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Outline 

•  Preview and motivation 

•  What is recursion? 

•  The basic block concept 

•  Stacks, hourglasses, and DAGs 
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Preview and motivation 

•  What do we have so far? 

•  Putting the pieces together 

•  What’s missing? 
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What do we have so far? 

•  Communication 
– 2-party info. coordination over a direct link 
– Requires a protocol 

•  A layer 
– Homogenous indirect communication 
– Requires naming, relaying 

•  Stacked layers 
– Heterogeneous indirect communication 
– Requires resolution  
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Putting them together 

•  We have the pieces 
– Communication 
– Layers 
– Stacking 

•  Some assembly required 
–  Is there just one way? 
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How do we know: 

•  Which layers can stack 
– Have resolution mechanisms 

•  Which layer you should use next 
– Does it help you move closer 

towards communicating? 
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What’s missing? 

•  A map 
– To show layer relationships 

•  A way to use that map 
– Picking a trail 
– Following a trail 
– Some breadcrumbs to find our way home 
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Maps and map use 

•  We’ll start with map use 
– That’s where recursion comes in 

•  Then we’ll look at the map 
– Hint: remember stacks and hourglasses? 
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Using recursion to describe 
network layering 

•  We will use the general idea of recursion to 
unify our understanding of network layering 

•  That’s NOT how the code, hardware, and most 
architectures really work 
– You’d look in vain for obvious recursive steps 

•  But at a high level it’s really what’s going on 
•  REMEMBER – we’re talking concepts, not 

implementations, here 
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What is recursion? 

•  Definition 

•  Properties 

•  Variants 
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Induction 

•  Base case: 
– Prove (or assert) a starting point 
– E.g., 0 is a natural number 

•  Inductive step: 
– Prove (or assert) a composite case  

assuming already proven cases 
– E.g., X+1 is a natural number if X is too 
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Induction proof 

•    
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Recursion: backwards induction 

•  Reductive step: 
– Rules that reduce a complex case into components, 

assuming the component cases work 

•  Base case: 
– Rules for at least one (irreducible) case 
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Recursion: example 

•    
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Recursion as code 
•  int factorial(int n)  

{ 
  if (n < 0) {  
   exit(-1); // ERROR 
  } 
  if (n == 0) { 
   return 1; 
  } else { 
   return n * factorial(n-1); 
  } 
} 
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Fibonacci series 

•  Base: 
– Fib(0) = 0 
– Fib(1) = 1 

•  Reduction: 
– F(n) = F(n-1) + F(n-2) 
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Properties of recursion 

•  Base case 
– Just like induction 

•  Self-referential reduction case 
– Just like induction, but in reverse 
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Differences 

•  Induction 
– Starts with the base case 
– Uses finite steps 
– Extends to the infinite 

•  Recursion 
– Starts with a finite case (base or otherwise) 
– Uses finite steps 
– Reduces to the base case 
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Properties of recursion 

•  All cases are the same 
– Except the base case(s) 

•  Recursive step is self-referential 
–  Import interface = export interface 
– “Provides what it expects” 
– E.g., C func: vtype recfunc(vtype x) 
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Variants of recursion 

•  Regular 

•  Tail 
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Regular recursion 

•  Reductive step is an arbitrary function 
– MUST include self-reference 
– Self-reference MUST be ‘simpler’ 

–  int fib(n) { return fib(n-1) + fib(n-2); } 
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Why simpler? 

•  Reductive step must simplify 
–  If it ever doesn’t, recursion is infinite 
–  If you don’t change just once, you never will 
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Tail recursion 
•  Same rules as regular recursion 

 PLUS 
•  Self-reference ONLY as the sole last step 

–  int fib(int i) { 
  return dofib(i, 0, 1); 

} 
–  int dofib(int i, int x, int y) { 

  if (i==0) { return x; }    // base case 
  if (i==1) { return y; }    // base case 
  return dofib(i-1, y, x+y);   // reduction step 

} 
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Why tail recursion? 
•  Replace self-reference with “goto” 

–  Turns recursion into a while loop 

–  int fib(int i) { 
  return dofib(i, 0, 1); 

} 
–  int dofib(int i, int x, int y) { 

  while (i > 0) { 
   tx = x; ty = y;     // need for temp storage 
   i = i-1; x = ty; y = tx+ty;  // “recursive call” 
  } 
  return x; 

} 
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How is recursion related to 
networking? 

•  Base case: communication 
– Two parties already directly connected 

•  Reduction steps: networking 
– Stacked layering 
– Relaying 

= regular recursion  
= tail recursion  
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Stacked layering as recursion 

•  P can reach Q 
– Assuming P translates to X,  
– Q translates to Y,  
– and X can reach Y 

•  Turns P-Q layer into X-Y layer 
– Using resolution 

•  Base case – some layer in the stack allows the 
source to reach the destination 
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Relaying as tail recursion 

•  A can reach C 
– Assuming A can reach B  
– and B can reach C 

•  How is this tail recursion? 
– We’ll get back to that … 
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Recall how stacked layering works 

•  Get to the layer you share with dest. 
– Go down and up to get where you need to go 

A K P T 

1 9 r s Δ
Σ
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Where’s the elevator? 

•  Next layer down? 
– When do we do this? 

•  When we don’t share a layer with current destination 
•  How do we know? 

•  What do we do if we can’t go down? 
•  We pop “up” instead 
•  Then we need to pick another layer to go down 
•  How do we know? 

Let’s start with the elevator itself 
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The basic block 

•  The block 

•  Interfaces 

•  Internal functions 

•  The role of naming and routing 
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The block 

•  The elevator: 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is… 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is: 
–  Prepare msg 

for 
communication 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is: 
–  Is it for you? 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is: 
–  Is it for you? 

•  Yes – done 

•  Well, except 
you need  to 
go back up 
the stack 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is: 
–  Is it for you? 

•  No: 
–  Find help 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is: 
–  Is it for you? 

•  No: 
–  Find help 
–  Translate ID 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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What’s happening inside… 

•  A layer is: 
–  Is it for you? 

•  Yes – done 
•  No: 

–  Find help 
–  Translate ID 
–  Send it there 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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Deeper look at the steps 

•  Prepare message for communication 
– Take what you get (from the user/FSM) 
– Add whatever you need for your state sharing 
– Run the protocol at this layer 

•  Then check to see where it goes 
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Why prepare then send? 

•  You can’t reverse order 
–  You need your message 

in order to talk 
–  One request might turn 

into multiple messages 

•  It might be for you 
–  A nice degenerate case 
–  “Dancing with yourself” 
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Why does this work? 

•  Recursion 
– Base case: direct connection 
– Recursive steps:  

•  Layering 
•  Relaying 



Lecture 12 
Page 42 

CS 118 
Winter 2016  

An example: DNS request 

•  User requests gethostbyname() to the OS 
– Prepares the DNS query message 

to the default server (random root or local) 
–  Is it for me? 

•  No: 
–  Find a way to get to the server 
–  Translate this layer’s names (“YOU”, “servername”) 

into the next layer’s names 
–  RECURSE 
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Recursion steps 

•  User calls 
gethostbyname() to OS 
– Make DNS query “me”->dns 
– For “dns” use UDP 
– Translate me to bob.com:

61240, dns to ns.com:53 
– Call UDP 

DNS Layer 

UDP Layer 
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Recursion steps 

•  User calls gethostbyname() 
to OS 
– … 
– Call UDP 

•  Make UDP message 61240->53 
•  For “UDP” use IP 
•  Translate bob.com to 52.3.5.3,  

ns.com to 2.43.14.123 
•  Call IP 

DNS Layer 

UDP Layer 

IP Layer 
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Recursion steps 

•  User calls gethostbyname() 
to OS 
– … 
– Call UDP 

•  … 
•  Call IP 

–  Make IP message 52.3.5.3 ->2.43.14.123 
–  For IP use ethernet 
–  Translate 52.3.5.3, 2.43.14.123 to ethA, 

ethB 
–  Call Ethernet 

DNS Layer 

UDP Layer 

IP Layer 

Ethernet Layer 
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Recursion steps 

•  User calls gethostbyname() 
to OS 
– … 
– Call UDP 

•  … 
•  Call IP 

–  … 
–  Call Ethernet 

»  Make ethernet message ethA->ethB 
»  For ethB, use em0 directly 
»  BASE CASE – send it! 

DNS Layer 

UDP Layer 

IP Layer 

Ethernet Layer 
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What about at the receiver? 

•  Message comes in at some base protocol 
– E.g., the Ethernet on the receiving node 

•  It’s to be handled by a higher level protocol 
– E.g., DNS 

•  How do we get up to that layer? 
•  Recursion in the opposite direction 
•  Call up the stack, instead of down 
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Recursion block at receiver 

•  Now you pop back up the 
stack 

•  You’re at the destination, 
but not at the right layer 

•  It’s recursive calls again 
•  But in the opposite 

direction 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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Interfaces 

•  What does the block input? 
– Source name 
– Destination name 
– Message 
–  In the layer of the block 

•  What does the block output? 
– Recursive step: same thing! (it has to) 
– Base case: physical signal with same effect 

Next Layer 

LAYER(DATA, SRC, DST)  
    Process DATA, SRC, DST into MSG 
    WHILE (Here <> DST) 
        IF (exists(lower layer)) 
            Select a lower layer 
            Resolve SRC/DST to next layer S’,D’  
            LAYER(MSG, S’, D’) 
        ELSE 
            FAIL /* can’t find destination */ 
        ENDIF 
   ENDWHILE 
   /* message arrives here */ 
   RETURN {up the current stack} 
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Process the message 

•  This is the protocol FSM 
– Starts in default state (non-persistent) or last state 

(persistent) 
– Tape-in is the “input” message to be shared 
– Tape-out is the “output” message(s) to share with 

the corresponding FSM at the destination 
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The role of naming and routing 

•  Resolution tables 
–  Indicate whether you can get somewhere 
– Translate names from one layer to next 

•  I.e., resolution tables are BOTH 
– Name translation 
– Routing 
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Stacks, hourglasses, and DAGs 

•  Recursion: the engine that gets you there 
– But it needs a map to follow 
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Stacks 

•  A linear chain of layers 
– “Next layer” is fixed 
– Describes a path taken 

by the recursive steps 
– But not all possible paths 

that could be taken 

100bT 802.3 IP TCP BEEP XDR HTTP 
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The Hourglass 

•  A bigger picture 
– Many possible paths 

•  Top half describes reuse 
– Many different layers share 

ways to “get there” 
•  Bottom half describes choices 

– One layer has many ways 
to “get there” 
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Top half 

•  HTTP, DNS, FTP 
– All use TCP 

•  TCP, UDP, SCTP 
– All use IP 

•  Sharing to reuse 
mechanism 

HTTP/DNS/FTP/	
NFS/IM	

TCP/UDP/	
SCTP/RTP	

Ethernet/	
FDDI/Sonet	

λ	PPM,	λ	CDMA,		
e-	NRZ,	e-	PCM	
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Bottom half 

•  IP 
– Can use ethernet, sonet 

•  Ethernet 
– Can use optical, electrical 

•  Choice to allow 
diversity and 
optimization 

HTTP/DNS/FTP/	
NFS/IM	

TCP/UDP/	
SCTP/RTP	

Ethernet/	
FDDI/Sonet	

λ	PPM,	λ	CDMA,		
e-	NRZ,	e-	PCM	
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Who talks to whom? 

•  Every communicating pair 
–  Is at the same layer 
– MAY have different lower layers  

(recursive next steps) 
– CANNOT have different upper layers  

(share a common previous recursive steps) 
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Who talks to whom 

HTTP	 HTTP	

TCP	 TCP	

IP	 IP	

SONET	 SONET	 Ether	Ether	

IP	
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The DAG 

•  Structure of tables 
– Directed 
– Acyclic 
– Graph 

Hard state 
WDM link 
Hard state 
WDM link 

stream 
DNS A 

DNS->IPv4 

stream 
DNS AAAA 
DNS->IPv6 

Stream 
DNS txt 

DNS->O-ID 

packet 
sBGP 

IPv4->IPv4 
packet 
BGP 

IPv4->IPv4 
packet 
OSPF 

IPv4->IPv4 

packet 
ARP 

IPv4->E-mac 

packet 
64tun cfg 

IPv6->IPv4 

E-net 
Id=45 

WDM 
ID=3 

Hard state 
TCP conn. Soft state 

Delta-T 

Hard state 
WDM link 

Soft state 
tunnel 

Recursive Core 

Service type 
Update protocol 

From->To 

Legend 
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DAG Components 

•  Components 
– Recursive block (RB) 
– Translation table (TT) 
– State instance (SI) 

•  Structure 
– Directed acyclic graph 

•  TT as primary nodes, connected on matching entries 
•  SI as intermediate nodes on all arcs connecting TTs 

– Recursive block – traverses the graph 

Recursion	 

Interface 

Environment	
Interface 

CapabiliFes 

Nee
ds 

Recursive	Block 

RECBLOCK(DATA,	SRC,	DST)		
				Process	DATA,	SRC,	DST	into	MSG	
				WHILE	(Here	<>	DST)	
								IF	(exists(lower	layer))	
												Select	a	lower	layer	
												Resolve	SRC/DST	to	lower	layer	S’,D’		
												RECBLOCK(MSG,	S’,	D’)	
								ELSE	
												FAIL	/*	can’t	find	desInaIon	*/	
								ENDIF	
			ENDWHILE	
			/*	message	arrives	here	*/	
			RETURN	{up	the	current	stack} 

								TranslaFon	Table 

From:
	To:	IP-1
	Eth-22	IP-5

Eth-85 

“From”	domain 

“To”	domain 

SoY	state	

ID=name	

So,	state	

ID=name 
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What does the DAG indicate? 

•  Recursive steps 

•  FSM rules and state 
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Recursive steps 

•  Fan-out  
–  Alternate (equivalent) 

next step 

•  Fan-in  
–  Protocol reuse/sharing 

(NOT interoperation) 
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FSM rules and state 

•  A place to “wait” until there’s more tape-in 
– State needs a place to wait 
– FSM rules need a place too 
–  I.e.,a paused FSM 

•  i.e., the “breadcrumbs” 
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Follow the yellow brick road 

(overlapping euphemism alert) 

•  Picking a trail 
– Use the map; search all “next step” options 
–  Find a choice with a translation entry 

•  Follow the trail 
– Use the “breadcrumbs” (state) left by previous msg 

•  Find your way home 
– Use the “breadcrumbs” inside the message 
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Breadcrumbs inside the message? 

•  Remember the message in the envelope? 

•  Envelope inside an envelope 
–  Inner envelope is the “breadcrumbs” 
– Encodes path UP at receiver 
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The DAG looks complicated 

It is because it supports: 

•  More than one hourglass 

•  Dynamic path selection 
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More accurate than ONE hourglass 

•  Describes many overlapping hourglasses 
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Dynamic graph path selection 

•  Internet “stacks” graph  
– Static 
– Only ever picks one choice: 

it never tries another on failure 

•  Other variants allow dynamic choice 
– Research projects 
– Datacenter optimizations 
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Summary 

•  Networking traverses layers via recursion 

•  That recursion needs a map 

•  The map governs recursive step choice and 
manages FSM (protocol) state 


