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Outline 

•  What’s a party? 
•  Inside names 
•  Outside names 
•  Linking the two 
•  Sockets as an example 
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Recall: definitions 
•  Communication 
– Methods for exchanging information between a fixed 

set of directly-connected parties using a single 
protocol 

•  Networking 
– Methods to enable communication between varying 

sets of indirectly connected parties that don’t share a 
single protocol 

•  Protocol 
– A set of rules, agreed in advance [between the parties], 

that enable communication 
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Names, layers, and translations 

Bill wants to send a 
message to Jim  

B1 

B2 

B3 J3 

J2 

J1
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Today’s theme: #WTPA? 

•  What is a “party”? 

•  Where is that party? 

– Physically (in some physical place) 

– Logically (in some layer) 
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A network layer 

•  Nodes 
– Sources and sinks of information 

•  Links 
– Channels that connect two or more nodes 
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A closer look: 

•  What’s inside a node? 
– What actually communicates to the outside? 

?	
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One View 

One node has channels 
to multiple parties 
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Another view 

Proc A 
Proc B 

Proc C 

Three processes have 
channels to one party 

each 
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A closer look v2: 

•  What’s inside a node when: 
–  It has multiple channels on a single network 

(several names used external to the node)? 

?	
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What Does That Mean? 

All on the same 
network – the 

Internet, for example 
With a different 
name for each 

connection 
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A closer look v3: 

•  What’s inside a node when: 
–  It has channels on multiple networks (different 

kinds of external names)? 

?	
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What does that mean? 

One is on the 
Internet, the other is 

on an 802.11 
wireless network 

One with an Internet 
name, the other with 

a wireless MAC 
address 

Remember, one of 
these channels can 
be layered below 

the other 
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Inside vs. outside names 

•  Another way of distinguishing names 
– That all “belong” to the same node 

•  Names depend on your viewpoint… 
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“Outside” names 

•  Giving a name to the source or destination on a 
network layer 
– Source address to enable N:1 
– Destination address to enable 1:N 
– Same address to enable bidirectional 

communications 
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“Outside” names 

•  Names of a party 

– Node names 

–  Interface names 
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Node vs. interface 

•  Node 
– Where processes run 

•  Interface 
– Network attachment point 
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Node vs. interface 

•  Node 
–  Source/sink of all 

network channels at a 
single place 

•  Interface 
–  End of one network 

channel 
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Node names 

•  Unique across 
– All nodes within a layer 

•  A node many have multiple  
– Node names 
– On the same or different layers 

•  Node names are equivalent  
– Within a node 
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Interface names 

•  Unique across 
– All endpoints within a layer 

•  A node may have multiple  
–  Interfaces 

•  An interface may have multiple  
–  Interface names  

•  Endpoint names are equivalent  
– Within an interface 
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Node name uniqueness 

•  Node vs. interface uniqueness 

A,	B	
C,	D,	E	

2,8	 4	 4	

A,	C	

A == B 

A == C 
C == D == E 

2 == 8 
2 != 4 

4 != 4 
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Strong vs. weak endpoint models 

•  We name interfaces AND nodes 
– What happens when we use those names? 
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Strong 
•  Names refer to the interface 

(channel end) 
–  If a message arrives at a node 

from network A, it must be 
addressed to the endpoint 
address where that node 
attaches 

–  All names belong (in effect) to 
the interface 

–  Like the name of the doors of 
a house 

C D E 

C C 

x 
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Like at Downton Abbey 

Guests to the 
front door 

Tradesmen 
around the back 

But they both end 
up in the house 
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Weak 
•  Names refer to the node 
–  Even if assigned to the 

interface 
–  If a message arrives at a 

node, it can be addressed 
to any endpoint address 
where that node attaches 

–  All names belong (in 
effect) to the node 

–  Like the names of a 
house 

C,	D,	E	

C C 
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As in, All Roads Lead To Rome 
Goths! 

Lombards! 

Visigoths! 

Vandals! 

Huns! 

Not always a good thing . . . 
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Kinds of outside names 

•  Ethernet  
– A name for a channel endpoint for Ethernet 

messages (Ethernet layer) 
•  IP 
– A name for a channel endpoint for IP messages (IP 

layer) 
•  TCP, UDP 
– A name within an IP endpoint called a port 

(we’ll get back to that shortly…) 
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A look inside the endpoint… 
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“Inside” names 

•  Names within a party 
– A communication source 

or sink from the view 
within the endpoint 
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Inside names… 

•  What do we need to refer to? 

– The data itself (objects) 

– The process that uses or creates it 
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Object related names 

•  File names (static data) 
– C:\Users\guest\Desktop\file.doc 
–  /usr/include/stdio.h 

•  I/O names (infinite source/sink of data) 
– LPT1:, COM0: 
–  /dev/pty0, /dev/ttya, /dev/eth3 
– Socket descriptor (complex data structure) 
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Process related names 

•  Process 
– 8842 

•  Thread 
– 223 

•  Other related names 
– User – 521, “reiher” 
– Group – 9111, “lasr” 
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OS Review 

•  Process 
– Smallest independent running program with its 

own memory space 
– Resources include program code, memory, and 

thread(s) 
•  Thread 
– Smallest independently-schedulable running 

program 
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Why we prefer process names to… 

•  Thread names 
– Single address space of a process ensures each 

process name is unique 
– Thread names might be unique only within their 

parent process space 
•  File, I/O, etc. names 
–  In this class, comm. endpoints are TMs 
– A TM more closely maps to a process 
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Properties of inside names 

•  Syntax 
– Defined only for that node 

•  Value 
– Unique within the node 

Meaningless as network identifiers 
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Job of an OS 

•  Coordinate resource sharing 
– Share memory, CPU capacity, devices, channels, 

etc. 
•  Provide abstractions 
– Of machines  

•  To allow multiprocessing  
– Of other resources  

•  Like the network layers 
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How do OSes abstract layer endpoints? 

•  Socket 
– Created by ARPAnet research (RFC33, 1970) 
– A communication endpoint from the view of the 

“user” (program) 
– Usually two-way 
– Basically: a socket is an inside name for outside 

communication… 
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What’s that mean? 

Proc A Channel X 

We need to tell the computer’s operating system to 
connect  
Process A 
To channel X 
A socket is A’s inside name for the outside 
name (channel X) 
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Room for confusion . . . 

•  Unix-style systems also use sockets for 
machine-internal IPC 
– Where one process communicates to another 
– With no actual (or even virtual) networking 

involved 
•  Our concern is with network sockets 
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Inside and outside 

•  How do we link:  
inside names and outside names? 
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Linking the two 

•  Bind 
– Currently common OS convention  
– OS operation linking an internal I/O name to an 

external communication layer name 
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Two sides to a socket 

•  Server side 

•  Client side 

Proc A Channel X 
Proc J 
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A socket (either side) 

•  Ask the OS to create a placeholder 
–  Attached to the process that creates it 
–  A data structure that will link to the outside 

if ((sockfd = socket(AF_INET, SOCK_STREAM,0)) == -1) {
  perror("Server: socket");
}

•  Now I’ve got a socket 
–  But I need to attach it to an inside name 
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Common kinds of sockets 
•  Datagram (e.g., Ethernet, IP, UDP, ATM AAL0) 
–  Direct to the channel 
–  Separate messages 
–  Individually addressed 

•  Stream (e.g., TCP, ATM AAL2-5) 
–  Two-party association (“connection”) 
–  Two steps: 

•  Establish shared context with an address 
•  Exchange data using that shared context 

•  Others are possible, but not common 
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Bind 

•  Link a socket to an address on the server end 
– For TCP 

•  Describes server end of the connection 
– For UDP 

•  To limit messages you receive  
•  To avoid source-addressing each message sent 

 if (bind(sockfd, (struct sockaddr *)&server, sockaddr_len) == -1) { 
    close(sockfd); 
    perror("Server: bind"); 
 } 
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Server first steps 

•  Socket 
– Create a channel placeholder local to the process 

•  Bind 
– Link the channel placeholder to an external name 

Channel X Proc J    Proc A 



Lecture 10 
Page 47 

CS 118 
Winter 2016  

Stateless: receiving messages 

•  Recvfrom 
– Accept a message 
–  Indicate who it is from (other end) 

 recvlen = recvfrom(sockfd, inbuf, MAXDATASIZE, 0,
       (struct sockaddr *)&client, &clientlen);
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Stateless: sending messages 

•  Sendto 
– Send a message 
–  Indicate who it is to (other end) 

 if (sendto(sockfd, outbuf, outbuflen, 0,
 (struct sockaddr *)&client, clientlen) < 0) {

perror("Server: sendto failed");
 }
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Server side - connections 

•  Listen 

•  Accept 
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Listen 

•  Wait for incoming connection 
– Mark socket available for incoming requests 
– Prepare for someone to connect to the other end 
– Limit max waiting to be handled 

 if (listen(sockfd, MAX_CLIENTS) == -1) {
    perror("Server: listen");
    exit(1);
  }
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Accept 

•  Turns a socket into a socket pair 
– Socket pair defines a connection (both ends) 
– Now someone is connected to the other end 
– NB: in Unix, a socket and a socket pair are both 

described by the same data structure (a Unix 
socket) 

 new_fd = accept(sockfd,  
(struct sockaddr *)&client,  
(socklen_t *) &sockaddr_len);
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Client side – connections 

•  Socket 
– Need something to connect to 

•  Connect 
– Connect socket to the channel 

Channel X Proc J    Proc A 
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Connect 

•  Initiate a connection to a remote end 
–  Indicate the remote end 
– Wait for the connection to be accepted 

if ((connect(sockfd,
(struct sockaddr *)&server,sizeof(server))) == -1) {

  perror("Client: connection error");

  exit(-1);  

}   
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sockaddr and names 

•  What is the sockaddr? 
•  A data structure containing an external name 
– A name the client can use to specify which server 

socket to connect to 
•  In practice, an IP address and a port 
– Which is, remember, the type of name used by 

TCP and UDP 
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Client and server data exchange  

•  Send 

•  Recv 
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Send 

•  Write data on the connected socket 
– Same as sendto with NULL remote endpoint 
– Can be wrapped with a write call for simpler use 

 if (send(sendsock,sendbuf,strlen(sendbuf), 0) == -1){
    perror("Client: send");
    exit(1);
  }
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Recv 

•  Read data from a connected socket 
– Same as recvfrom with NULL remote endpoint 
– Can be wrapped with a read call for simpler use 

 if ((num = recv(recvsock, &buf, MAXLEN, 0)) == -1) {
      perror("Server: recv failed");
      exit(1);
 }
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Putting it all together 

•  How do you arrange a client/server connection 
with sockets? 

•  Server creates a local socket and binds to it 
•  Client creates a local socket and connects 

it to the server’s external name 
•  Server listens on the socket and accepts 

incoming messages 
•  Client writes, server reads 
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For example,  
Server creates socket 

Server binds to 
socket 

Server listens 

Server accepts Client creates 
socket 

Client connects 

Client writes 
to socket 

Server reads 
from socket 
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Issues 

•  Messages without bind 

•  A horse with no name 

•  Socket type and boundaries 
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No bind, no problem 

•  Stateless (connectionless) messages 
– Bind indicates local end 

– What if you omit bind? 

– The OS figures out where the message should go 
and adds the source address itself 
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Automatic source addressing 

•  What do you already indicate? 
– Destination address (required in sendto) 
–  Includes “address family” 

•  Unix-speak for layer name 
•  Only one layer of each name! 

–  Includes destination address 
•  Use that with an internal (route) table to pick an 

outgoing interface 
•  Set the source address to the outgoing interface 
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What about ports? 

•  Recall: 
– Port distinguishes different TCP or UDP layer 

endpoints within a IP layer 
•  How do you know the one to send to? 
– Someone tells you! 
– From a published list 
– Because you’re replying to a message (or within a 

connection) already know 
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What’s your port number? 

•  Messages 
– The one you know to send to 
– The one you got a message from (to reply) 

•  Connections 
– The one a server LISTENs on 
– The one a client CONNECTs to 
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Port numbers 

•  Ports are local to the pair communicating 
–  Identifies the socket (thus the process) on each end 

•  Sometimes ports have common meaning 
– At “first contact”, they help you pick who you’re 

talking with (i.e., client-side) 
– That’s why they’re registered by IANA 
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Two meanings of ports 

•  During first contact – expected process 
– E.g., web server (80), secure server (443), email 

server (110), etc. 

•  After that, just an endpoint identifier 
– At the TCP/UDP layer 
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Port meaning 

•  By common convention (assumption) 
– Groups: 

•  System ports (80, 110, 53) 
•  User ports (8080, etc.) 
•  Dynamic ports (unassigned!) 

– Assigned to “services” (TM expecting messages) 

•  By other coordination 
– Because you and the other endpoint agree 
–  Port can mean anything you (and they) want 
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Having no name 

•  Bind with no name? 
– Technically, you cannot 
– Bind to “0” = ANY (i.e., “don’t care”) 
– Works for IP address, TCP/UDP port 

•  What happens when you need a name? 
–  If you picked ANY, the OS assigns you one 
– Address = based on path, from ones you “own” 
– Port = pick one not in use 
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Socket types and boundaries 

•  Sometimes send/recv boundaries match 
– E.g., the channel preserves the boundaries 
–  Sending messages 
–  Sending data over a connection with markers 

•  Sometimes, not so much 
– E.g., TCP! 
–  If you send 100 bytes, that might go in one TCP 

message, two, three, etc. 
– When the other side recvs, you don’t know what data 

is ready 
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Summary 

•  Naming is more than just for networking 
– Names inside the machine  
– Binding between inside and outside names 

•  Names are linked in a set of steps 
– We used Unix as an example 

•  Names also set expectations 
– E.g., port number implies TM type (“service”) 


