-

Recursion and Networking
CS 118

Peter Reiher

\

Computer Network Fundamentals

/ Outline \

 Preview and motivation
 What 1s recursion?
* The basic block concept

* Stacks, hourglasses, and DAGs

\ /

CS 118 Lecture 12
Winter 2016 Page 2

/ Preview and motivation \

* What do we have so far?
* Putting the pieces together

* What’s missing?

\ /

CS 118 Lecture 12
Winter 2016 Page 3

/ What do we have so far? \

* Communication
— 2-party 1info. coordination over a direct link
— Requires a protocol

* Alayer

— Homogenous indirect communication

— Requires naming, relaying
* Stacked layers

— Heterogeneous indirect communication

\ — Requires resolution y

CS 118 Lecture 12
Winter 2016 Page 4

/ Putting them together \

* We have the pieces <
— Communication 1 PR
— Layers
— Stacking
w
3
 Some assembly required 0
— Is there just one way? |

\ /

CS 118 Lecture 12
Winter 2016 Page 5

/ How do we know: \

* Which layers can stack

— Have resolution mechanisms

* Which layer you should use next

— Does 1t help you move closer
towards communicating?

\ /

CS 118 Lecture 12
Winter 2016 Page 6

/ What’s missing?

\

CS 118

Winter 2016

* Amap

— To show layer relationships

* A way to use that map

— Picking a trail
— Following a trail
— Some breadcrumbs to find our way home

~

/ Maps and map use \

* We’ll start with map use

— That’s where recursion comes 1n

* Then we’ll look at the map

— Hint: remember stacks and hourglasses?

\ /

CS 118 Lecture 12
Winter 2016 Page 8

/ Using recursion to describe \

network layering
* We will use the general 1dea of recursion to

unify our understanding of network layering
 That’s NOT how the code, hardware, and most
architectures really work

— You’d look in vain for obvious recursive steps
* But at a high level 1t’s really what’s going on

« REMEMBER — we’re talking concepts, not
implementations, here

\ /

CS 118 Lecture 12
Winter 2016 Page 9

/ What 1s recursion? \

* Definition
* Properties

e Variants

\ /

CS 118 Lecture 12
Winter 2016 Page 10

-

\

CS 118
Winter 2016

Induction

* Base case:
— Prove (or assert) a starting point

— E.g., 0 1s a natural number

* Inductive step:

— Prove (or assert) a composite case

assuming already proven cases

— E.g., X+1 1s a natural number if X 1s too

/

Lecture 12
Page 11

/ Induction proof \

o Prove: YN ,i = NU\;“)
 Base:

— Prove it is true for N=0

— When N=0, sum is correct: 0 ((;H) =0

 Inductive step:

— Ifitis true for N, prove it is true for N+1
N (N+1)

— For N, assume sum is:

N (N+1)

— For N+1, sum should be: ——+ (N + 1)

— And itis; XD (N+1) = N (N+1) | 2(N+1) _ (N+1)((N+1)+1)
\ ’ 2 2 2 /
Witer Lecture 12

Winter 2016 Page 12

/ Recursion: backwards induction\

* Reductive step:

— Rules that reduce a complex case into components,
assuming the component cases work

e Base case:

— Rules for at least one (irreducible) case

\ /

CS 118 Lecture 12
Winter 2016 Page 13

/ Recursion: example \

 Reduction case:
—N!'=Nx(N-1)!

« Base case:
—-0'=1

\ /

CS 118 Lecture 12
Winter 2016 Page 14

/ Recursion as code \

* 1nt factorial(int n)

if (n<0) {
exit(-1); // ERROR

h
if (n==0) {
return 1;
} else {
} return n * factorial(n-1);

J
\ /

CS 118 Lecture 12
Winter 2016 Page 15

/ Fibonacci series \

* Base:
— Fib(0) = 0
— Fib(1) = 1
e Reduction:
— F(n) = F(n-1) + F(n-2)

\ /

CS 118 Lecture 12
Winter 2016 Page 16

/ Properties of recursion \

e Base case
— Just like induction

o Self-referential reduction case

— Just like induction, but in reverse

\ /

CS 118 Lecture 12
Winter 2016 Page 17

/ Difterences \

e Induction
— Starts with the base case

— Uses finite steps
— Extends to the infinite

* Recursion
— Starts with a finite case (base or otherwise)
— Uses finite steps

\ — Reduces to the base case /

CS 118 Lecture 12
Winter 2016 Page 18

/ Properties of recursion

\

CS 118

Winter 2016

 All cases are the same

— Except the base case(s)

* Recursive step 1s self-referential

— Import interface = export interface
— “Provides what 1t expects”

—E.g., C func: vtype recfunc (vtype x)

\

Lecture 12

Page 19

/ Variants of recursion \

* Regular

e Tail

\ /

CS 118 Lecture 12
Winter 2016 Page 20

/ Regular recursion \

* Reductive step 1s an arbitrary function
— MUST include self-reference
— Self-reference MUST be ‘simpler’

_ int ﬁw P(n 2);)

\ /

CS 118 Lecture 12
Winter 2016 Page 21

4 Why simpler?

* Reductive step must simplity
— If 1t ever doesn’t, recursion 1s infinite

— If you don’t change just once, you never will

\

CS 118

~

Winter 2016

/ Tail recursion

* Same rules as regular recursion

PLUS
* Self-reference ONLY as the sole last step

— 1nt fib(int 1) {
return dofib(i, 0, 1);

)
— 1nt dofib(int 1, int X, Int y) {
if (1==0) { return x; } // base case
if 1==1) {returny; } // base case
return dofib(i-1, y, x+y); // reduction step
)

\

CS 118

Winter 2016

/

Lecture 12
Page 23

/ Why tail recursion? \

* Replace self-reference with “goto”
— Turns recursion into a while loop

— int fib(int 1) {
return dofib(i, 0, 1);

)
—ant dofib(int 1, int X, int y) {
while (1> 0) {
X=x;ty =y; // need for temp storage
1=1-1; x = ty; y = tx+ty; // “recursive call”
)
return Xx;
)

CS 118 Lecture 12
Winter 2016 Page 24

/ How 1s recursion related to \
networking?

 Base case: communication

— Two parties already directly connected

* Reduction steps: networking

— Stacked layering = regular recursion
— Relaying = tail recursion

\ /

CS 118 Lecture 12
Winter 2016 Page 25

/ Stacked layering as recursion \

 Pcanreach Q
— Assuming P translates to X,
— Q translates to Y,
—and X canreach Y

* Turns P-Q layer into X-Y layer

— Using resolution

* Base case — some layer 1n the stack allows the
\ source to reach the destination /

CS 118 Lecture 12
Winter 2016 Page 26

/ Relaying as tail recursion \

* A canreach C
— Assuming A can reach B

— and B can reach C

 How 1s this tail recursion?
— We’ll get back to that ...

\ /

CS 118 Lecture 12
Winter 2016 Page 27

@ecall how stacked layering WOI‘kS\

* Get to the layer you share with dest.

— Go down and up to get where you need to go

\ /

CS 118 Lecture 12
Winter 2016 Page 28

/ Where’s the elevator? \

* Next layer down?

— When do we do this?

* When we don’t share a layer with current destination
* How do we know?

* What do we do 1f we can’t go down?
* We pop “up” instead
* Then we need to pick another layer to go down
* How do we know?

\ Let’s start with the elevator itself

CS 118

Winter 2016

/

Lecture 12
Page 29

/ The basic block \

 The block
e Interfaces

* Internal functions

* The role of naming and routing

\ /

CS 118 Lecture 12
Winter 2016 Page 30

-

e The elevator:

\

CS 118

The block

\

LAYER(DATA, SRC, DST)
Process DATA, SRC, DST into MSG
WHILE (Here <> DST)
IF (exists(lower layer))
Select a lower layer
Resolve SRC/DST to next layer S’,D’
LAYER(MSG, S’, D’)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
[* message arrives here */
RETURN {up the current stack}

7

M Next Layer

/

Lecture 12

Winter 2016

Page 31

/ What’s happening 1nside... \

* A layer 1s. .."‘

LAYER(DATA, SRC, DST)
Process DATA, SRC, DST into MSG
WHILE (Here <> DST)
IF (exists(lower layer))
Select a lower layer
Resolve SRC/DST to next layer S’,D’
LAYER(MSG, S’, D’)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
/* message arrives here */
RETURN {up the current stack}

7

\

CS 118

M Next Layer

/

Lecture 12

Winter 2016

Page 32

/ What’s happening 1nside... \

e A laver is: AYER(DATA, SRC, DST)
yeris.) Process DATA, SRC, DST into MSG
— Prepare msg WHILE (_Here <> DST)
f IF (exists(lower layer))
Or o Select a lower layer
communication Resolve SRC/DST to next layer S’,D’
LAYER(MSG, S’, D’)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
[* message arrives here */
RETURN {up the current stack} 7

M Next Layer

CS 118 Lecture 12
Winter 2016 Page 33

/ What’s happening 1nside... \

. . LAYER(DATA, SRC, DST)
A layer 1s: Process DATA, SRC, DST into MSG
. o [WHILE (Here <> DST)
— Is 1t for you: IF (exists(lower layer))
Select a lower layer
Resolve SRC/DST to next layer S’,D’
LAYER(MSG, S’, D’)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
[* message arrives here */
RETURN {up the current stack} 7

M Next Layer

CS 118 Lecture 12
Winter 2016 Page 34

/ What’s happening 1nside... \

LAYER(DATA, SRC, DST)

* Alayer 1s: Process DATA, SRC, DST into MSG
Is it f 9 WHILE (Here <> DST)
— Is 1t 1or you: IF (exists(lower layer))

Select a lower layer

* Yes — done -
Resolve SRC/DST to next layer S’,D

« Well, except _ LAYER(4SG, 57.0)
you need to ENFSIIL_ /* can’t find destination */
g0 back up ENDWHILE
the stack ||”r§é"f§ 2N {up the current stackd P
M Next Layer

Winter 2016 Page 35

/ What’s happening 1nside... \

. 1 . LAYER(DATA, SRC, DST)
A dycCr 18S. Process DATA, SRC, DST into MSG

_ WHILE (Here <> DST)
— Is 1t for YOU.? ||» IF (exists(lower layer))
* No:

Select a lower layer
. Resolve SRC/DST to next layer S',D’
— Find help LAYER(MSG, S', D)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE

[* message arrives here */
RETURN {up the current stack} 7

M Next Layer

CS 118 Lecture 12
Winter 2016 Page 36

/ What’s happening 1nside... \

* A layer is:
— Is 1t for you?
* No:

— Find help
— Translate ID

\

CS 118

LAYER(DATA, SRC, DST)
Process DATA, SRC, DST into MSG
WHILE (Here <> DST)
IF (exists(lower layer))

Select a lower layer
||»Resolve SRC/DST to next layer S',D’
LAYER(MSG, S’, D’)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
[* message arrives here */
RETURN {up the current stack}

7

M Next Layer

Winter 2016

/

Lecture 12
Page 37

/ What’s happening 1nside... \

* A layer 1s:
— Is 1t for you?
* Yes — done
* No:
— Find help

— Translate ID
— Send it there

\

CS 118

LAYER(DATA, SRC, DST)
Process DATA, SRC, DST into MSG
WHILE (Here <> DST)
IF (exists(lower layer))
Select a lower layer
Resolve SRC/DST to next layer S’,D’
|*LAYER(MSG, S, D))
LSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
[* message arrives here */
RETURN {up the current stack}

7

M Next Layer

Winter 2016

/

Lecture 12
Page 38

/ Deeper look at the steps \

* Prepare message for communication
— Take what you get (from the user/FSM)
— Add whatever you need for your state sharing

— Run the protocol at this layer
* Then check to see where 1t goes

\ /

CS 118 Lecture 12
Winter 2016 Page 39

\

CS 118
Winter 2016

* You can’t reverse order

— You need your message

in order to talk

— One request might turn

into multiple messages

It might be for you
— A nice degenerate case
— “Dancing with yourself”

/ Why prepare then send?

Lecture 12
Page 40

/ Why does this work? \

e Recursion
— Base case: direct connection

— Recursive steps:
* Layering
* Relaying

\ /

CS 118 Lecture 12
Winter 2016 Page 41

/ An example: DNS request \

* User requests gethostbyname () to the OS

— Prepares the DNS query message
to the default server (random root or local)

— Is 1t for me?
 No:

— Find a way to get to the server

— Translate this layer’s names (“YOU”, “servername™)
into the next layer’s names

— RECURSE

\ /

CS 118 Lecture 12
Winter 2016 Page 42

/ Recursion steps \

e User calls DR faver
gethostbyname () to OS
— Make DNS query “me”->dns UDP Layer

— For “dns” use UDP

— Translate me to bob.com:
61240, dns to ns.com:53

— Call UDP

\ /

CS 118 Lecture 12
Winter 2016 Page 43

/ Recursion steps \

DNS Layer

e User calls gethostbyname ()
to OS

— Call UDP
* Make UDP message 61240->53
* For “UDP” use IP

* Translate bob.com to 52.3.5.3,
ns.com to 2.43.14.123

e Call IP

\ /

CS 118 Lecture 12
Winter 2016 Page 44

UDP Layer

IP Layer

/ Recursion steps

e User calls gethostbyname ()
to OS

— Call UDP

e Call IP
— Make IP message 52.3.5.3 ->2.43.14.123

— For IP use ethernet

— Translate 52.3.5.3, 2.43.14.123 to ethA,
ethB

\ — Call Ethernet

CS 118

~

DNS Layer

UDP Layer

[P Layer

Ethernet Layer

/

Winter 2016

Lecture 12
Page 45

-

to OS

\

CS 118

Recursion steps

e User calls gethostbyname ()

— Call UDP

e Call IP

— Call Ethernet

» Make ethernet message ethA->ethB
» For ethB, use em0 directly
» BASE CASE — send it!

~

DNS Layer

UDP Layer

IP Layer

Ethernet Layer

/

Winter 2016

Lecture 12
Page 46

/ What about at the receiver? \

* Message comes 1n at some base protocol
— E.g., the Ethernet on the receiving node

* It’s to be handled by a higher level protocol
—E.g., DNS

* How do we get up to that layer?

* Recursion in the opposite direction

 Call up the stack, instead of down

\ /

CS 118 Lecture 12
Winter 2016 Page 47

/ Recursion block at receiver \

\

CS 118

Winter 2016

Now you pop back up the
stack

You’re at the destination,
but not at the right layer

It’s recursive calls again

But in the opposite
direction

"

LAYER(DATA, SRC, DST)
Process DATA, SRC, DST into MSG
WHILE (Here <> DST)
IF (exists(lower layer))
Select a lower layer
Resolve SRC/DST to next layer S’,D’
LAYER(MSG, S’, D)
ELSE
FAIL /* can’t find destination */
ENDIF
ENDWHILE
[* message arrives here */
RETURN {up the current stack}

74

/

Lecture 12

Page 48

/ Interfaces \

LAYER(DATA, SRC, DST)

* What does the block mput? || Gicieeosn™ "

IF (exists(lower layer))

Select a lower layer

- Source name Resolve SRC/DST to next layer S’,D’

LAYER(MSG, ', D’)
ELSE

—_— " . FAIL /* can’t find destination */
Destination name e

ENDWHILE

/* message arrives here */
- Message RETURN {up the current stack} 7

— In the layer of the block M e over
* What does the block output?

— Recursive step: same thing! (it has to)

— Base case: physical signal with same effect

\ /

CS 118 Lecture 12
Winter 2016 Page 49

/ Process the message \

* This 1s the protocol FSM

— Starts 1n default state (non-persistent) or last state
(persistent)

— Tape-in 1s the “input” message to be shared

— Tape-out 1s the “output” message(s) to share with
the corresponding FSM at the destination

\ /

CS 118 Lecture 12
Winter 2016 Page 50

/ The role of naming and routing\

* Resolution tables
— Indicate whether you can get somewhere

— Translate names from one layer to next

*].e., resolution tables are BOTH
— Name translation

— Routing

\ /

CS 118 Lecture 12
Winter 2016 Page 51

/ Stacks, hourglasses, and DAGS\

* Recursion: the engine that gets you there
— But it needs a map to follow

\ /

CS 118 Lecture 12
Winter 2016 Page 52

/ Stacks

* A linear chain of layers
— “Next layer” 1s fixed

— Describes a path taken
by the recursive steps

— But not all possible paths
that could be taken

\

CS 118

HTTP
XDR
BEEP
TCP
IP
802.3
100bT

Winter 2016

/

Lecture 12
Page 53

/ The Hourglass

* A bigger picture
— Many possible paths

* Top half describes reuse

— Many different layers share
ways to “get there”

 Bottom half describes choices

— One layer has many ways
to “get there”

\ /

CS 118 Lecture 12
Winter 2016 Page 54

/ Top half

« HTTP, DNS, FTP
— All use TCP

« TCP, UDP, SCTP
— All use IP

* Sharing to reuse
mechanism

\

CS 118

HTTP/DNS/FTP/
NFS/IM

TCP/UDP/
SCTP/RTP

Ethernet/
FDDI/Sonet

A PPM, A CDMA,
e NRZ, e PCM

Winter 2016

Lecture 12
Page 55

/ Bottom half \

e [P HTTP/DNS/FTP/
NFS/IM
— Can use ethernet, sonet TCP/UDP/
SCTP/RTP
 Ethernet

— Can use optical, electrical

. Ethernet/
* Choice to allow FDDI/Sonet
. . A PPM, A CDMA,
diversity and e NRZ, & PCM
optimization
CS 118 Lecture 12

Winter 2016 Page 56

/ Who talks to whom? \

* Every communicating pair
— Is at the same layer

— MAY have different lower layers
(recursive next steps)

— CANNOT have different upper layers
(share a common previous recursive steps)

\ /

CS 118 Lecture 12
Winter 2016 Page 57

(Who talks to whom \

> TCP

I |

\

CS 118

TCP
P < DI |- S
SONET SONET Ether

Ether

Winter 2016

Lecture 12
Page 58

— Directed
— Acyclic
— Graph

CS 118

o Structure of tables

The DAG

Recursive Core

stream
DNS A
DNS->IPv4

»
Hard state
TCP conn.

Soft state
Delta-T

OSPF
IPv4->IPv4

sBGP
IPv4->IPv4

weegend...

i Servicetype : packet

i Update protocol ARP

i From->To IPv4->E-mac

stream

DNS AAAA Stream
DNS->IPv6 DNS txt
DNS->0-ID

Soft state
tunnel

packet
64tun cfg
IPv6->IPv4

)

packet
BGP
IPv4->IPv4

WDN

jard state
Hard state "\OM link
WDM link disiata

link

Winter 2016

/

Lecture 12
Page 59

/ DAG Components

t —

« Components pd
— Recursive block (RB)
— Translation table (TT) - ,
— State instance (SI) \
* Structure
— Directed acyclic graph -

* TT as primary nodes, connected on matching entries

 SI as intermediate nodes on all arcs connecting TTs

\ — Recursive block — traverses the graph

CS 118

Winter 2016

/

Lecture 12
Page 60

/ What does the DAG indicate? \

* Recursive steps

e FSM rules and state

\ /

CS 118 Lecture 12
Winter 2016 Page 61

-

 Fan-out

\

CS 118
Winter 2016

Recursive steps

— Alternate (equivalent)

next step

e Fan-in

— Protocol reuse/sharing

(NOT 1nteroperation)

\

/

Lecture 12

Page 62

/ FSM rules and state \

* A place to “wait” until there’s more tape-in
— State needs a place to wait

— FSM rules need a place too
—L.e.,a paused FSM

* i.e., the “breadcrumbs” b

\ /

CS 118 Lecture 12
Winter 2016 Page 63

/ Follow the yellow brick road \

A (overlapping euphemism alert) A

* Picking a trail
— Use the map; search all “next step” options
— Find a choice with a translation entry

* Follow the trail
— Use the “breadcrumbs™ (state) left by previous msg

* Find your way home
— Use the “breadcrumbs” inside the message

\ /

CS 118 Lecture 12
Winter 2016 Page 64

/Breadcrumbs inside the message?\

* Remember the message in the envelope?

O =

* Envelope inside an envelope
— Inner envelope 1s the “breadcrumbs”
— Encodes path UP at receiver

\ /

CS 118 Lecture 12
Winter 2016 Page 65

/ The DAG looks complicated \

It 1s because 1t supports:

* More than one hourglass

* Dynamic path selection

\ /

CS 118 Lecture 12
Winter 2016 Page 66

K/Iore accurate than ONE hourglass\

* Describes many overlapping hourglasses

VX \

\ /

CS 118 Lecture 12

Winter 2016 Page 67

/ Dynamic graph path selection \

* Internet “stacks” graph
— Static

— Only ever picks one choice:
1t never tries another on failure

* Other variants allow dynamic choice
— Research projects
— Datacenter optimizations

\ /

CS 118 Lecture 12
Winter 2016 Page 68

/ Summary \

* Networking traverses layers via recursion

* That recursion needs a map

* The map governs recursive step choice and
manages FSM (protocol) state

\ /

CS 118 Lecture 12
Winter 2016 Page 69

