
Lecture 10
Page 1

CS 118
Winter 2016

Layers, Naming, and Sockets
CS 118

Computer Network Fundamentals
Peter Reiher

Lecture 10
Page 2

CS 118
Winter 2016

Outline

•  What’s a party?
•  Inside names
•  Outside names
•  Linking the two
•  Sockets as an example

Lecture 10
Page 3

CS 118
Winter 2016

Recall: definitions
•  Communication
– Methods for exchanging information between a fixed

set of directly-connected parties using a single
protocol

•  Networking
– Methods to enable communication between varying

sets of indirectly connected parties that don’t share a
single protocol

•  Protocol
– A set of rules, agreed in advance [between the parties],

that enable communication

Lecture 10
Page 4

CS 118
Winter 2016

Names, layers, and translations

Bill wants to send a
message to Jim

B1

B2

B3 J3

J2

J1

Lecture 10
Page 5

CS 118
Winter 2016

Today’s theme: #WTPA?

•  What is a “party”?

•  Where is that party?

– Physically (in some physical place)

– Logically (in some layer)

Lecture 10
Page 6

CS 118
Winter 2016

A network layer

•  Nodes
– Sources and sinks of information

•  Links
– Channels that connect two or more nodes

Lecture 10
Page 7

CS 118
Winter 2016

A closer look:

•  What’s inside a node?
– What actually communicates to the outside?

?	

Lecture 10
Page 8

CS 118
Winter 2016

One View

One node has channels
to multiple parties

Lecture 10
Page 9

CS 118
Winter 2016

Another view

Proc A
Proc B

Proc C

Three processes have
channels to one party

each

Lecture 10
Page 10

CS 118
Winter 2016

A closer look v2:

•  What’s inside a node when:
–  It has multiple channels on a single network

(several names used external to the node)?

?	

Lecture 10
Page 11

CS 118
Winter 2016

What Does That Mean?

All on the same
network – the

Internet, for example
With a different
name for each

connection

Lecture 10
Page 12

CS 118
Winter 2016

A closer look v3:

•  What’s inside a node when:
–  It has channels on multiple networks (different

kinds of external names)?

?	

Lecture 10
Page 13

CS 118
Winter 2016

What does that mean?

One is on the
Internet, the other is

on an 802.11
wireless network

One with an Internet
name, the other with

a wireless MAC
address

Remember, one of
these channels can
be layered below

the other

Lecture 10
Page 14

CS 118
Winter 2016

Inside vs. outside names

•  Another way of distinguishing names
– That all “belong” to the same node

•  Names depend on your viewpoint…

Lecture 10
Page 15

CS 118
Winter 2016

“Outside” names

•  Giving a name to the source or destination on a
network layer
– Source address to enable N:1
– Destination address to enable 1:N
– Same address to enable bidirectional

communications

Lecture 10
Page 16

CS 118
Winter 2016

“Outside” names

•  Names of a party

– Node names

–  Interface names

Lecture 10
Page 17

CS 118
Winter 2016

Node vs. interface

•  Node
– Where processes run

•  Interface
– Network attachment point

Lecture 10
Page 18

CS 118
Winter 2016

Node vs. interface

•  Node
–  Source/sink of all

network channels at a
single place

•  Interface
–  End of one network

channel

Lecture 10
Page 19

CS 118
Winter 2016

Node names

•  Unique across
– All nodes within a layer

•  A node many have multiple
– Node names
– On the same or different layers

•  Node names are equivalent
– Within a node

Lecture 10
Page 20

CS 118
Winter 2016

Interface names

•  Unique across
– All endpoints within a layer

•  A node may have multiple
–  Interfaces

•  An interface may have multiple
–  Interface names

•  Endpoint names are equivalent
– Within an interface

Lecture 10
Page 21

CS 118
Winter 2016

Node name uniqueness

•  Node vs. interface uniqueness

A,	B	
C,	D,	E	

2,8	 4	 4	

A,	C	

A == B

A == C
C == D == E

2 == 8
2 != 4

4 != 4

Lecture 10
Page 22

CS 118
Winter 2016

Strong vs. weak endpoint models

•  We name interfaces AND nodes
– What happens when we use those names?

Lecture 10
Page 23

CS 118
Winter 2016

Strong
•  Names refer to the interface

(channel end)
–  If a message arrives at a node

from network A, it must be
addressed to the endpoint
address where that node
attaches

–  All names belong (in effect) to
the interface

–  Like the name of the doors of
a house

C D E

C C

x

Lecture 10
Page 24

CS 118
Winter 2016

Like at Downton Abbey

Guests to the
front door

Tradesmen
around the back

But they both end
up in the house

Lecture 10
Page 25

CS 118
Winter 2016

Weak
•  Names refer to the node
–  Even if assigned to the

interface
–  If a message arrives at a

node, it can be addressed
to any endpoint address
where that node attaches

–  All names belong (in
effect) to the node

–  Like the names of a
house

C,	D,	E	

C C

Lecture 10
Page 26

CS 118
Winter 2016

As in, All Roads Lead To Rome
Goths!

Lombards!

Visigoths!

Vandals!

Huns!

Not always a good thing . . .

Lecture 10
Page 27

CS 118
Winter 2016

Kinds of outside names

•  Ethernet
– A name for a channel endpoint for Ethernet

messages (Ethernet layer)
•  IP
– A name for a channel endpoint for IP messages (IP

layer)
•  TCP, UDP
– A name within an IP endpoint called a port

(we’ll get back to that shortly…)

Lecture 10
Page 28

CS 118
Winter 2016

A look inside the endpoint…

Lecture 10
Page 29

CS 118
Winter 2016

“Inside” names

•  Names within a party
– A communication source

or sink from the view
within the endpoint

Lecture 10
Page 30

CS 118
Winter 2016

Inside names…

•  What do we need to refer to?

– The data itself (objects)

– The process that uses or creates it

Lecture 10
Page 31

CS 118
Winter 2016

Object related names

•  File names (static data)
– C:\Users\guest\Desktop\file.doc
–  /usr/include/stdio.h

•  I/O names (infinite source/sink of data)
– LPT1:, COM0:
–  /dev/pty0, /dev/ttya, /dev/eth3
– Socket descriptor (complex data structure)

Lecture 10
Page 32

CS 118
Winter 2016

Process related names

•  Process
– 8842

•  Thread
– 223

•  Other related names
– User – 521, “reiher”
– Group – 9111, “lasr”

Lecture 10
Page 33

CS 118
Winter 2016

OS Review

•  Process
– Smallest independent running program with its

own memory space
– Resources include program code, memory, and

thread(s)
•  Thread
– Smallest independently-schedulable running

program

Lecture 10
Page 34

CS 118
Winter 2016

Why we prefer process names to…

•  Thread names
– Single address space of a process ensures each

process name is unique
– Thread names might be unique only within their

parent process space
•  File, I/O, etc. names
–  In this class, comm. endpoints are TMs
– A TM more closely maps to a process

Lecture 10
Page 35

CS 118
Winter 2016

Properties of inside names

•  Syntax
– Defined only for that node

•  Value
– Unique within the node

Meaningless as network identifiers

Lecture 10
Page 36

CS 118
Winter 2016

Job of an OS

•  Coordinate resource sharing
– Share memory, CPU capacity, devices, channels,

etc.
•  Provide abstractions
– Of machines

•  To allow multiprocessing
– Of other resources

•  Like the network layers

Lecture 10
Page 37

CS 118
Winter 2016

How do OSes abstract layer endpoints?

•  Socket
– Created by ARPAnet research (RFC33, 1970)
– A communication endpoint from the view of the

“user” (program)
– Usually two-way
– Basically: a socket is an inside name for outside

communication…

Lecture 10
Page 38

CS 118
Winter 2016

What’s that mean?

Proc A Channel X

We need to tell the computer’s operating system to
connect
Process A
To channel X
A socket is A’s inside name for the outside
name (channel X)

Lecture 10
Page 39

CS 118
Winter 2016

Room for confusion . . .

•  Unix-style systems also use sockets for
machine-internal IPC
– Where one process communicates to another
– With no actual (or even virtual) networking

involved
•  Our concern is with network sockets

Lecture 10
Page 40

CS 118
Winter 2016

Inside and outside

•  How do we link:
inside names and outside names?

Lecture 10
Page 41

CS 118
Winter 2016

Linking the two

•  Bind
– Currently common OS convention
– OS operation linking an internal I/O name to an

external communication layer name

Lecture 10
Page 42

CS 118
Winter 2016

Two sides to a socket

•  Server side

•  Client side

Proc A Channel X
Proc J

Lecture 10
Page 43

CS 118
Winter 2016

A socket (either side)

•  Ask the OS to create a placeholder
–  Attached to the process that creates it
–  A data structure that will link to the outside

if ((sockfd = socket(AF_INET, SOCK_STREAM,0)) == -1) {
 perror("Server: socket");
}

•  Now I’ve got a socket
–  But I need to attach it to an inside name

Lecture 10
Page 44

CS 118
Winter 2016

Common kinds of sockets
•  Datagram (e.g., Ethernet, IP, UDP, ATM AAL0)
–  Direct to the channel
–  Separate messages
–  Individually addressed

•  Stream (e.g., TCP, ATM AAL2-5)
–  Two-party association (“connection”)
–  Two steps:

•  Establish shared context with an address
•  Exchange data using that shared context

•  Others are possible, but not common

Lecture 10
Page 45

CS 118
Winter 2016

Bind

•  Link a socket to an address on the server end
– For TCP

•  Describes server end of the connection
– For UDP

•  To limit messages you receive
•  To avoid source-addressing each message sent

 if (bind(sockfd, (struct sockaddr *)&server, sockaddr_len) == -1) {
 close(sockfd);
 perror("Server: bind");
 }

Lecture 10
Page 46

CS 118
Winter 2016

Server first steps

•  Socket
– Create a channel placeholder local to the process

•  Bind
– Link the channel placeholder to an external name

Channel X Proc J Proc A

Lecture 10
Page 47

CS 118
Winter 2016

Stateless: receiving messages

•  Recvfrom
– Accept a message
–  Indicate who it is from (other end)

 recvlen = recvfrom(sockfd, inbuf, MAXDATASIZE, 0,
 (struct sockaddr *)&client, &clientlen);

Lecture 10
Page 48

CS 118
Winter 2016

Stateless: sending messages

•  Sendto
– Send a message
–  Indicate who it is to (other end)

 if (sendto(sockfd, outbuf, outbuflen, 0,
 (struct sockaddr *)&client, clientlen) < 0) {

perror("Server: sendto failed");
 }

Lecture 10
Page 49

CS 118
Winter 2016

Server side - connections

•  Listen

•  Accept

Lecture 10
Page 50

CS 118
Winter 2016

Listen

•  Wait for incoming connection
– Mark socket available for incoming requests
– Prepare for someone to connect to the other end
– Limit max waiting to be handled

 if (listen(sockfd, MAX_CLIENTS) == -1) {
 perror("Server: listen");
 exit(1);
 }

Lecture 10
Page 51

CS 118
Winter 2016

Accept

•  Turns a socket into a socket pair
– Socket pair defines a connection (both ends)
– Now someone is connected to the other end
– NB: in Unix, a socket and a socket pair are both

described by the same data structure (a Unix
socket)

 new_fd = accept(sockfd,  
(struct sockaddr *)&client,  
(socklen_t *) &sockaddr_len);

Lecture 10
Page 52

CS 118
Winter 2016

Client side – connections

•  Socket
– Need something to connect to

•  Connect
– Connect socket to the channel

Channel X Proc J Proc A

Lecture 10
Page 53

CS 118
Winter 2016

Connect

•  Initiate a connection to a remote end
–  Indicate the remote end
– Wait for the connection to be accepted

if ((connect(sockfd,
(struct sockaddr *)&server,sizeof(server))) == -1) {

 perror("Client: connection error");

 exit(-1);  

}

Lecture 10
Page 54

CS 118
Winter 2016

sockaddr and names

•  What is the sockaddr?
•  A data structure containing an external name
– A name the client can use to specify which server

socket to connect to
•  In practice, an IP address and a port
– Which is, remember, the type of name used by

TCP and UDP

Lecture 10
Page 55

CS 118
Winter 2016

Client and server data exchange

•  Send

•  Recv

Lecture 10
Page 56

CS 118
Winter 2016

Send

•  Write data on the connected socket
– Same as sendto with NULL remote endpoint
– Can be wrapped with a write call for simpler use

 if (send(sendsock,sendbuf,strlen(sendbuf), 0) == -1){
 perror("Client: send");
 exit(1);
 }

Lecture 10
Page 57

CS 118
Winter 2016

Recv

•  Read data from a connected socket
– Same as recvfrom with NULL remote endpoint
– Can be wrapped with a read call for simpler use

 if ((num = recv(recvsock, &buf, MAXLEN, 0)) == -1) {
 perror("Server: recv failed");
 exit(1);
 }

Lecture 10
Page 58

CS 118
Winter 2016

Putting it all together

•  How do you arrange a client/server connection
with sockets?

•  Server creates a local socket and binds to it
•  Client creates a local socket and connects

it to the server’s external name
•  Server listens on the socket and accepts

incoming messages
•  Client writes, server reads

Lecture 10
Page 59

CS 118
Winter 2016

For example,
Server creates socket

Server binds to
socket

Server listens

Server accepts Client creates
socket

Client connects

Client writes
to socket

Server reads
from socket

Lecture 10
Page 60

CS 118
Winter 2016

Issues

•  Messages without bind

•  A horse with no name

•  Socket type and boundaries

Lecture 10
Page 61

CS 118
Winter 2016

No bind, no problem

•  Stateless (connectionless) messages
– Bind indicates local end

– What if you omit bind?

– The OS figures out where the message should go
and adds the source address itself

Lecture 10
Page 62

CS 118
Winter 2016

Automatic source addressing

•  What do you already indicate?
– Destination address (required in sendto)
–  Includes “address family”

•  Unix-speak for layer name
•  Only one layer of each name!

–  Includes destination address
•  Use that with an internal (route) table to pick an

outgoing interface
•  Set the source address to the outgoing interface

Lecture 10
Page 63

CS 118
Winter 2016

What about ports?

•  Recall:
– Port distinguishes different TCP or UDP layer

endpoints within a IP layer
•  How do you know the one to send to?
– Someone tells you!
– From a published list
– Because you’re replying to a message (or within a

connection) already know

Lecture 10
Page 64

CS 118
Winter 2016

What’s your port number?

•  Messages
– The one you know to send to
– The one you got a message from (to reply)

•  Connections
– The one a server LISTENs on
– The one a client CONNECTs to

Lecture 10
Page 65

CS 118
Winter 2016

Port numbers

•  Ports are local to the pair communicating
–  Identifies the socket (thus the process) on each end

•  Sometimes ports have common meaning
– At “first contact”, they help you pick who you’re

talking with (i.e., client-side)
– That’s why they’re registered by IANA

Lecture 10
Page 66

CS 118
Winter 2016

Two meanings of ports

•  During first contact – expected process
– E.g., web server (80), secure server (443), email

server (110), etc.

•  After that, just an endpoint identifier
– At the TCP/UDP layer

Lecture 10
Page 67

CS 118
Winter 2016

Port meaning

•  By common convention (assumption)
– Groups:

•  System ports (80, 110, 53)
•  User ports (8080, etc.)
•  Dynamic ports (unassigned!)

– Assigned to “services” (TM expecting messages)

•  By other coordination
– Because you and the other endpoint agree
–  Port can mean anything you (and they) want

Lecture 10
Page 68

CS 118
Winter 2016

Having no name

•  Bind with no name?
– Technically, you cannot
– Bind to “0” = ANY (i.e., “don’t care”)
– Works for IP address, TCP/UDP port

•  What happens when you need a name?
–  If you picked ANY, the OS assigns you one
– Address = based on path, from ones you “own”
– Port = pick one not in use

Lecture 10
Page 69

CS 118
Winter 2016

Socket types and boundaries

•  Sometimes send/recv boundaries match
– E.g., the channel preserves the boundaries
–  Sending messages
–  Sending data over a connection with markers

•  Sometimes, not so much
– E.g., TCP!
–  If you send 100 bytes, that might go in one TCP

message, two, three, etc.
– When the other side recvs, you don’t know what data

is ready

Lecture 10
Page 70

CS 118
Winter 2016

Summary

•  Naming is more than just for networking
– Names inside the machine
– Binding between inside and outside names

•  Names are linked in a set of steps
– We used Unix as an example

•  Names also set expectations
– E.g., port number implies TM type (“service”)

