-

Network Routing
CS 118

Peter Reiher

\

Computer Network Fundamentals

/ Routing Outline \

* Background

* Key algorithms

\ /

CS 118 Lecture 14
Winter 2016 Page 2

/ Background \

* What we’re doing
* Collecting our thoughts

 Goal

* Info requirements

\ /

CS 118 Lecture 14
Winter 2016 Page 3

/ What we’re doing \

* Using the network to run the network

— Runs on top of an existing network

* What can we assume?
— Who can you talk to?
— What kind of messages can you send?

— Who’s 1n charge of setting this up?

CS 118 Lecture 14
Winter 2016 Page 4

/ Relaying and routing

 If we don’t have a direct channel to the
receiver, we ultimate must relay

— Send our messages through some other node
— Which forwards them towards the destination

* Easy if there’s only one choice

— You only connect to one other node

* For non-trivial topologies, some relaying
involves choice

\e Routing describes how we choose to relay

CS 118

Winter 2016

Lecture 14
Page 5

4 Pl do it myself N

* Static routes
— Manual entry by network operator

— Boot-time configuration file
— Boot-time 1nitialization (DHCP)

 Default routes

— Pass the buck
(move the problem)

\ /

CS 118 Lecture 14
Winter 2016 Page 6

/ Limits of going solo \

* Requires external reconfiguration
— When a node joins, leaves

— When a link 1s added or removed (dies)

* Bootstrapping 1s difficult
— Need to deploy incrementally

— Can’t reach nodes that need configuration until
some routing works

* Must assume others do 1t right

\ — If you relay more than one hop /

CS 118 Lecture 14
Winter 2016 Page 7

/ Automated routing

\

CS 118

Winter 2016

* Adaptive

— No need to intervene externally

* Bootstraps itself

— Each node can initiate discovery and relay

\

Lecture 14

Page 8

/ Collecting our thoughts \

* Assume we have our “stack” DAG
— I.e., maps between protocol name spaces
—IL.e., layers we can “stack”

 What other information do we need?
— Who’s connected to whom
— Who we can reach through whom

— A way to differentiate paths
* Weight, cost, delay, etc.

\ /

CS 118 Lecture 14
Winter 2016 Page 9

/ Terminology

\

CS 118

Winter 2016

* Relaying

— Moving messages based on the DAG tables
— Forwarding (typically IP)
— Switching (typically Ethernet, ATM)

* Routing

— Computing the relay tables
— Route computation
— Path computation

\

Lecture 14

Page 10

/ More terminology \

* Two approaches to routing
— Link state
— Distance vector

* But both:
— Depend on link state (up/down/load)

— Calculate distance vectors (path costs)

Names are a pain sometimes!

\ /

CS 118 Lecture 14
Winter 2016 Page 11

/ How do we collect that info? \

* Neighbors

— We don’t need no stinkin’ relays!

— Won’t get you far

* Six degrees of flooding
— Your neighbors’ neighbors
— Neighbors’ neighbors’ neighbors
— Etc...

\ /

CS 118 Lecture 14
Winter 2016 Page 12

/ What do we tlood? \

* The topology
— Who we are, who we’re connected to

— “Link state”

 Qur decisions

— Who we think we can reach

\ /

CS 118 Lecture 14
Winter 2016 Page 13

/ When do we flood \

* In the beginning, all at once
— Flood link state

— Everyone computes their own routing

* In between each step of route computation
— Who we can reach

— Ends up flooding reachability

\ /

CS 118 Lecture 14
Winter 2016 Page 14

/ Goal \

* Information to guide DAG traversal
— A way to pick alternate next-layer tables

* When both have viable translations

— A way to pick from among proxies

* [.e., multiple resolutions within one table

— A way to populate the DAG tables

* Relays are proxies for their destinations

\ /

CS 118 Lecture 14
Winter 2016 Page 15

/ Optimization \

* Beyond just getting there. ..

— Getting there 1n the best way
* Lowest delay, highest BW, greatest reliability, etc.

— Getting there without a loop

\ /

CS 118 Lecture 14
Winter 2016 Page 16

/ Information requirements

* Node name
— A way to identify the node itself

* Link name
— A way to 1dentify each link
— A single node may have many attached links
— A single link may have many attached nodes

* Costs
— To visit a node
— To traverse a link
— Cost !=price 1n dollars
— Usually expressed in delay units

\

CS 118

Winter 2016

/

Lecture 14
Page 17

/ Key algorithms \

* Basic flooding
e Distance vector

 Link state

\ /

CS 118 Lecture 14
Winter 2016 Page 18

/ Basic flooding \

* Start:
— Get a request on interface A

* Relay out:

— Send a copy on every interface

Does this include A?

\ When will this terminate?)

CS 118 Lecture 14
Winter 2016 Page 19

/" Goals of flooding for routing \

1. Get request to everyone reliably

2. Get responses back to the entity that needs
them

— In particular, let him know when he has all
responses

3. Minimize the cost
* Assuming connectivity, of course

\ /

CS 118 Lecture 14
Winter 2016 Page 20

/ Limiting the flood \

* Track the messages

 Track the nodes

\ /

CS 118 Lecture 14
Winter 2016 Page 21

/ Hopcount 1n messages \

* At each relay
— Drop count one

— Stop flooding when zero

Will this work? Under what conditions?

What do we have to know?

\ /

CS 118 Lecture 14
Winter 2016 Page 22

/ Checkbox at nodes \

e On receive
— Set visited = TRUE

 Once visited

— Don’t relay any more

Will this work?

\ How will initiator know when 1t’s done?)

CS 118 Lecture 14
Winter 2016 Page 23

/ Controlled flooding

* Chang’s Echo algorithm (1982)
— Start:

* Get the message on interface A
— Relay out:
* Send a copy on every interface except A
— Relay 1n:
* Wait for a copy on every interface except A

— End:
* Send the message back to A

\

CS 118

Winter 2016

/

Lecture 14
Page 24

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 25

/ A picture of Echo \

Mark incoming links

\ /

CS 118 Lecture 14
Winter 2016 Page 26

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 27

-~

\

CS 118
Winter 2016

A picture of Echo

Messages
cross!

~

Lecture 14

Page 28

/ A picture of Echo \

Only mark one
outgoing link

\ /

CS 118 Lecture 14
Winter 2016 Page 29

/ A picture of Echo \

Flood your unmarked
links

\ /

CS 118 Lecture 14
Winter 2016 Page 30

/ A picture of Echo \

This node received messages on all its

incoming links; it can respond on its marked link
~

\ /

CS 118 Lecture 14
Winter 2016 Page 31

/ A picture of Echo \

\
\

This node now has
received messages on
all its incoming links too

\ /

CS 118 Lecture 14
Winter 2016 Page 32

-

\

CS 118
Winter 2016

A picture of Echo

Multiple parts of the
graph are in “ACK”
mode — that's OK

~

/

Lecture 14

Page 33

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 34

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 35

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 36

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 37

/ A picture of Echo \

\ /

CS 118 Lecture 14
Winter 2016 Page 38

/ Properties of the echo algorithm\

* Assumes
— Bidirectional links
— Connected graph (no 1solated subgraphs)

* Exactly E messages
— One message on each link in each direction

* Scalably confirms a flood
— Without counts in the messages OR counts in the nodes!

— l.e., with a single message and one flag per interface at
cach node (finite state), it can confirm the flood of a
\ network of arbitrary size /

CS 118 Lecture 14
Winter 2016 Page 39

/ What did all that get us? \

* Flooding

— With confirmation

* Now what?
— What do we DO with that capability?

\ /

CS 118 Lecture 14
Winter 2016 Page 40

/ Two phase flooding \

e Phase 1

— Outgoing messages start the algorithm

— Incoming messages (starred links) list everyone you’ve
heard from

— At end of phase 1, initiator has complete map

e Phase 2

— Initiator floods the map

— When the algorithm 1s done, everyone knows everyone
has the complete map /

CS 118 Lecture 14
Winter 2016 Page 41

/ What map do we flood? \

* The entire map
— Expensive to flood

— Each node has to calculate connectivity

* The shortest paths

— Sure, but how do we get those?

\ /

CS 118 Lecture 14
Winter 2016 Page 42

/ Link state \

* Flood the entire map

* Calculate shortest paths
— Drijkstra’s algorithm

\ /

CS 118 Lecture 14
Winter 2016 Page 43

/ Dijkstra’s algorithm \

* Not a distributed algorithm!
e Start with one node in the CURRENT set

— Mark 1t as zero cost

e For the CURRENT node

— Check 1ts links for UNVISITED or FRONTIER neighbors

* Add each UNVISITED node it can reach to the FRONTIER set
with a new cost of “link” + CURRENT node cost

* If the node 1s already in the FRONTIER set, compare the new cost
to the previous cost; update the cost if it 1s lower

— Once done, mark the CURRENT node as VISITED

— Find the FRONTIER node with the smallest cost; move 1t
to CURRENT and repeat

\' Continue until there are no more FRONTIER nodes /

CS 118 Lecture 14
Winter 2016 Page 44

/ Diyjkstra’s Algorithm at work \

Unvisited

CS 118 Lecture 14
Winter 2016 Page 45

/ Diyjkstra’s Algorithm at work \

Frontier

\ /

CS 118 Lecture 14
Winter 2016 Page 46

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

Current

/ Diyjkstra’s Algorithm at work \

CS 118 Lecture 14
Winter 2016 Page 50

/ Diyjkstra’s Algorithm at work \

Note: This node’s cost W

\ /

CS 118 Lecture 14

Frontier

Winter 2016 Page 51

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

\ Frontier

\ Current /

CS 118 Lecture 14
Winter 2016 Page 53

/ Diyjkstra’s Algorithm at work \

CS 118 Lecture 14
Winter 2016 Page 54

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

CS 118 Lecture 14
Winter 2016 Page 57

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

Frontier

CS 118 Lecture 14
Winter 2016 Page 59

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

/ Diyjkstra’s Algorithm at work \

/ Which paths are used? \

/ What does Dijkstra compute? \

* Shortest path

— Between two nodes

* A shortest rooted tree
— Between the root (initial) node and all others
—I.e., N-1 routes between root:node pairs

— There might be other trees with same cost

\ /

CS 118 Lecture 14
Winter 2016 Page 64

/ Dijkstra: pros and cons \

* Pros

— Simple to implement
* Broadcast to everyone
* Everyone runs the same algorithm

* Cons
— Requires broadcast flooding
— Not everyone might compute the same tree
— Everyone has to compute the full path everywhere

\ /

CS 118 Lecture 14
Winter 2016 Page 65

/ Distance vector \

* Not always flooding

* Bellman-Ford algorithm
— Shortest path

* Ford-Fulkerson
— Max-flow
« DUAL
— Current popular variant

e We won’t look at Ford-Fulkerson or DUAL 1n
C§18 detail Lecture/14

Winter 2016 Page 66

/ Basic distance vector algorithm\

* Routing by sending only useful info
— Tell neighbors who you can reach and cost

— Everyone updates their table by transitive closure
rules

* Effect
— Walking the nodes while calculating Dijkstra

— Still floods — just not everything

\ /

CS 118 Lecture 14
Winter 2016 Page 67

/ Example of Bellman-Ford \

/ Example of Bellman-Ford \
B

EEE

I -

-

C B3

o :

o

Ery

—x —
- I -
A - E
: A -
. o o
i

o m
=t —_
a —
= oo

=
=
[\®}
S
p—
N

Lecture 14
Page 69

/ Example of Bellman-Ford \
B

mry
I o
s I
) 3
o0
H: "l
I -
K -
0
B -)
CS 118 ﬂ €e Lecture 14
Winter 2016 Page 70

/ A look at A \

* A looks at the tables i1t has received

s w o o [

\ /

CS 118 Lecture 14
Winter 2016 Page 71

-

A looks at tables 1t has received

A look at A

* Updates them with the cost to get to there
LA

B B

8 w o N b»

0 1
1 0
4 2
ey 4
0 e

\

CS 118

\

Winter 2016

s w o o [

Lecture 14
Page 72

/ A look at A \

A looks at tables 1t has received

s w o o [

* Updates them with the cost to get to there
LA

- Lol

0
1
4
o0
%

\ /

CS 118 Lecture 14
Winter 2016 Page 73

-

A looks at tables 1t has received

A look at A

* Updates its own table with the row min
LA A e

0

1 1
3 3
5 5
00 00

8 N » o

\

CS 118

\

s w o o [

/

Lecture 14

Winter 2016

Page 74

/ Bellman-Ford \

* Converges over time
— Keep exchanging tables and updating them

* Each step
— Faster — O(N), not O(E)
— Less state — O(N), not O(E)

— Works while it’s running

\ /

CS 118 Lecture 14
Winter 2016 Page 75

/ Bellman-Ford \

* Pros
— Fewer and smaller messages
— Send only changes, stops flood when changes stop
— Keeps less state per node
— Fast convergence when link improves/comes up

* Cons
— Decentralized (benign errors or malicious attacks)

— Slow convergence on link failure

\ /

CS 118 Lecture 14
Winter 2016 Page 76

/ [Link state vs. distance vector \

e Link state
— Sees the entire graph
— Reacts fast to changes
— Provides complete path

* But...
— Always floods
— Large local table
— O(N”2) computation

\

CS 118

 Distance vector

— Floods only where
changes affect route

— Smaller table

— O(N) computation

— Reacts faster to some
changes

— Provides next-hop

e But...

— No global view, so no
global optimization

Winter 2016

/

Lecture 14
Page 77

/ Other algorithms \

* Hierarchical routing

— Use structure in the name
— See the DNS

* (Geographic routing

— See phone calls

\ /

CS 118 Lecture 14
Winter 2016 Page 78

/ Hierarchical \

* Go up when you don’t know
— Go towards the root

* Go down based on what you know

— If target 1s a leaf on a subtree, go to that subtree

This describes a lot of Internet routing

(except that the root 1s a graph)

\

CS 118 Lecture 14
Winter 2016 Page 79

/ Geographic \

* Requires
— Spatial geometry (line, ring, plane, etc.)

— Node locations

* Use geometry to get you there
— Works great when 1t works

— Hard to get 1t to work

\ /

CS 118 Lecture 14
Winter 2016 Page 80

/ Landmark \

* Some geographic and hierarchical routing

* Subset of nodes/locations called “landmarks”
— You must know how to get to landmarks
— Go towards the landmark closest to your target
— Once close enough, some other routing will help

\ /

CS 118 Lecture 14
Winter 2016 Page 81

/ Who uses what? \

* Link state (Dyjkstra)
— OSPF (runs over IP)

— IS-IS (runs over 1ts own protocol)

* Distance vector (Bellman-Ford, etc.)
— RIP (runs over UDP)
— BGP (runs over TCP) but with complete path!
— EIGRP (runs over 1ts own protocol)

\ /

CS 118 Lecture 14
Winter 2016 Page 82

/ Issues \

* Split horizon
* Loop avoidance

e Cost metrics

\ /

CS 118 Lecture 14
Winter 2016 Page 83

/ Split horizon \

* DV algorithms converge slowly

— But link failure = 0O

— How long does 1t take to count to 00?

* Problem
— DV doesn’t keep track of path, only cost

* Solutions
— Don’t send back info you just got (split horizon)

\ — Send back the info as bad (poison reverse) /

CS 118 Lecture 14
Winter 2016 Page 84

/ Loop avoidance \

* Prevention
— Ensure loops are never created

* Correction
— Check for loops and remove them

* Accommodation
— Add a hopcount so messages can loop a little without

causing a big problem

\ /

CS 118 Lecture 14
Winter 2016 Page 85

/ Cost metrics \

* Lowest propagation delay?
— Not the shortest message delivery time

* Highest available capacity?
— Not the shortest delivery time either
* Lowest price?

— I.e., minimize an external cost

\ /

CS 118 Lecture 14
Winter 2016 Page 86

/ How to compose cost \

* Various equations
— Sum
— Weighted sum
— Min or max
* Rules for composition?

— Depend on routing algorithm

\ /

CS 118 Lecture 14
Winter 2016 Page 87

/ Metrics for success \

* Algorithm performance
* Backups and then some

e Other details

\ /

CS 118 Lecture 14
Winter 2016 Page 88

/ Algorithm performance \

* Time

— To initial table (can start relaying)

— To convergence

— To add new routes

— To delete dead routes
Bandwidth

— Number of messages

— Size of messages
Fairness / equality

— Will everyone have the same result?
Local costs

— Computation

— Storage

\ /

CS 118 Lecture 14
Winter 2016 Page 89

/ Solutions to performance \

* Use simple topologies
— Original Ethernet

— Token rings
— Wireless LAN

* Compartmentalize

— Break graph into regions

* Route within the regions
* Route between the regions separately

\ /

CS 118 Lecture 14
Winter 2016 Page 90

/ Compartmentalization and \

Internet routing
e How does the Internet route?

* It breaks the graph up
— Subgraphs connected at ingress/egress

— Name each subgraph (“Autonomous system”)
* Route within the subgraph
— Typically OSPF (link state)

* Route between the subgraphs

\

CS 118 Lecture 14
Winter 2016 Page 91

— Typically BGP (distance vector, sort of)

/ BGP and autonomous systems \

« BGP doesn’t route between nodes
* It routes at a higher level

— The autonomous system level

* What 1s an autonomous system (AS)?

— A connected subnet controlled by one party
— E.g., Verizon or AT&T

* An AS contains multiple routers

\ /

CS 118 Lecture 14
Winter 2016 Page 92

/ Graphically, \

BGP routes at AS level ~ AS47,AS7, AS55
\ Each AS routes internally as 1t pleases 1,2,4,7,9 /

CS 118 Lecture 14

Winter 2016 Page 93

/ BGP and policy-based routing \

* BGP essentially routes at a business-relevant
level

* BGP routing decisions are thus made by policy
* Each AS learns of routing options
* The AS uses local policy to choose an option

* Not necessarily shortest or computationally
cheapest

\ — Perhaps the business partner who gave you the best y
deal

CS 118 Lecture 14
Winter 2016 Page 94

/" Building BGPpaths

* AS that handles traffic to an IP prefix
advertises that fact to neighboring ASes

—E.g., “I can deliver to 15.33.124.0/24”

* Each neighbor AS remembers that
advertisement

* If those neighbors choose, they advertise a
route to their neighbors

— Adding themselves to the path

\ /

CS 118 Lecture 14
Winter 2016 Page 95

-

15.33.124.0/24

15.33.124.0/24
115.33.124.0/24,

\

CS 118

15.33.124.0/24,

AS4T

For example,

15.33.124.0/24,
ASA4T

AS477,AS91

I don’t want
to carry this
traffic

AS 158
G

AS 55

Winter 2016

/

Lecture 14
Page 96

/ Some BGP implications \

* No centralized decisions
— Either by authority or single algorithm

— ASes don’t even know all possible choices

* Decisions changeable dynamically
— At the AS level

* Constraints on routing based not just on
physical connectivity

— Also on business arrangements

\’ Only a partial description of the routes /

CS 118 Lecture 14
Winter 2016 Page 97

/ Backups and then some

\

CS 118
Winter 2016

* One route might not be enough
— “Hot spare” — equivalent backup link ready for

immediate use

— Multipath — for increased capacity

— Alternate path — to route around a dead link

\

Lecture 14

Page 98

/ Summary \

\

CS 118

Winter 2016

* Many ways to route

— All variations of transitive closure
— Vary in performance, convergence time, etc.

* Primary alternatives

— Link state (i.e., central computation)
— Distance vector (i.e., distributed computation)

* The hardest parts

— Are the details — how to assign cost, how to compose
cost, etc.

/

Lecture 14
Page 99

