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Routing Outline 

•  Background 

•  Key algorithms 
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Background 

•  What we’re doing 

•  Collecting our thoughts 

•  Goal 

•  Info requirements 
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What we’re doing 

•  Using the network to run the network 
– Runs on top of an existing network 

•  What can we assume? 
– Who can you talk to? 
– What kind of messages can you send? 
– Who’s in charge of setting this up? 
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Relaying and routing 

•  If we don’t have a direct channel to the 
receiver, we ultimate must relay 
– Send our messages through some other node 
– Which forwards them towards the destination 

•  Easy if there’s only one choice 
– You only connect to one other node 

•  For non-trivial topologies, some relaying 
involves choice 

•  Routing describes how we choose to relay 
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I’ll do it myself! 

•  Static routes 
– Manual entry by network operator 
– Boot-time configuration file 
– Boot-time initialization (DHCP) 

•  Default routes 
– Pass the buck  

(move the problem) 
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Limits of going solo 

•  Requires external reconfiguration 
–  When a node joins, leaves 
–  When a link is added or removed (dies) 

•  Bootstrapping is difficult 
– Need to deploy incrementally 
– Can’t reach nodes that need configuration until 

some routing works 
•  Must assume others do it right 

–  If you relay more than one hop 
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Automated routing 

•  Adaptive 
– No need to intervene externally 

•  Bootstraps itself 
– Each node can initiate discovery and relay 
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Collecting our thoughts 

•  Assume we have our “stack” DAG 
–  I.e., maps between protocol name spaces 
–  I.e., layers we can “stack” 

•  What other information do we need? 
– Who’s connected to whom 
– Who we can reach through whom 
– A way to differentiate paths 

•  Weight, cost, delay, etc. 
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Terminology 

•  Relaying 
– Moving messages based on the DAG tables  
– Forwarding (typically IP) 
– Switching (typically Ethernet, ATM) 

•  Routing 
– Computing the relay tables 
– Route computation 
– Path computation 
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More terminology 

•  Two approaches to routing 
– Link state 
– Distance vector 

•  But both: 
– Depend on link state (up/down/load) 
– Calculate distance vectors (path costs) 

Names are a pain sometimes! 
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How do we collect that info? 

•  Neighbors 
– We don’t need no stinkin’ relays! 
– Won’t get you far 

•  Six degrees of flooding 
– Your neighbors’ neighbors 
– Neighbors’ neighbors’ neighbors 
– Etc... 
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What do we flood? 

•  The topology 
– Who we are, who we’re connected to 
– “Link state” 

•  Our decisions 
– Who we think we can reach 
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When do we flood 

•  In the beginning, all at once 
– Flood link state 
– Everyone computes their own routing 

•  In between each step of route computation 
– Who we can reach 
– Ends up flooding reachability 
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Goal 

•  Information to guide DAG traversal 
– A way to pick alternate next-layer tables 

•  When both have viable translations 
– A way to pick from among proxies  

•  I.e., multiple resolutions within one table 

– A way to populate the DAG tables 
•  Relays are proxies for their destinations 
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Optimization 

•  Beyond just getting there… 

– Getting there in the best way 
•  Lowest delay, highest BW, greatest reliability, etc. 

– Getting there without a loop 
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Information requirements 
•  Node name 

–  A way to identify the node itself 
•  Link name 

–  A way to identify each link 
–  A single node may have many attached links 
–  A single link may have many attached nodes 

•  Costs 
–  To visit a node 
–  To traverse a link 
–  Cost != price in dollars 
–  Usually expressed in delay units 
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Key algorithms 

•  Basic flooding 

•  Distance vector 

•  Link state 
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Basic flooding 

•  Start: 
– Get a request on interface A 

•  Relay out: 
– Send a copy on every interface 

Does this include A?  

When will this terminate? 
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Goals of flooding for routing 

1.  Get request to everyone reliably 
2.  Get responses back to the entity that needs 

them 
–  In particular, let him know when he has all 

responses 
3.  Minimize the cost 
•  Assuming connectivity, of course 
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Limiting the flood 

•  Track the messages 

•  Track the nodes 
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Hopcount in messages 

•  At each relay 
– Drop count one 
– Stop flooding when zero 

Will this work? Under what conditions? 

What do we have to know? 
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Checkbox at nodes 

•  On receive 
– Set visited = TRUE 

•  Once visited 
– Don’t relay any more 

Will this work? 

How will initiator know when it’s done? 



Lecture 14 
Page 24 

CS 118 
Winter 2016  

Controlled flooding 

•  Chang’s Echo algorithm (1982) 
– Start: 

•  Get the message on interface A 
– Relay out: 

•  Send a copy on every interface except A 
– Relay in: 

•  Wait for a copy on every interface except A 

– End: 
•  Send the message back to A 
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A picture of Echo 

START 



Lecture 14 
Page 26 

CS 118 
Winter 2016  

A picture of Echo 

Mark incoming links 
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A picture of Echo 
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A picture of Echo 

Messages 
cross! 



Lecture 14 
Page 29 

CS 118 
Winter 2016  

A picture of Echo 

Only mark one 
outgoing link 
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A picture of Echo 

Flood your unmarked 
links 
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A picture of Echo 
This node received messages on all its 
incoming links; it can respond on its marked link 
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A picture of Echo 

This node now has 
received messages on 
all its incoming links too 
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A picture of Echo 

Multiple parts of the 
graph are in “ACK” 
mode – that’s OK 
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A picture of Echo 
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A picture of Echo 
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A picture of Echo 
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A picture of Echo 
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A picture of Echo 

DONE! 



Lecture 14 
Page 39 

CS 118 
Winter 2016  

Properties of the echo algorithm 
•  Assumes  

–  Bidirectional links 
–  Connected graph (no isolated subgraphs) 

•  Exactly E messages 
–  One message on each link in each direction 

•  Scalably confirms a flood 
–  Without counts in the messages OR counts in the nodes! 
–  I.e., with a single message and one flag per interface at 

each node (finite state), it can confirm the flood of a 
network of arbitrary size 
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What did all that get us? 

•  Flooding 
– With confirmation 

•  Now what? 
– What do we DO with that capability? 
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Two phase flooding 

•  Phase 1 
– Outgoing messages start the algorithm 
–  Incoming messages (starred links) list everyone you’ve 

heard from 
– At end of phase 1, initiator has complete map 

•  Phase 2 
–  Initiator floods the map 
– When the algorithm is done, everyone knows everyone 

has the complete map 
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What map do we flood? 

•  The entire map 
– Expensive to flood 
– Each node has to calculate connectivity 

•  The shortest paths 
– Sure, but how do we get those? 
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Link state 

•  Flood the entire map 

•  Calculate shortest paths  
– Dijkstra’s algorithm 
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Dijkstra’s algorithm 
•  Not a distributed algorithm! 
•  Start with one node in the CURRENT set 

–  Mark it as zero cost 
•  For the CURRENT node 

–  Check its links for UNVISITED or FRONTIER neighbors 
•  Add each UNVISITED node it can reach to the FRONTIER set 

with a new cost of “link” + CURRENT node cost 
•  If the node is already in the FRONTIER set, compare the new cost 

to the previous cost; update the cost if it is lower 
–  Once done, mark the CURRENT node as VISITED 
–  Find the FRONTIER node with the smallest cost; move it 

to CURRENT and repeat 
•  Continue until there are no more FRONTIER nodes 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Dijkstra’s Algorithm at work 
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Which paths are used? 
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What does Dijkstra compute? 

•  Shortest path 
– Between two nodes 

•  A shortest rooted tree 
– Between the root (initial) node and all others 
–  I.e., N-1 routes between root:node pairs 
– There might be other trees with same cost 
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Dijkstra: pros and cons 

•  Pros 
– Simple to implement 

•  Broadcast to everyone 
•  Everyone runs the same algorithm 

•  Cons 
– Requires broadcast flooding 
– Not everyone might compute the same tree 
– Everyone has to compute the full path everywhere 
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Distance vector 

•  Not always flooding 
•  Bellman-Ford algorithm 

– Shortest path 

•  Ford-Fulkerson 
– Max-flow 

•  DUAL 
– Current popular variant 

•  We won’t look at Ford-Fulkerson or DUAL in 
detail 
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Basic distance vector algorithm 

•  Routing by sending only useful info 
– Tell neighbors who you can reach and cost 
– Everyone updates their table by transitive closure 

rules 

•  Effect 
– Walking the nodes while calculating Dijkstra 
– Still floods – just not everything 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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Example of Bellman-Ford 
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A look at A 

•  A looks at the tables it has received 
C	

A	 4	

B	 2	

C	 0	
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A look at A 

•  A looks at tables it has received 

•  Updates them with the cost to get to there 
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A look at A 

•  A looks at tables it has received 

•  Updates them with the cost to get to there 
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A look at A 

•  A looks at tables it has received 

•  Updates its own table with the row min 
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Bellman-Ford 

•  Converges over time 
– Keep exchanging tables and updating them 

•  Each step 
– Faster – O(N), not O(E) 
– Less state – O(N), not O(E) 
– Works while it’s running 
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Bellman-Ford 

•  Pros 
– Fewer and smaller messages 
– Send only changes, stops flood when changes stop 
– Keeps less state per node 
– Fast convergence when link improves/comes up 

•  Cons 
– Decentralized (benign errors or malicious attacks) 
– Slow convergence on link failure 
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Link state vs. distance vector 
•  Link state 

–  Sees the entire graph 
–  Reacts fast to changes 
–  Provides complete path 

•  But… 
–  Always floods 
–  Large local table 
–  O(N^2) computation 

•  Distance vector 
–  Floods only where 

changes affect route 
–  Smaller table 
–  O(N) computation 
–  Reacts faster to some 

changes 
–  Provides next-hop  

•  But… 
–  No global view, so no 

global optimization 
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Other algorithms 

•  Hierarchical routing 
– Use structure in the name 
– See the DNS 

•  Geographic routing 
– See phone calls 
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Hierarchical 

•  Go up when you don’t know 
– Go towards the root 

•  Go down based on what you know 
–  If target is a leaf on a subtree, go to that subtree 

This describes a lot of Internet routing 
(except that the root is a graph) 
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Geographic 

•  Requires 
– Spatial geometry (line, ring, plane, etc.) 
– Node locations 

•  Use geometry to get you there 
– Works great when it works 
– Hard to get it to work 
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Landmark 

•  Some geographic and hierarchical routing 

•  Subset of nodes/locations called “landmarks” 
– You must know how to get to landmarks 
– Go towards the landmark closest to your target 
– Once close enough, some other routing will help 
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Who uses what? 

•  Link state (Dijkstra) 
– OSPF (runs over IP) 
–  IS-IS (runs over its own protocol) 

•  Distance vector (Bellman-Ford, etc.) 
– RIP (runs over UDP) 
– BGP (runs over TCP) but with complete path! 
– EIGRP (runs over its own protocol) 
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Issues 

•  Split horizon 

•  Loop avoidance 

•  Cost metrics 
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Split horizon 

•  DV algorithms converge slowly 
– But link failure = ∞ 

– How long does it take to count to ∞? 

•  Problem 
– DV doesn’t keep track of path, only cost 

•  Solutions 
– Don’t send back info you just got (split horizon) 
–  Send back the info as bad (poison reverse) 
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Loop avoidance 

•  Prevention 
– Ensure loops are never created 

•  Correction 
– Check for loops and remove them 

•  Accommodation 
– Add a hopcount so messages can loop a little without 

causing a big problem 
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Cost metrics 

•  Lowest propagation delay? 
– Not the shortest message delivery time 

•  Highest available capacity? 
– Not the shortest delivery time either 

•  Lowest price? 
–  I.e., minimize an external cost 
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How to compose cost 

•  Various equations 
– Sum 
– Weighted sum 
– Min or max 

•  Rules for composition? 
– Depend on routing algorithm 
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Metrics for success 

•  Algorithm performance 

•  Backups and then some 

•  Other details 
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Algorithm performance 
•  Time 

–  To initial table (can start relaying) 
–  To convergence 
–  To add new routes 
–  To delete dead routes 

•  Bandwidth 
–  Number of messages 
–  Size of messages 

•  Fairness / equality 
–  Will everyone have the same result? 

•  Local costs 
–  Computation 
–  Storage 



Lecture 14 
Page 90 

CS 118 
Winter 2016  

Solutions to performance 

•  Use simple topologies 
– Original Ethernet 
– Token rings 
– Wireless LAN 

•  Compartmentalize 
– Break graph into regions 

•  Route within the regions 
•  Route between the regions separately 



Lecture 14 
Page 91 

CS 118 
Winter 2016  

Compartmentalization and  
Internet routing 

•  How does the Internet route? 
•  It breaks the graph up 

– Subgraphs connected at ingress/egress 
– Name each subgraph (“Autonomous system”) 

•  Route within the subgraph 
– Typically OSPF (link state) 

•  Route between the subgraphs 
– Typically BGP (distance vector, sort of) 
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BGP and autonomous systems 

•  BGP doesn’t route between nodes 
•  It routes at a higher level 

– The autonomous system level 

•  What is an autonomous system (AS)? 
– A connected subnet controlled by one party 
– E.g., Verizon or AT&T 

•  An AS contains multiple routers 
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Graphically,  
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AS 7 

AS 158 
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AS 7 1 
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BGP routes at AS level AS47, AS7, AS55 

Each AS routes internally as it pleases 1,2,4,7,9	
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BGP and policy-based routing 

•  BGP essentially routes at a business-relevant 
level 

•  BGP routing decisions are thus made by policy 
•  Each AS learns of routing options 
•  The AS uses local policy to choose an option 
•  Not necessarily shortest or computationally 

cheapest 
– Perhaps the business partner who gave you the best 

deal 
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Building BGP paths 

•  AS that handles traffic to an IP prefix 
advertises that fact to neighboring ASes 
– E.g., “I can deliver to 15.33.124.0/24” 

•  Each neighbor AS remembers that 
advertisement 

•  If those neighbors choose, they advertise a 
route to their neighbors 
– Adding themselves to the path 
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For example, 

AS 47 
AS 91 

AS 7 

AS 158 

AS 55 

15.33.124.0/24 

15.33.124.0/24, AS47 

15.33.124.0/24, AS47 

15.33.124.0/24, AS47,AS91 

I don’t want 
to carry this 

traffic 

15.33.124.0/24 
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Some BGP implications 
•  No centralized decisions 

– Either by authority or single algorithm 
– ASes don’t even know all possible choices 

•  Decisions changeable dynamically 
– At the AS level 

•  Constraints on routing based not just on 
physical connectivity 
– Also on business arrangements 

•  Only a partial description of the routes 
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Backups and then some 

•  One route might not be enough 
– “Hot spare” – equivalent backup link ready for 

immediate use 

– Multipath – for increased capacity 

– Alternate path – to route around a dead link 
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Summary 
•  Many ways to route 

– All variations of transitive closure 
– Vary in performance, convergence time, etc. 

•  Primary alternatives 
– Link state (i.e., central computation) 
– Distance vector (i.e., distributed computation) 

•  The hardest parts 
– Are the details – how to assign cost, how to compose 

cost, etc. 


