
Lecture 14
Page 1

CS 118
Winter 2016

Network Routing
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 14
Page 2

CS 118
Winter 2016

Routing Outline

•  Background

•  Key algorithms

Lecture 14
Page 3

CS 118
Winter 2016

Background

•  What we’re doing

•  Collecting our thoughts

•  Goal

•  Info requirements

Lecture 14
Page 4

CS 118
Winter 2016

What we’re doing

•  Using the network to run the network
– Runs on top of an existing network

•  What can we assume?
– Who can you talk to?
– What kind of messages can you send?
– Who’s in charge of setting this up?

Lecture 14
Page 5

CS 118
Winter 2016

Relaying and routing

•  If we don’t have a direct channel to the
receiver, we ultimate must relay
– Send our messages through some other node
– Which forwards them towards the destination

•  Easy if there’s only one choice
– You only connect to one other node

•  For non-trivial topologies, some relaying
involves choice

•  Routing describes how we choose to relay

Lecture 14
Page 6

CS 118
Winter 2016

I’ll do it myself!

•  Static routes
– Manual entry by network operator
– Boot-time configuration file
– Boot-time initialization (DHCP)

•  Default routes
– Pass the buck

(move the problem)

Lecture 14
Page 7

CS 118
Winter 2016

Limits of going solo

•  Requires external reconfiguration
–  When a node joins, leaves
–  When a link is added or removed (dies)

•  Bootstrapping is difficult
– Need to deploy incrementally
– Can’t reach nodes that need configuration until

some routing works
•  Must assume others do it right

–  If you relay more than one hop

Lecture 14
Page 8

CS 118
Winter 2016

Automated routing

•  Adaptive
– No need to intervene externally

•  Bootstraps itself
– Each node can initiate discovery and relay

Lecture 14
Page 9

CS 118
Winter 2016

Collecting our thoughts

•  Assume we have our “stack” DAG
–  I.e., maps between protocol name spaces
–  I.e., layers we can “stack”

•  What other information do we need?
– Who’s connected to whom
– Who we can reach through whom
– A way to differentiate paths

•  Weight, cost, delay, etc.

Lecture 14
Page 10

CS 118
Winter 2016

Terminology

•  Relaying
– Moving messages based on the DAG tables
– Forwarding (typically IP)
– Switching (typically Ethernet, ATM)

•  Routing
– Computing the relay tables
– Route computation
– Path computation

Lecture 14
Page 11

CS 118
Winter 2016

More terminology

•  Two approaches to routing
– Link state
– Distance vector

•  But both:
– Depend on link state (up/down/load)
– Calculate distance vectors (path costs)

Names are a pain sometimes!

Lecture 14
Page 12

CS 118
Winter 2016

How do we collect that info?

•  Neighbors
– We don’t need no stinkin’ relays!
– Won’t get you far

•  Six degrees of flooding
– Your neighbors’ neighbors
– Neighbors’ neighbors’ neighbors
– Etc...

Lecture 14
Page 13

CS 118
Winter 2016

What do we flood?

•  The topology
– Who we are, who we’re connected to
– “Link state”

•  Our decisions
– Who we think we can reach

Lecture 14
Page 14

CS 118
Winter 2016

When do we flood

•  In the beginning, all at once
– Flood link state
– Everyone computes their own routing

•  In between each step of route computation
– Who we can reach
– Ends up flooding reachability

Lecture 14
Page 15

CS 118
Winter 2016

Goal

•  Information to guide DAG traversal
– A way to pick alternate next-layer tables

•  When both have viable translations
– A way to pick from among proxies

•  I.e., multiple resolutions within one table

– A way to populate the DAG tables
•  Relays are proxies for their destinations

Lecture 14
Page 16

CS 118
Winter 2016

Optimization

•  Beyond just getting there…

– Getting there in the best way
•  Lowest delay, highest BW, greatest reliability, etc.

– Getting there without a loop

Lecture 14
Page 17

CS 118
Winter 2016

Information requirements
•  Node name

–  A way to identify the node itself
•  Link name

–  A way to identify each link
–  A single node may have many attached links
–  A single link may have many attached nodes

•  Costs
–  To visit a node
–  To traverse a link
–  Cost != price in dollars
–  Usually expressed in delay units

Lecture 14
Page 18

CS 118
Winter 2016

Key algorithms

•  Basic flooding

•  Distance vector

•  Link state

Lecture 14
Page 19

CS 118
Winter 2016

Basic flooding

•  Start:
– Get a request on interface A

•  Relay out:
– Send a copy on every interface

Does this include A?

When will this terminate?

Lecture 14
Page 20

CS 118
Winter 2016

Goals of flooding for routing

1.  Get request to everyone reliably
2.  Get responses back to the entity that needs

them
–  In particular, let him know when he has all

responses
3.  Minimize the cost
•  Assuming connectivity, of course

Lecture 14
Page 21

CS 118
Winter 2016

Limiting the flood

•  Track the messages

•  Track the nodes

Lecture 14
Page 22

CS 118
Winter 2016

Hopcount in messages

•  At each relay
– Drop count one
– Stop flooding when zero

Will this work? Under what conditions?

What do we have to know?

Lecture 14
Page 23

CS 118
Winter 2016

Checkbox at nodes

•  On receive
– Set visited = TRUE

•  Once visited
– Don’t relay any more

Will this work?

How will initiator know when it’s done?

Lecture 14
Page 24

CS 118
Winter 2016

Controlled flooding

•  Chang’s Echo algorithm (1982)
– Start:

•  Get the message on interface A
– Relay out:

•  Send a copy on every interface except A
– Relay in:

•  Wait for a copy on every interface except A

– End:
•  Send the message back to A

Lecture 14
Page 25

CS 118
Winter 2016

A picture of Echo

START

Lecture 14
Page 26

CS 118
Winter 2016

A picture of Echo

Mark incoming links

Lecture 14
Page 27

CS 118
Winter 2016

A picture of Echo

Lecture 14
Page 28

CS 118
Winter 2016

A picture of Echo

Messages
cross!

Lecture 14
Page 29

CS 118
Winter 2016

A picture of Echo

Only mark one
outgoing link

Lecture 14
Page 30

CS 118
Winter 2016

A picture of Echo

Flood your unmarked
links

Lecture 14
Page 31

CS 118
Winter 2016

A picture of Echo
This node received messages on all its
incoming links; it can respond on its marked link

Lecture 14
Page 32

CS 118
Winter 2016

A picture of Echo

This node now has
received messages on
all its incoming links too

Lecture 14
Page 33

CS 118
Winter 2016

A picture of Echo

Multiple parts of the
graph are in “ACK”
mode – that’s OK

Lecture 14
Page 34

CS 118
Winter 2016

A picture of Echo

Lecture 14
Page 35

CS 118
Winter 2016

A picture of Echo

Lecture 14
Page 36

CS 118
Winter 2016

A picture of Echo

Lecture 14
Page 37

CS 118
Winter 2016

A picture of Echo

Lecture 14
Page 38

CS 118
Winter 2016

A picture of Echo

DONE!

Lecture 14
Page 39

CS 118
Winter 2016

Properties of the echo algorithm
•  Assumes

–  Bidirectional links
–  Connected graph (no isolated subgraphs)

•  Exactly E messages
–  One message on each link in each direction

•  Scalably confirms a flood
–  Without counts in the messages OR counts in the nodes!
–  I.e., with a single message and one flag per interface at

each node (finite state), it can confirm the flood of a
network of arbitrary size

Lecture 14
Page 40

CS 118
Winter 2016

What did all that get us?

•  Flooding
– With confirmation

•  Now what?
– What do we DO with that capability?

Lecture 14
Page 41

CS 118
Winter 2016

Two phase flooding

•  Phase 1
– Outgoing messages start the algorithm
–  Incoming messages (starred links) list everyone you’ve

heard from
– At end of phase 1, initiator has complete map

•  Phase 2
–  Initiator floods the map
– When the algorithm is done, everyone knows everyone

has the complete map

Lecture 14
Page 42

CS 118
Winter 2016

What map do we flood?

•  The entire map
– Expensive to flood
– Each node has to calculate connectivity

•  The shortest paths
– Sure, but how do we get those?

Lecture 14
Page 43

CS 118
Winter 2016

Link state

•  Flood the entire map

•  Calculate shortest paths
– Dijkstra’s algorithm

Lecture 14
Page 44

CS 118
Winter 2016

Dijkstra’s algorithm
•  Not a distributed algorithm!
•  Start with one node in the CURRENT set

–  Mark it as zero cost
•  For the CURRENT node

–  Check its links for UNVISITED or FRONTIER neighbors
•  Add each UNVISITED node it can reach to the FRONTIER set

with a new cost of “link” + CURRENT node cost
•  If the node is already in the FRONTIER set, compare the new cost

to the previous cost; update the cost if it is lower
–  Once done, mark the CURRENT node as VISITED
–  Find the FRONTIER node with the smallest cost; move it

to CURRENT and repeat
•  Continue until there are no more FRONTIER nodes

Lecture 14
Page 45

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

∞

∞

∞

∞

1

4

2

4

3

2

Current

Unvisited

Lecture 14
Page 46

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

∞

∞

∞

∞

1

4

2

4

3

2

Frontier

Lecture 14
Page 47

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

∞

∞

4	

1

4

2

4

3

2

Lecture 14
Page 48

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

∞

∞

4	

1

4

2

4

3

2

Lecture 14
Page 49

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

∞

∞

4	

1

4

2

4

3

2

Current

Lecture 14
Page 50

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

∞

∞

4	

1

4

2

4

3

2

Lecture 14
Page 51

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Frontier Note: This node’s cost dropped at this step

Lecture 14
Page 52

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Lecture 14
Page 53

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Current
Frontier

Lecture 14
Page 54

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Lecture 14
Page 55

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Lecture 14
Page 56

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Lecture 14
Page 57

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Current

Lecture 14
Page 58

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

∞

3	

1

4

2

4

3

2

Lecture 14
Page 59

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

7	

3	

1

4

2

4

3

2

Frontier

Lecture 14
Page 60

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

7	

3	

1

4

2

4

3

2

Lecture 14
Page 61

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

7	

3	

1

4

2

4

3

2

Current

Lecture 14
Page 62

CS 118
Winter 2016

Dijkstra’s Algorithm at work

0	

1	

5	

7	

3	

1

4

2

4

3

2

Lecture 14
Page 63

CS 118
Winter 2016

Which paths are used?

0	

1	

5	

7	

3	

1

2

4 2

Lecture 14
Page 64

CS 118
Winter 2016

What does Dijkstra compute?

•  Shortest path
– Between two nodes

•  A shortest rooted tree
– Between the root (initial) node and all others
–  I.e., N-1 routes between root:node pairs
– There might be other trees with same cost

Lecture 14
Page 65

CS 118
Winter 2016

Dijkstra: pros and cons

•  Pros
– Simple to implement

•  Broadcast to everyone
•  Everyone runs the same algorithm

•  Cons
– Requires broadcast flooding
– Not everyone might compute the same tree
– Everyone has to compute the full path everywhere

Lecture 14
Page 66

CS 118
Winter 2016

Distance vector

•  Not always flooding
•  Bellman-Ford algorithm

– Shortest path

•  Ford-Fulkerson
– Max-flow

•  DUAL
– Current popular variant

•  We won’t look at Ford-Fulkerson or DUAL in
detail

Lecture 14
Page 67

CS 118
Winter 2016

Basic distance vector algorithm

•  Routing by sending only useful info
– Tell neighbors who you can reach and cost
– Everyone updates their table by transitive closure

rules

•  Effect
– Walking the nodes while calculating Dijkstra
– Still floods – just not everything

Lecture 14
Page 68

CS 118
Winter 2016

Example of Bellman-Ford

A	

B	

D

E	

C	

1

4

2

4

3

2

Lecture 14
Page 69

CS 118
Winter 2016

Example of Bellman-Ford

A	

B	

D

E	

C	

1

4

2

4

3

2

E	

A	 ∞	

B	 ∞	

C	 ∞	

D	 2	

E	 0	

D	

A	 ∞	

B	 4	

C	 3	

D	 0	

E	 2	

C	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

A	

A	 0	

B	 1	

C	 4	

D	 ∞	

E	 ∞	

Lecture 14
Page 70

CS 118
Winter 2016

Example of Bellman-Ford

A	

B	

D

E	

C	

1

4

2

4

3

2

C	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

A	

A	 0	

B	 1	

C	 4	

D	 ∞	

E	 ∞	

Lecture 14
Page 71

CS 118
Winter 2016

A look at A

•  A looks at the tables it has received
C	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

Lecture 14
Page 72

CS 118
Winter 2016

A look at A

•  A looks at tables it has received

•  Updates them with the cost to get to there

C	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

A	

A	 0	

B	 1	

C	 4	

D	 ∞	

E	 ∞	

C+4	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B+1	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

Lecture 14
Page 73

CS 118
Winter 2016

A look at A

•  A looks at tables it has received

•  Updates them with the cost to get to there

C	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

A	

A	 0	

B	 1	

C	 4	

D	 ∞	

E	 ∞	

C+4	

A	 8	

B	 6	

C	 4	

D	 7	

E	 ∞	

B+1	

A	 2	

B	 1	

C	 3	

D	 5	

E	 ∞	

Lecture 14
Page 74

CS 118
Winter 2016

A look at A

•  A looks at tables it has received

•  Updates its own table with the row min

C	

A	 4	

B	 2	

C	 0	

D	 3	

E	 ∞	

B	

A	 1	

B	 0	

C	 2	

D	 4	

E	 ∞	

A	

A	 0	

B	 1	

C	 3	

D	 5	

E	 ∞	

C+4	

A	 8	

B	 6	

C	 4	

D	 7	

E	 ∞	

B+1	

A	 2	

B	 1	

C	 3	

D	 5	

E	 ∞	

Lecture 14
Page 75

CS 118
Winter 2016

Bellman-Ford

•  Converges over time
– Keep exchanging tables and updating them

•  Each step
– Faster – O(N), not O(E)
– Less state – O(N), not O(E)
– Works while it’s running

Lecture 14
Page 76

CS 118
Winter 2016

Bellman-Ford

•  Pros
– Fewer and smaller messages
– Send only changes, stops flood when changes stop
– Keeps less state per node
– Fast convergence when link improves/comes up

•  Cons
– Decentralized (benign errors or malicious attacks)
– Slow convergence on link failure

Lecture 14
Page 77

CS 118
Winter 2016

Link state vs. distance vector
•  Link state

–  Sees the entire graph
–  Reacts fast to changes
–  Provides complete path

•  But…
–  Always floods
–  Large local table
–  O(N^2) computation

•  Distance vector
–  Floods only where

changes affect route
–  Smaller table
–  O(N) computation
–  Reacts faster to some

changes
–  Provides next-hop

•  But…
–  No global view, so no

global optimization

Lecture 14
Page 78

CS 118
Winter 2016

Other algorithms

•  Hierarchical routing
– Use structure in the name
– See the DNS

•  Geographic routing
– See phone calls

Lecture 14
Page 79

CS 118
Winter 2016

Hierarchical

•  Go up when you don’t know
– Go towards the root

•  Go down based on what you know
–  If target is a leaf on a subtree, go to that subtree

This describes a lot of Internet routing
(except that the root is a graph)

Lecture 14
Page 80

CS 118
Winter 2016

Geographic

•  Requires
– Spatial geometry (line, ring, plane, etc.)
– Node locations

•  Use geometry to get you there
– Works great when it works
– Hard to get it to work

Lecture 14
Page 81

CS 118
Winter 2016

Landmark

•  Some geographic and hierarchical routing

•  Subset of nodes/locations called “landmarks”
– You must know how to get to landmarks
– Go towards the landmark closest to your target
– Once close enough, some other routing will help

Lecture 14
Page 82

CS 118
Winter 2016

Who uses what?

•  Link state (Dijkstra)
– OSPF (runs over IP)
–  IS-IS (runs over its own protocol)

•  Distance vector (Bellman-Ford, etc.)
– RIP (runs over UDP)
– BGP (runs over TCP) but with complete path!
– EIGRP (runs over its own protocol)

Lecture 14
Page 83

CS 118
Winter 2016

Issues

•  Split horizon

•  Loop avoidance

•  Cost metrics

Lecture 14
Page 84

CS 118
Winter 2016

Split horizon

•  DV algorithms converge slowly
– But link failure = ∞

– How long does it take to count to ∞?

•  Problem
– DV doesn’t keep track of path, only cost

•  Solutions
– Don’t send back info you just got (split horizon)
–  Send back the info as bad (poison reverse)

Lecture 14
Page 85

CS 118
Winter 2016

Loop avoidance

•  Prevention
– Ensure loops are never created

•  Correction
– Check for loops and remove them

•  Accommodation
– Add a hopcount so messages can loop a little without

causing a big problem

Lecture 14
Page 86

CS 118
Winter 2016

Cost metrics

•  Lowest propagation delay?
– Not the shortest message delivery time

•  Highest available capacity?
– Not the shortest delivery time either

•  Lowest price?
–  I.e., minimize an external cost

Lecture 14
Page 87

CS 118
Winter 2016

How to compose cost

•  Various equations
– Sum
– Weighted sum
– Min or max

•  Rules for composition?
– Depend on routing algorithm

Lecture 14
Page 88

CS 118
Winter 2016

Metrics for success

•  Algorithm performance

•  Backups and then some

•  Other details

Lecture 14
Page 89

CS 118
Winter 2016

Algorithm performance
•  Time

–  To initial table (can start relaying)
–  To convergence
–  To add new routes
–  To delete dead routes

•  Bandwidth
–  Number of messages
–  Size of messages

•  Fairness / equality
–  Will everyone have the same result?

•  Local costs
–  Computation
–  Storage

Lecture 14
Page 90

CS 118
Winter 2016

Solutions to performance

•  Use simple topologies
– Original Ethernet
– Token rings
– Wireless LAN

•  Compartmentalize
– Break graph into regions

•  Route within the regions
•  Route between the regions separately

Lecture 14
Page 91

CS 118
Winter 2016

Compartmentalization and
Internet routing

•  How does the Internet route?
•  It breaks the graph up

– Subgraphs connected at ingress/egress
– Name each subgraph (“Autonomous system”)

•  Route within the subgraph
– Typically OSPF (link state)

•  Route between the subgraphs
– Typically BGP (distance vector, sort of)

Lecture 14
Page 92

CS 118
Winter 2016

BGP and autonomous systems

•  BGP doesn’t route between nodes
•  It routes at a higher level

– The autonomous system level

•  What is an autonomous system (AS)?
– A connected subnet controlled by one party
– E.g., Verizon or AT&T

•  An AS contains multiple routers

Lecture 14
Page 93

CS 118
Winter 2016

Graphically,

AS 47
AS 91

AS 7

AS 158

AS 55

AS 7 1

3

2
4

6

7

8

9

5

BGP routes at AS level AS47, AS7, AS55

Each AS routes internally as it pleases 1,2,4,7,9	

Lecture 14
Page 94

CS 118
Winter 2016

BGP and policy-based routing

•  BGP essentially routes at a business-relevant
level

•  BGP routing decisions are thus made by policy
•  Each AS learns of routing options
•  The AS uses local policy to choose an option
•  Not necessarily shortest or computationally

cheapest
– Perhaps the business partner who gave you the best

deal

Lecture 14
Page 95

CS 118
Winter 2016

Building BGP paths

•  AS that handles traffic to an IP prefix
advertises that fact to neighboring ASes
– E.g., “I can deliver to 15.33.124.0/24”

•  Each neighbor AS remembers that
advertisement

•  If those neighbors choose, they advertise a
route to their neighbors
– Adding themselves to the path

Lecture 14
Page 96

CS 118
Winter 2016

For example,

AS 47
AS 91

AS 7

AS 158

AS 55

15.33.124.0/24

15.33.124.0/24, AS47

15.33.124.0/24, AS47

15.33.124.0/24, AS47,AS91

I don’t want
to carry this

traffic

15.33.124.0/24

Lecture 14
Page 97

CS 118
Winter 2016

Some BGP implications
•  No centralized decisions

– Either by authority or single algorithm
– ASes don’t even know all possible choices

•  Decisions changeable dynamically
– At the AS level

•  Constraints on routing based not just on
physical connectivity
– Also on business arrangements

•  Only a partial description of the routes

Lecture 14
Page 98

CS 118
Winter 2016

Backups and then some

•  One route might not be enough
– “Hot spare” – equivalent backup link ready for

immediate use

– Multipath – for increased capacity

– Alternate path – to route around a dead link

Lecture 14
Page 99

CS 118
Winter 2016

Summary
•  Many ways to route

– All variations of transitive closure
– Vary in performance, convergence time, etc.

•  Primary alternatives
– Link state (i.e., central computation)
– Distance vector (i.e., distributed computation)

•  The hardest parts
– Are the details – how to assign cost, how to compose

cost, etc.

