
Lecture 12
Page 1

CS 118
Winter 2016

Recursion and Networking
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 12
Page 2

CS 118
Winter 2016

Outline

•  Preview and motivation

•  What is recursion?

•  The basic block concept

•  Stacks, hourglasses, and DAGs

Lecture 12
Page 3

CS 118
Winter 2016

Preview and motivation

•  What do we have so far?

•  Putting the pieces together

•  What’s missing?

Lecture 12
Page 4

CS 118
Winter 2016

What do we have so far?

•  Communication
– 2-party info. coordination over a direct link
– Requires a protocol

•  A layer
– Homogenous indirect communication
– Requires naming, relaying

•  Stacked layers
– Heterogeneous indirect communication
– Requires resolution

Lecture 12
Page 5

CS 118
Winter 2016

Putting them together

•  We have the pieces
– Communication
– Layers
– Stacking

•  Some assembly required
–  Is there just one way?

Lecture 12
Page 6

CS 118
Winter 2016

How do we know:

•  Which layers can stack
– Have resolution mechanisms

•  Which layer you should use next
– Does it help you move closer

towards communicating?

Lecture 12
Page 7

CS 118
Winter 2016

What’s missing?

•  A map
– To show layer relationships

•  A way to use that map
– Picking a trail
– Following a trail
– Some breadcrumbs to find our way home

Lecture 12
Page 8

CS 118
Winter 2016

Maps and map use

•  We’ll start with map use
– That’s where recursion comes in

•  Then we’ll look at the map
– Hint: remember stacks and hourglasses?

Lecture 12
Page 9

CS 118
Winter 2016

Using recursion to describe
network layering

•  We will use the general idea of recursion to
unify our understanding of network layering

•  That’s NOT how the code, hardware, and most
architectures really work
– You’d look in vain for obvious recursive steps

•  But at a high level it’s really what’s going on
•  REMEMBER – we’re talking concepts, not

implementations, here

Lecture 12
Page 10

CS 118
Winter 2016

What is recursion?

•  Definition

•  Properties

•  Variants

Lecture 12
Page 11

CS 118
Winter 2016

Induction

•  Base case:
– Prove (or assert) a starting point
– E.g., 0 is a natural number

•  Inductive step:
– Prove (or assert) a composite case

assuming already proven cases
– E.g., X+1 is a natural number if X is too

Lecture 12
Page 12

CS 118
Winter 2016

Induction proof

• 

Lecture 12
Page 13

CS 118
Winter 2016

Recursion: backwards induction

•  Reductive step:
– Rules that reduce a complex case into components,

assuming the component cases work

•  Base case:
– Rules for at least one (irreducible) case

Lecture 12
Page 14

CS 118
Winter 2016

Recursion: example

• 

Lecture 12
Page 15

CS 118
Winter 2016

Recursion as code
•  int factorial(int n)

{
 if (n < 0) {
 exit(-1); // ERROR
 }
 if (n == 0) {
 return 1;
 } else {
 return n * factorial(n-1);
 }
}

Lecture 12
Page 16

CS 118
Winter 2016

Fibonacci series

•  Base:
– Fib(0) = 0
– Fib(1) = 1

•  Reduction:
– F(n) = F(n-1) + F(n-2)

Lecture 12
Page 17

CS 118
Winter 2016

Properties of recursion

•  Base case
– Just like induction

•  Self-referential reduction case
– Just like induction, but in reverse

Lecture 12
Page 18

CS 118
Winter 2016

Differences

•  Induction
– Starts with the base case
– Uses finite steps
– Extends to the infinite

•  Recursion
– Starts with a finite case (base or otherwise)
– Uses finite steps
– Reduces to the base case

Lecture 12
Page 19

CS 118
Winter 2016

Properties of recursion

•  All cases are the same
– Except the base case(s)

•  Recursive step is self-referential
–  Import interface = export interface
– “Provides what it expects”
– E.g., C func: vtype recfunc(vtype x)

Lecture 12
Page 20

CS 118
Winter 2016

Variants of recursion

•  Regular

•  Tail

Lecture 12
Page 21

CS 118
Winter 2016

Regular recursion

•  Reductive step is an arbitrary function
– MUST include self-reference
– Self-reference MUST be ‘simpler’

–  int fib(n) { return fib(n-1) + fib(n-2); }

Lecture 12
Page 22

CS 118
Winter 2016

Why simpler?

•  Reductive step must simplify
–  If it ever doesn’t, recursion is infinite
–  If you don’t change just once, you never will

Lecture 12
Page 23

CS 118
Winter 2016

Tail recursion
•  Same rules as regular recursion

 PLUS
•  Self-reference ONLY as the sole last step

–  int fib(int i) {
 return dofib(i, 0, 1);

}
–  int dofib(int i, int x, int y) {

 if (i==0) { return x; } // base case
 if (i==1) { return y; } // base case
 return dofib(i-1, y, x+y); // reduction step

}

Lecture 12
Page 24

CS 118
Winter 2016

Why tail recursion?
•  Replace self-reference with “goto”

–  Turns recursion into a while loop

–  int fib(int i) {
 return dofib(i, 0, 1);

}
–  int dofib(int i, int x, int y) {

 while (i > 0) {
 tx = x; ty = y; // need for temp storage
 i = i-1; x = ty; y = tx+ty; // “recursive call”
 }
 return x;

}

Lecture 12
Page 25

CS 118
Winter 2016

How is recursion related to
networking?

•  Base case: communication
– Two parties already directly connected

•  Reduction steps: networking
– Stacked layering
– Relaying

= regular recursion
= tail recursion

Lecture 12
Page 26

CS 118
Winter 2016

Stacked layering as recursion

•  P can reach Q
– Assuming P translates to X,
– Q translates to Y,
– and X can reach Y

•  Turns P-Q layer into X-Y layer
– Using resolution

•  Base case – some layer in the stack allows the
source to reach the destination

Lecture 12
Page 27

CS 118
Winter 2016

Relaying as tail recursion

•  A can reach C
– Assuming A can reach B
– and B can reach C

•  How is this tail recursion?
– We’ll get back to that …

Lecture 12
Page 28

CS 118
Winter 2016

Recall how stacked layering works

•  Get to the layer you share with dest.
– Go down and up to get where you need to go

A K P T

1 9 r s Δ
Σ

Lecture 12
Page 29

CS 118
Winter 2016

Where’s the elevator?

•  Next layer down?
– When do we do this?

•  When we don’t share a layer with current destination
•  How do we know?

•  What do we do if we can’t go down?
•  We pop “up” instead
•  Then we need to pick another layer to go down
•  How do we know?

Let’s start with the elevator itself

Lecture 12
Page 30

CS 118
Winter 2016

The basic block

•  The block

•  Interfaces

•  Internal functions

•  The role of naming and routing

Lecture 12
Page 31

CS 118
Winter 2016

The block

•  The elevator:

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 32

CS 118
Winter 2016

What’s happening inside…

•  A layer is…

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 33

CS 118
Winter 2016

What’s happening inside…

•  A layer is:
–  Prepare msg

for
communication

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 34

CS 118
Winter 2016

What’s happening inside…

•  A layer is:
–  Is it for you?

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 35

CS 118
Winter 2016

What’s happening inside…

•  A layer is:
–  Is it for you?

•  Yes – done

•  Well, except
you need to
go back up
the stack

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 36

CS 118
Winter 2016

What’s happening inside…

•  A layer is:
–  Is it for you?

•  No:
–  Find help

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 37

CS 118
Winter 2016

What’s happening inside…

•  A layer is:
–  Is it for you?

•  No:
–  Find help
–  Translate ID

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 38

CS 118
Winter 2016

What’s happening inside…

•  A layer is:
–  Is it for you?

•  Yes – done
•  No:

–  Find help
–  Translate ID
–  Send it there

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 39

CS 118
Winter 2016

Deeper look at the steps

•  Prepare message for communication
– Take what you get (from the user/FSM)
– Add whatever you need for your state sharing
– Run the protocol at this layer

•  Then check to see where it goes

Lecture 12
Page 40

CS 118
Winter 2016

Why prepare then send?

•  You can’t reverse order
–  You need your message

in order to talk
–  One request might turn

into multiple messages

•  It might be for you
–  A nice degenerate case
–  “Dancing with yourself”

Lecture 12
Page 41

CS 118
Winter 2016

Why does this work?

•  Recursion
– Base case: direct connection
– Recursive steps:

•  Layering
•  Relaying

Lecture 12
Page 42

CS 118
Winter 2016

An example: DNS request

•  User requests gethostbyname() to the OS
– Prepares the DNS query message

to the default server (random root or local)
–  Is it for me?

•  No:
–  Find a way to get to the server
–  Translate this layer’s names (“YOU”, “servername”)

into the next layer’s names
–  RECURSE

Lecture 12
Page 43

CS 118
Winter 2016

Recursion steps

•  User calls
gethostbyname() to OS
– Make DNS query “me”->dns
– For “dns” use UDP
– Translate me to bob.com:

61240, dns to ns.com:53
– Call UDP

DNS Layer

UDP Layer

Lecture 12
Page 44

CS 118
Winter 2016

Recursion steps

•  User calls gethostbyname()
to OS
– …
– Call UDP

•  Make UDP message 61240->53
•  For “UDP” use IP
•  Translate bob.com to 52.3.5.3,

ns.com to 2.43.14.123
•  Call IP

DNS Layer

UDP Layer

IP Layer

Lecture 12
Page 45

CS 118
Winter 2016

Recursion steps

•  User calls gethostbyname()
to OS
– …
– Call UDP

•  …
•  Call IP

–  Make IP message 52.3.5.3 ->2.43.14.123
–  For IP use ethernet
–  Translate 52.3.5.3, 2.43.14.123 to ethA,

ethB
–  Call Ethernet

DNS Layer

UDP Layer

IP Layer

Ethernet Layer

Lecture 12
Page 46

CS 118
Winter 2016

Recursion steps

•  User calls gethostbyname()
to OS
– …
– Call UDP

•  …
•  Call IP

–  …
–  Call Ethernet

»  Make ethernet message ethA->ethB
»  For ethB, use em0 directly
»  BASE CASE – send it!

DNS Layer

UDP Layer

IP Layer

Ethernet Layer

Lecture 12
Page 47

CS 118
Winter 2016

What about at the receiver?

•  Message comes in at some base protocol
– E.g., the Ethernet on the receiving node

•  It’s to be handled by a higher level protocol
– E.g., DNS

•  How do we get up to that layer?
•  Recursion in the opposite direction
•  Call up the stack, instead of down

Lecture 12
Page 48

CS 118
Winter 2016

Recursion block at receiver

•  Now you pop back up the
stack

•  You’re at the destination,
but not at the right layer

•  It’s recursive calls again
•  But in the opposite

direction

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 49

CS 118
Winter 2016

Interfaces

•  What does the block input?
– Source name
– Destination name
– Message
–  In the layer of the block

•  What does the block output?
– Recursive step: same thing! (it has to)
– Base case: physical signal with same effect

Next Layer

LAYER(DATA, SRC, DST)
 Process DATA, SRC, DST into MSG
 WHILE (Here <> DST)
 IF (exists(lower layer))
 Select a lower layer
 Resolve SRC/DST to next layer S’,D’
 LAYER(MSG, S’, D’)
 ELSE
 FAIL /* can’t find destination */
 ENDIF
 ENDWHILE
 /* message arrives here */
 RETURN {up the current stack}

Lecture 12
Page 50

CS 118
Winter 2016

Process the message

•  This is the protocol FSM
– Starts in default state (non-persistent) or last state

(persistent)
– Tape-in is the “input” message to be shared
– Tape-out is the “output” message(s) to share with

the corresponding FSM at the destination

Lecture 12
Page 51

CS 118
Winter 2016

The role of naming and routing

•  Resolution tables
–  Indicate whether you can get somewhere
– Translate names from one layer to next

•  I.e., resolution tables are BOTH
– Name translation
– Routing

Lecture 12
Page 52

CS 118
Winter 2016

Stacks, hourglasses, and DAGs

•  Recursion: the engine that gets you there
– But it needs a map to follow

Lecture 12
Page 53

CS 118
Winter 2016

Stacks

•  A linear chain of layers
– “Next layer” is fixed
– Describes a path taken

by the recursive steps
– But not all possible paths

that could be taken

100bT 802.3 IP TCP BEEP XDR HTTP

Lecture 12
Page 54

CS 118
Winter 2016

The Hourglass

•  A bigger picture
– Many possible paths

•  Top half describes reuse
– Many different layers share

ways to “get there”
•  Bottom half describes choices

– One layer has many ways
to “get there”

Lecture 12
Page 55

CS 118
Winter 2016

Top half

•  HTTP, DNS, FTP
– All use TCP

•  TCP, UDP, SCTP
– All use IP

•  Sharing to reuse
mechanism

HTTP/DNS/FTP/	
NFS/IM	

TCP/UDP/	
SCTP/RTP	

Ethernet/	
FDDI/Sonet	

λ	PPM,	λ	CDMA,		
e-	NRZ,	e-	PCM	

Lecture 12
Page 56

CS 118
Winter 2016

Bottom half

•  IP
– Can use ethernet, sonet

•  Ethernet
– Can use optical, electrical

•  Choice to allow
diversity and
optimization

HTTP/DNS/FTP/	
NFS/IM	

TCP/UDP/	
SCTP/RTP	

Ethernet/	
FDDI/Sonet	

λ	PPM,	λ	CDMA,		
e-	NRZ,	e-	PCM	

Lecture 12
Page 57

CS 118
Winter 2016

Who talks to whom?

•  Every communicating pair
–  Is at the same layer
– MAY have different lower layers

(recursive next steps)
– CANNOT have different upper layers

(share a common previous recursive steps)

Lecture 12
Page 58

CS 118
Winter 2016

Who talks to whom

HTTP	 HTTP	

TCP	 TCP	

IP	 IP	

SONET	 SONET	 Ether	Ether	

IP	

Lecture 12
Page 59

CS 118
Winter 2016

The DAG

•  Structure of tables
– Directed
– Acyclic
– Graph

Hard state
WDM link
Hard state
WDM link

stream
DNS A

DNS->IPv4

stream
DNS AAAA
DNS->IPv6

Stream
DNS txt

DNS->O-ID

packet
sBGP

IPv4->IPv4
packet
BGP

IPv4->IPv4
packet
OSPF

IPv4->IPv4

packet
ARP

IPv4->E-mac

packet
64tun cfg

IPv6->IPv4

E-net
Id=45

WDM
ID=3

Hard state
TCP conn. Soft state

Delta-T

Hard state
WDM link

Soft state
tunnel

Recursive Core

Service type
Update protocol

From->To

Legend

Lecture 12
Page 60

CS 118
Winter 2016

DAG Components

•  Components
– Recursive block (RB)
– Translation table (TT)
– State instance (SI)

•  Structure
– Directed acyclic graph

•  TT as primary nodes, connected on matching entries
•  SI as intermediate nodes on all arcs connecting TTs

– Recursive block – traverses the graph

Recursion	

Interface

Environment	
Interface

CapabiliFes

Nee
ds

Recursive	Block

RECBLOCK(DATA,	SRC,	DST)		
				Process	DATA,	SRC,	DST	into	MSG	
				WHILE	(Here	<>	DST)	
								IF	(exists(lower	layer))	
												Select	a	lower	layer	
												Resolve	SRC/DST	to	lower	layer	S’,D’		
												RECBLOCK(MSG,	S’,	D’)	
								ELSE	
												FAIL	/*	can’t	find	desInaIon	*/	
								ENDIF	
			ENDWHILE	
			/*	message	arrives	here	*/	
			RETURN	{up	the	current	stack}

								TranslaFon	Table

From:
	To:	IP-1
	Eth-22	IP-5

Eth-85

“From”	domain

“To”	domain

SoY	state	

ID=name	

So,	state	

ID=name

Lecture 12
Page 61

CS 118
Winter 2016

What does the DAG indicate?

•  Recursive steps

•  FSM rules and state

Lecture 12
Page 62

CS 118
Winter 2016

Recursive steps

•  Fan-out
–  Alternate (equivalent)

next step

•  Fan-in
–  Protocol reuse/sharing

(NOT interoperation)

Lecture 12
Page 63

CS 118
Winter 2016

FSM rules and state

•  A place to “wait” until there’s more tape-in
– State needs a place to wait
– FSM rules need a place too
–  I.e.,a paused FSM

•  i.e., the “breadcrumbs”

Lecture 12
Page 64

CS 118
Winter 2016

Follow the yellow brick road

(overlapping euphemism alert)

•  Picking a trail
– Use the map; search all “next step” options
–  Find a choice with a translation entry

•  Follow the trail
– Use the “breadcrumbs” (state) left by previous msg

•  Find your way home
– Use the “breadcrumbs” inside the message

Lecture 12
Page 65

CS 118
Winter 2016

Breadcrumbs inside the message?

•  Remember the message in the envelope?

•  Envelope inside an envelope
–  Inner envelope is the “breadcrumbs”
– Encodes path UP at receiver

Lecture 12
Page 66

CS 118
Winter 2016

The DAG looks complicated

It is because it supports:

•  More than one hourglass

•  Dynamic path selection

Lecture 12
Page 67

CS 118
Winter 2016

More accurate than ONE hourglass

•  Describes many overlapping hourglasses

Lecture 12
Page 68

CS 118
Winter 2016

Dynamic graph path selection

•  Internet “stacks” graph
– Static
– Only ever picks one choice:

it never tries another on failure

•  Other variants allow dynamic choice
– Research projects
– Datacenter optimizations

Lecture 12
Page 69

CS 118
Winter 2016

Summary

•  Networking traverses layers via recursion

•  That recursion needs a map

•  The map governs recursive step choice and
manages FSM (protocol) state

