
Lecture 17
Page 1

CS 118
Winter 2016

Layer Optimization: Congestion
Control
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 17
Page 2

CS 118
Winter 2016

We can lose packets for many
reasons

•  Corruption
•  Not delivered to receiver
•  Poor flow control
•  But also because of overall network conditions
•  If there’s too much traffic in the net, not all

packets can be delivered
– Can happen locally at one link or one part of

network

Lecture 17
Page 3

CS 118
Winter 2016

Congestion control

•  Receiver might be ready, but is the net?
– Don’t want to overwhelm the network

•  We have some windows
– Send = how much info can be outstanding
– Recv = how much info can be reordered

•  Can isn’t the same as should
How much SHOULD be outstanding?

Lecture 17
Page 4

CS 118
Winter 2016

A network problem
•  Congestion control is not directly about the

sender and receiver
•  It’s about the network path they use
– And share with others

•  The shared paths can only handle so much
traffic

•  A given sender might send less
•  But all the senders using the path in

combination might overwhelm it
– Perhaps just part of it

Lecture 17
Page 5

CS 118
Winter 2016

How to address the congestion
control problem?

•  A global problem, so perhaps a global
solution?

•  But who is in charge of the problem?
•  And how does that party enforce its dictates?
•  Instead, if everyone cooperates, maybe we can

solve it without global control
•  Everyone does his part to solve the problem,

leading to a better global solution

Lecture 17
Page 6

CS 118
Winter 2016

But what can I do?

•  You can only change your own behavior
•  But if everyone does, that will reduce the

congestion
•  And life becomes better for everyone
•  OK, so how do I change my behavior to help?
•  And how much should I change it?

Lecture 17
Page 7

CS 118
Winter 2016

Recall the two windows

•  Receiver window
– Reorder out-of-order arrivals
– Buffer messages until receiver catches up

•  Send window
– Hold for possible retry until ACKed
– Emulate how the channel delays/stores messages

in a pipeline until ACKed

Lecture 17
Page 8

CS 118
Winter 2016

Send window maximum

•  Round-trip to the receiver
– “BW * delay” product
– Really “fill the pipe until you get an ACK”,

presuming there isn’t any loss

•  Once you fill the pipe, send at the rate you get
ACKs
– ACK clocking
– Forces sender to pace to the receiver

Lecture 17
Page 9

CS 118
Winter 2016

TCP and congestion control

•  TCP is one protocol that addresses congestion
control

•  Probably the most important congestion
control factor in the Internet

•  Essentially a cooperative approach
•  When congestion occurs, all TCP senders slow

down

Lecture 17
Page 10

CS 118
Winter 2016

TCP’s CWND

•  Another window used by TCP
•  Not the same as the send window
•  Not intended to handle flow control
•  Rather, to handle congestion control

Lecture 17
Page 11

CS 118
Winter 2016

TCP MSS and RTT

•  Two important parameters for TCP use
•  MSS – Maximum Segment Size
– Biggest TCP payload you can fit into one IP packet
– By default, 536 “octets” (essentially bytes)
– Find it by trial and error

•  RTT – Round Trip Time
– Time to send a TCP packet and receive an ACK

Lecture 17
Page 12

CS 118
Winter 2016

Adjusting the congestion window

•  TCP CWND management
– CWND is the send window max

•  Starts at 1, 4, 10K, or 10 packets

•  Additive Increase
– Until you see loss, increase CWND by a constant

amount for every ACK
•  Multiplicative decrease
– When you see loss, halve CWND

Lecture 17
Page 13

CS 118
Winter 2016

AIMD feedback

•  A conservative approach

•  Grow slowly by probing

•  Backoff faster than you grow if there’s signs of
trouble

Lecture 17
Page 14

CS 118
Winter 2016

The slow start phase

•  New TCP connection starts in a slow start
phase
– Until CWND reaches SSTRESH

•  A parameter of TCP

•  CWND grows by 1 for each ACK
–  I.e., CWND doubles* each RTT

Lecture 17
Page 15

CS 118
Winter 2016

Why’s that exponential?
•  Sender sends out some number of packets N
– Without waiting for an ACK

•  If all goes well, N ACKs come back quickly
•  You add one to CWND for each ACK
•  So the next time, you send out 2*N packets
•  And expect back 2*N ACKS
•  In which case, you add 2*N to CWND
– Getting 4*N

•  That’s exponential

Lecture 17
Page 16

CS 118
Winter 2016

Why does it stop?

•  Either you hit the limit to change TCP
congestion control behavior
– Your CWND reaches SSTHRESH

•  Or you time out waiting for an ACK
– Assuming that the packet is lost
– Due to congestion
– Will that assumption always be true . . . ?

•  In latter case, also halve SSTHRESH
– Depending on TCP variant

Lecture 17
Page 17

CS 118
Winter 2016

Congestion avoidance phase

•  Happens once SSTHRESH is reached
•  Assumption is that there is no congestion so

far
•  Inch up a bit further to see if more can be sent
– Until you reach MAX

•  CWND grows by 1 for each RTT
– NOT each ACK received

Lecture 17
Page 18

CS 118
Winter 2016

Visualization

Lecture 17
Page 19

CS 118
Winter 2016

Details

•  CWND doesn’t double per RTT in slow start
– Because receiver doesn’t ACK every segment
–  It ACKs every other (“ACK compression”)
– CWND increases by 50% each RTT in slow start

•  This is one TCP variant
– There are dozens, and they keep changing!

Lecture 17
Page 20

CS 118
Winter 2016

TCP’s biggest assumption

•  TCP only knows:
– What arrived
– A timeout happened

•  TCP measures:
– RTT directly (timestamps)

•  Based on sent packets and ACKs
– Max receive window (window)
– Network congestion (via timeout!)

Lecture 17
Page 21

CS 118
Winter 2016

What does a loss mean?

•  Corruption
– Should send more, i.e., send another copy

•  Congestion
– Should send less

•  TCP assumes loss implies congestion
–  I.e., the more conservative interpretation

Lecture 17
Page 22

CS 118
Winter 2016

Impact of loss=congestion

•  TCP works poorly when corruption is high
–  I.e., wireless networks
– When corruption is not due to load

•  TCP is aggressive
–  It keeps sending more until something is lost
– Two TCP flows always fight each other

•  But TCP loses to cheaters
– TCP backs off
– Others might not

Lecture 17
Page 23

CS 118
Winter 2016

Congestion control algorithms

•  Many of them
– Lots of variations
– Lots of incremental tweaks
– Many based on fluid flow, feedback theory
– Many based on whomever types it in…

Lecture 17
Page 24

CS 118
Winter 2016

Latency management

•  Networks have buffers
– Buffers adjust for bursts

•  Most networks “tail drop”
–  I.e., keep as many messages as the buffer can hold,

and drop ones that arrive once full

•  Tail drop favors keeping buffers full
– Full buffers mean high delays

Lecture 17
Page 25

CS 118
Winter 2016

Solutions to latency management

•  Explicit network congestion signals
– Routers tell endpoints when buffers are filling

•  Progressive loss
– Drop probability increases as buffer grows
– Don’t just wait for “full” and drop all
– “Random Early Drop” and variants

Lecture 17
Page 26

CS 118
Winter 2016

Explicit congestion notification
(ECN)

•  ECN routers (relays) indicate congestion
– Mark instead of drop
–  Implies space to hold marked packets
–  So really more like “mark before drop”
– E.g., mark packets arriving when queue is more than

half full

•  Endpoints react to ECN flags as if congestion was
noticed
–  For TCP, ECN makes the CWND smaller
– TCP can react to congestion without losing packets

Lecture 17
Page 27

CS 118
Winter 2016

What if ECN isn’t available?

•  Tail-drop queue
– Do not drop if there’s room
– Drop if queue is full

•  Random Early Detection
– Drop probability increases

as queue grows
– Various curves

Lecture 17
Page 28

CS 118
Winter 2016

Better buffering

•  Relays can cause problems
– Connections compete one packet at a time

– Maybe separate buffering by connections is better
•  “Fair queuing”

– Need better use of buffers
•  Memory is cheap, but has a cost

Lecture 17
Page 29

CS 118
Winter 2016

Space

•  Compression

•  Caching

Lecture 17
Page 30

CS 118
Winter 2016

Compression

•  Translate a set of long messages into a set of short
ones
– Take a set of messages
– Represent frequent ones with fewer bits,

longer ones with more bits

•  Translate a long message into a short one
– Take a set of groups of symbols in a message
– Represent frequent groups with fewer bits,

longer ones with more bits

Lecture 17
Page 31

CS 118
Winter 2016

Compression examples

•  Web traffic
•  E-mail
•  TCP/IP headers

Lecture 17
Page 32

CS 118
Winter 2016

Web traffic

•  HTTP 1.1
– Compress content of responses
– E.g., zip images, large text areas
–  Inside Google Chrome browser

•  HTTP 2.0
– Compress headers

Lecture 17
Page 33

CS 118
Winter 2016

E-mail

•  By the program
– Postscript, Word

•  By the user in advance
– Zip folders

•  By the email system
– Compress attachments

Lecture 17
Page 34

CS 118
Winter 2016

TCP/IP headers

•  Compress the TCP and IP headers
– 40 bytes down to 16
– Most of the header is predictable within a single

connection

•  Typical for PPP and SLIP (dial-up lines)
–  I.e., over path that doesn’t examine the header

Lecture 17
Page 35

CS 118
Winter 2016

TCP/IP compression

•  When is it useful?
– What benefit?

•  For 40B ACK packets, saves 60%
•  For 512B payload data, saves 4%
•  For 1500B segments (Ethernet), saves 1.6%

– Where useful?
•  ACK-only, BW-limited returns
•  For 2400bps modems (1990), saves 87ms

Lecture 17
Page 36

CS 118
Winter 2016

Required compression information

•  Patterns and frequencies of those patterns
– Usually from a set of previous messages

•  E.g., Morse code
– Or from previous use on this channel

•  E.g., LZW, used in GIFs
– Or just obvious patterns

•  Run-length encoding, used for faxes and JPEG

Lecture 17
Page 37

CS 118
Winter 2016

Compression trade-offs

•  Trade (consume)
–  Effort

•  CPU works harder

–  Energy
•  CPU burns power

–  Time
•  Encode/decode needs to

delay the stream
•  Encode/decode operation

takes time

•  Gain (produce)
–  Space

•  Smaller message takes up
less memory

–  Capacity
•  Smaller message uses less

bandwidth

–  Time
•  Smaller message takes

less time to transfer

Lecture 17
Page 38

CS 118
Winter 2016

Compression caveats

•  Works once
– Compression removes patterns
– Works at only ONE layer or over ONE hop

•  Obscures information
– Can’t modify or easily read until undone
– Uncompress/recompress is expensive

•  Small returns if used on only part of large
messages
– HTTP/2 header compression is controversial

Lecture 17
Page 39

CS 118
Winter 2016

Caching

•  Save via reuse
– Over time within one stream

•  If you have the answer from before, use it again

– Across a set of streams
•  Don’t ask if your friends know the answer

Lecture 17
Page 40

CS 118
Winter 2016

Caching examples

•  Inside a protocol
– TCP control block sharing, TCP/IP compression

•  Content
– ARP, DNS, Web

Lecture 17
Page 41

CS 118
Winter 2016

TCP control block sharing

•  New connections start from “zero”
– Why?

•  New connections can reuse
– From past (reuse CWND, RTT, MSS)
– From peers (reuse RTT, MSS, split CWND)

Lecture 17
Page 42

CS 118
Winter 2016

Why reuse?

•  Change is unlikely
–  Path (routing) tends to be stable
– Endpoints tend to be stable
– Aggregate traffic patterns tend to be stable
–  So RTT, MSS tend to be stable

•  Why infer when you can share?
– Endpoints within the same machine can share
– No need to have CWNDs fight and balance;

can just “split at start”

Lecture 17
Page 43

CS 118
Winter 2016

Net effect of TCP sharing
•  Less blind probing
–  No need to send large segments to find MSS
–  No need to use RTT over-estimates

•  No need to compete via loss
–  Shared info can “rebalance” CWND

•  Safe
–  Tries to anticipate transients – only at connection start/end
–  Tries to jump closer to convergence,

then lets existing feedback take over

Lecture 17
Page 44

CS 118
Winter 2016

More complex sharing

•  Endpoints within a LAN
– Can share their experience

– Can explicitly coordinate rather than compete

•  Inherently harder
– No longer just sharing information on a single

computer
– Which means it must be communicated

Lecture 17
Page 45

CS 118
Winter 2016

Information delineation

•  Boundaries

•  Flows

Lecture 17
Page 46

CS 118
Winter 2016

Boundaries

•  Message vs. packet alternatives
– Span: messages longer than a packet

– Preserve: message matches packet

– Pack: packet carries multiple messages

– None: no boundary support (e.g., TCP)

Lecture 17
Page 47

CS 118
Winter 2016

Adding markers is easy…

•  Length indicator
– E-mail attachments, IP packets, HTTP chunks
– Efficient (rapid jump), but fixed max

•  Special symbols (“escape” sequences)
– Not used for data
– Arbitrary chunk size, but need to scan

Lecture 17
Page 48

CS 118
Winter 2016

Deciding marker use is hard

•  Costs
– Gathering small chunks can cause delays
– Picking the wrong size increases overheads
– Cost to split/merge or merge/split

•  Risks
– Lack of fate-sharing

•  Different chunks via different paths

Lecture 17
Page 49

CS 118
Winter 2016

Marker examples

•  Length
– Pack: HTTP, e-mail, SCTP
– Preserve: UDP, DCCP
– Span: ATM AAL5, IP frag., multipart MIME

•  Special symbols (“escape” sequences)
– ATM, Ethernet preamble

Lecture 17
Page 50

CS 118
Winter 2016

Flows

•  Like a channel…
–  Information shared between parties

•  …with multiple viewpoints simultaneously
– One channel
– Several separate channels

Lecture 17
Page 51

CS 118
Winter 2016

Examples of multiple flows

•  Multiplexing

•  Striping (inverse multiplexing)

•  Partitioning

Lecture 17
Page 52

CS 118
Winter 2016

Multiplexing

•  Using one flow to emulate many
– HTTP chunking and muxing
– Allows one TCP connection to support concurrent

web transfers

•  Hazards
– “Fair sharing”
– Head-of-line blocking

Lecture 17
Page 53

CS 118
Winter 2016

Fair-sharing
•  Merging multiple flows onto one

–  Who goes next?

•  Various strategies
–  Shortest-first, largest-first, round-robin, proportional

•  How is “fair” defined?
–  Each according to their needs?
–  Each gets the same?

•  How is “each” defined?
–  Per human? Per endpoint? Per application?

Lecture 17
Page 54

CS 118
Winter 2016

Head-of-line blocking

•  Consider lines at a market
– Large basket arrives before 2-item
– BLOCKS system

•  Avoiding HOL blocking?
– Limit chunksize

•  E.g., everyone pays 10 items at a time
•  Leaves when done paying for entire basket

– Use separate connections
•  E.g., multiple TCP connections for web clients

Lecture 17
Page 55

CS 118
Winter 2016

Striping

•  Making multiple channels appear as one
–  Increased bandwidth
–  Increased reliability

•  Examples
– Multipath TCP
– SCTP
– Various datacenter optimizations

Lecture 17
Page 56

CS 118
Winter 2016

Partitioning

•  Split one info stream into separate ones
– To avoid HOL blocking
– To manage differently (loss vs. recovery)

•  Examples
– Teleconference audio vs. video
– FTP control vs. content

Lecture 17
Page 57

CS 118
Winter 2016

Translation

•  Formats

•  Conversion

•  Marshalling

Lecture 17
Page 58

CS 118
Winter 2016

Recall encodings

•  Represent information with symbols
– Various strategies
– Earlier lectures focused on physical, error

•  More encoding issues
– More encoding variants
– Coordinating the endpoints

Lecture 17
Page 59

CS 118
Winter 2016

Bit order and formats

•  Many channels exchange bit sequences
– Upper layers exchange bytes, words, etc.
– What order?

•  LSB vs. MSB
– LSB-first: enables serial arithmetic

•  Ethernet, Token bus
– MSB-first:

•  Token ring

Lecture 17
Page 60

CS 118
Winter 2016

On holy wars and plea for peace

•  Gulliver’s Travels

Lecture 17
Page 61

CS 118
Winter 2016

Endianess
•  Big-endian: ABCD stored as A, B, C, D
– The Internet
– Motorola 68000, RISC (PowerPC, SPARC)
– Telephone numbers

•  Little-endian: ABCD stored as D, C, B, A
–  Intel and AMD processors

•  Both (configurable)
– ARM

Lecture 17
Page 62

CS 118
Winter 2016

Conversion

•  Host to net, net to host
– Long, short, etc.

– Converts from Internet (big-endian) to local

Lecture 17
Page 63

CS 118
Winter 2016

Marshalling

•  Packing and unpacking
– Format conversion
– Sequencing
– Labeling

•  All for what?
– Same as for a function call
– A way to know the meaning of shared bits

Lecture 17
Page 64

CS 118
Winter 2016

Why is marshalling hard?

•  Expensive
– Conversion takes time

•  Tedious
– Many steps to mess up

•  Exacting
– All the steps have to match to work

Lecture 17
Page 65

CS 118
Winter 2016

Summary

•  Lots more optimizations and features
– The details depend on the implementation

•  Details matter and they don’t
– Parties must agree on details to communicate
– Detail differences affect performance
– But particulars of details not always otherwise

critical
– Things can be done many ways

