 2016 Page 30

/ Compression examples \

 Web traffic
e E-mail
e TCP/IP headers

\ /

CS 118 Lecture 17
Winter 2016 Page 31

/ Web trattic \

« HTTP 1.1

— Compress content of responses

— E.g., zip 1images, large text areas

— Inside Google Chrome browser

« HTTP 2.0

— Compress headers

\ /

CS 118 Lecture 17
Winter 2016 Page 32

/ E-mail \

* By the program
— Postscript, Word

* By the user 1n advance
— Z1p folders

* By the email system

— Compress attachments

\ /

CS 118 Lecture 17
Winter 2016 Page 33

-

\

CS 118
Winter 2016

TCP/IP headers

* Compress the TCP and IP headers
— 40 bytes down to 16
— Most of the header 1s predictable within a single

connection

* Typical for PPP and SLIP (dial-up lines)

— IL.e., over path that doesn’t examine the header

\

Lecture 17

Page 34

/ TCP/IP compression \

e When 1s 1t useful?

— What benefit?
* For 40B ACK packets, saves 60%
* For 512B payload data, saves 4%
* For 1500B segments (Ethernet), saves 1.6%

— Where useful?
* ACK-only, BW-limited returns
* For 2400bps modems (1990), saves 87ms

\ /

CS 118 Lecture 17
Winter 2016 Page 35

/Required compression information\

* Patterns and frequencies of those patterns
— Usually from a set of previous messages
* E.g., Morse code

— Or from previous use on this channel
 E.g., LZW, used in GIFs

— Or just obvious patterns
* Run-length encoding, used for faxes and JPEG

\ /

CS 118 Lecture 17
Winter 2016 Page 36

/ Compression trade-offs \

* Trade (consume) * Gain (produce)
— Effort — Space
* CPU works harder * Smaller message takes up
— Energy less memory
« CPU burns power — Capacity
— Time * Smaller message uses less
bandwidth
* Encode/decode needs to .
delay the stream — Time
 Encode/decode operation * Smaller message takes
takes time less time to transfer
CS 118 Lecture 17

Winter 2016 Page 37

/ Compression caveats

* Works once

— Compression removes patterns

— Works at only ONE layer or over ONE hop
* Obscures information

— Can’t modify or easily read until undone

— Uncompress/recompress 1S eXpensive

* Small returns 1f used on only part of large
messages

— HTTP/2 header compression is controversial

\

CS 118

Winter 2016

Lecture 17
Page 38

/ Caching \

e Save via reuse

— Over time within one stream

* If you have the answer from before, use i1t again

— Across a set of streams
* Don’t ask 1f your friends know the answer

\ /

CS 118 Lecture 17
Winter 2016 Page 39

/ Caching examples \

\

CS 118

Winter 2016

* Inside a protocol

— TCP control block sharing, TCP/IP compression

e Content

— ARP, DNS, Web

Lecture 17
Page 40

/ TCP control block sharing \

* New connections start from “zero”
— Why?

* New connections can reuse
— From past (reuse CWND, RTT, MSS)
— From peers (reuse RTT, MSS, split CWND)

\ /

CS 118 Lecture 17
Winter 2016 Page 41

/ Why reuse? \

* Change 1s unlikely
— Path (routing) tends to be stable
— Endpoints tend to be stable

— Aggregate traffic patterns tend to be stable
— So RTT, MSS tend to be stable

* Why infer when you can share?

— Endpoints within the same machine can share

— No need to have CWNDs fight and balance;
\ can just “split at start”)

CS 118 Lecture 17
Winter 2016 Page 42

/ Net effect of TCP sharing \

* Less blind probing
— No need to send large segments to find MSS
— No need to use RTT over-estimates

* No need to compete via loss
— Shared info can “rebalance’ CWND

o Safe

— Tries to anticipate transients — only at connection start/end

— Tries to jump closer to convergence,
\ then lets existing feedback take over /

CS 118 Lecture 17
Winter 2016 Page 43

/ More complex sharing \

* Endpoints within a LAN

— Can share their experience

— Can explicitly coordinate rather than compete

* Inherently harder

— No longer just sharing information on a single
computer

\ — Which means it must be communicated /

CS 118 Lecture 17
Winter 2016 Page 44

/ Information delineation \

* Boundaries

e Flows

\ /

CS 118 Lecture 17
Winter 2016 Page 45

/ Boundaries \

* Message vs. packet alternatives
— Span: messages longer than a packet

— Preserve: message matches packet

— Pack: packet carries multiple messages

— None: no boundary support (e.g., TCP)

\ /

CS 118 Lecture 17
Winter 2016 Page 46

/ Adding markers 1s easy... \

* Length indicator
— E-mail attachments, IP packets, HTTP chunks
— Efficient (rapid jump), but fixed max

* Special symbols (“‘escape” sequences)
— Not used for data

— Arbitrary chunk size, but need to scan

\ /

CS 118 Lecture 17
Winter 2016 Page 47

/ Deciding marker use 1s hard \

* Costs
— Gathering small chunks can cause delays
— Picking the wrong size increases overheads
— Cost to split/merge or merge/split

e Risks

— Lack of fate-sharing
 Different chunks via different paths

\ /

CS 118 Lecture 17
Winter 2016 Page 48

/ Marker examples \

* Length
— Pack: HTTP, e-mail, SCTP
— Preserve: UDP, DCCP
— Span: ATM AALS, IP frag., multipart MIM|

(1l

* Special symbols (“escape” sequences)
— ATM, Ethernet preamble

\ /

CS 118 Lecture 17
Winter 2016 Page 49

/ Flows \

e Like a channel...

— Information shared between parties

 ...with multiple viewpoints simultaneously
— One channel
— Several separate channels

\ /

CS 118 Lecture 17
Winter 2016 Page 50

/ Examples of multiple flows \

* Multiplexing

* Striping (inverse multiplexing)

* Partitioning

\ /

CS 118 Lecture 17
Winter 2016 Page 51

-

\

CS 118
Winter 2016

Multiplexing

* Using one flow to emulate many
— HTTP chunking and muxing

— Allows one TCP connection to support concurrent

web transfers

e Hazards

“Fair sharing”

— Head-of-line blocking

\

Lecture 17

Page 52

/ Fair-sharing \

Merging multiple flows onto one
— Who goes next?

Various strategies
— Shortest-first, largest-first, round-robin, proportional

How 1s “fair” defined?

— Each according to their needs?
— Each gets the same?

How 1s “each” defined?
— Per human? Per endpoint? Per application?

\ /

CS 118 Lecture 17
Winter 2016 Page 53

/ Head-of-line blocking

* Consider lines at a market
— Large basket arrives before 2-1tem

— BLOCKS system

* Avoiding HOL blocking?

— Limit chunksize
* E.g., everyone pays 10 items at a time
* Leaves when done paying for entire basket
— Use separate connections
* E.g., multiple TCP connections for web clients

\

CS 118

Winter 2016

/

Lecture 17
Page 54

/ Striping \

* Making multiple channels appear as one
— Increased bandwidth

— Increased reliability

* Examples
— Multipath TCP
— SCTP

— Various datacenter optimizations

\ /

CS 118 Lecture 17
Winter 2016 Page 55

-

\

CS 118

* Sp
To avoid HOL blocking

Partitioning

1t one 1nfo stream 1nto separate ones

To manage differently (loss vs. recovery)

* Examples
— Telecontference audio vs. video
— FTP control vs. content

\

Lecture 17

Winter 2016

Page 56

/ Translation \

e Formats
 Conversion

* Marshalling

\ /

CS 118 Lecture 17
Winter 2016 Page 57

/ Recall encodings \

* Represent information with symbols
— Various strategies

— Earlier lectures focused on physical, error

* More encoding issues
— More encoding variants

— Coordinating the endpoints

\ /

CS 118 Lecture 17
Winter 2016 Page 58

-

\

CS 118
Winter 2016

Bit order and formats

* Many channels exchange bit sequences

— Upper layers exchange bytes, words, etc.
— What order?

e LSB vs. MSB

— LSB-first: enables serial arithmetic

» Ethernet, Token bus

— MSB-first:

* Token ring

\

Lecture 17

Page 59

/On holy wars and plea for peacex

\

CS 118
Winter 2016

e Gulliver’s Travels

BIG ENDIAN - The way
people always broke
their eggs in the
Lilliput land

LITTLE ENDIAN - The
way the king then
ordered the people to
break their eggs

/

Lecture 17
Page 60

/ Endianess \

* Big-endian: ABCD stored as A, B, C, D
— The Internet

— Motorola 68000, RISC (PowerPC, SPARC)
— Telephone numbers

e Little-endian: ABCD stored as D, C, B, A
— Intel and AMD processors

* Both (configurable)
— ARM

\ /

CS 118 Lecture 17
Winter 2016 Page 61

/ Conversion

\

CS 118

Winter 2016

* Host to net, net to host

— Long, short, etc.

— Converts from Internet (big-endian) to local

\

Lecture 17

Page 62

/ Marshalling

\

CS 118

Winter 2016

* Packing and unpacking

— Format conversion
— Sequencing
— Labeling

 All for what?

— Same as for a function call

— A way to know the meaning of shared bits

\

Lecture 17

Page 63

/ Why 1s marshalling hard? \

* Expensive

— Conversion takes time

 Tedious

— Many steps to mess up

* Exacting

— All the steps have to match to work

\ /

CS 118 Lecture 17
Winter 2016 Page 64

-

Summary

* Lots more optimizations and features
— The details depend on the implementation

* Details matter and they don’t
— Parties must agree on details to communicate
— Detail differences affect performance

— But particulars of details not always otherwise

critical

\ — Things can be done many ways

CS 118
Winter 2016

\

Lecture 17

Page 65

