-

Layers, Naming, and Sockets
CS 118

Peter Reiher

\

Computer Network Fundamentals




/ Outline \

* What’s a party?
* Inside names

* Outside names
* Linking the two

* Sockets as an example

\ /

CS 118 Lecture 10
Winter 2016 Page 2




/ Recall: definitions \

e Communication

— Methods for exchanging information between a fixed
set of directly-connected parties using a single
protocol

* Networking

— Methods to enable communication between varying
sets of indirectly connected parties that don’t share a
single protocol

 Protocol

— A set of rules, agreed in advance [between the parties],
that enable communication

\ /

CS 118 Lecture 10
Winter 2016 Page 3




/ Names, layers, and translations\

53

B2

Bill wants to send a

message to Jim \
\ j Bl
CS 118

Winter 2016




/ Today’s theme: #WTPA? \

* What 1s a “party”?

* Where 1s that party?

— Physically (1n some physical place)

— Logically (in some layer)

\

CS 118 Lecture 10
Winter 2016 Page 5




/ A network layer \

 Nodes

— Sources and sinks of information

e Links

— Channels that connect two or more nodes

\ /

CS 118 Lecture 10
Winter 2016 Page 6




/ A closer look: \

e What’s inside a node?

— What actually communicates to the outside?

?

\ /

CS 118 Lecture 10
Winter 2016 Page 7




/ One View \
Google

d

One node has channels
to multiple parties

\ /

CS 118 Lecture 10
Winter 2016 Page 8




-

Proc C

\

CS 118

Another view

\Go gle

Three processes have
channels to one party

/a

~Ei

Winter 2016

~

Lecture 10
Page 9



/ A closer look v2: \

e What’s inside a node when:

— It has multiple channels on a single network
(several names used external to the node)?

) —

\ /

CS 118 Lecture 10
Winter 2016 Page 10




/ What Does That Mean? \

a Google

All on the same
network — the
Internet, for example

With a different
name for each
connection

< R

CS 118 Lecture 10
Winter 2016 Page 11




/ A closer look v3: \

e What’s inside a node when:

— It has channels on multiple networks (different
kinds of external names)?

|
? —

\ /

CS 118 Lecture 10
Winter 2016 Page 12




/ What does that mean? \

Google

One 1s on the

Internet, the other 1s
on an 802.11
wireless network

e
- |
PR
- -
- ~
94 -~
\ =~
\ ~~
\ S~
\ - \
- . A
I g S~ ‘\
! ~~o
v <o \
e \
- \
<o >

i , One with an Internet
emenber; one of name, the other with

these channels can .

be layered below a wireless MAC

\ ‘ the other address /

CS 118 Lecture 10
Winter 2016 Page 13




/ Inside vs. outside names \

* Another way of distinguishing names
— That all “belong” to the same node

* Names depend on your viewpoint...

by

\ /

CS 118 Lecture 10
Winter 2016 Page 14




-

\

CS 118
Winter 2016

“Outside” names

* G1ving a name to the source or destination on a
network layer
— Source address to enable N:1
— Destination address to enable 1:N
— Same address to enable bidirectional

communications

\

Lecture 10

Page 15



“Outside’” names

* Names of a party

— Node names

— Interface names

\ /

CS 118 Lecture 10
Winter 2016 Page 16




/ Node vs. interface \

* Node

— Where processes run

e Interface

— Network attachment point

\ /

CS 118 Lecture 10
Winter 2016 Page 17




-

e Node

\

CS 118

—

Node vs

. Interface \

e [Interface

— Source/sink of all
network channels at a
single place

— End of one network
channel

@

/

Lecture 10

Winter 2016

Page 18



/ Node names \

* Unique across
— All nodes within a layer

* A node many have multiple
— Node names
— On the same or different layers

* Node names are equivalent
— Within a node

\ /

CS 118 Lecture 10
Winter 2016 Page 19




/ Interface names \

* Unique across
— All endpoints within a layer

* A node may have multiple
— Interfaces

* An interface may have multiple

— Interface names

* Endpoint names are equivalent

— Within an interface

\ /

CS 118 Lecture 10
Winter 2016 Page 20




/ Node name uniqueness \

* Node vs. interface uniqueness

A==t A, C

A, B

A == B

\ 2==8.

CS 118
Winter 2016




/Strong vs. weak endpoint models\

* We name interfaces AND nodes
— What happens when we use those names?

\ /

CS 118 Lecture 10
Winter 2016 Page 22




/ Strong \

 Names refer to the interface
(channel end)

— If a message arrives at a node
from network A, it must be
addressed to the endpoint
address where that node

attaches C D E
— All names belong (in effect) to
the interface

— Like the name of the doors of
a house

C
\ /

CS 118 Lecture 10
Winter 2016 Page 23




/ Like at Downton Abbey \

Tradesmen
around the back

gmm%@
Jront docr

But they both end
up 1n the house

/

CS 118 Lecture 10
Winter 2016 Page 24




/ Weak

* Names refer to the node
— Even 1f assigned to the

interface

— If a message arrives at a
node, it can be addressed
to any endpoint address

where that node attaches

— All names belong (in
effect) to the node

\ house

CS 118

— Like the names of a C

C

/

Lecture 10

Winter 2016

Page 25



/ As 1n, All Roads Lead To Rome\

Huns!

Lombards!

Visigoths!

\ ~Vandala? Not always a good thing . . . )

CS 118 Lecture 10
Winter 2016 Page 26




/ Kinds of outside names \

 Ethernet

— A name for a channel endpoint for Ethernet
messages (Ethernet layer)

e |IP
— A name for a channel endpoint for IP messages (IP
layer)
« TCP, UDP

— A name within an IP endpoint called a port
(we’ll get back to that shortly...)

\ /

CS 118 Lecture 10
Winter 2016 Page 27




/ A look 1nside the endpoint. .. \

\ /

CS 118 Lecture 10
Winter 2016 Page 28




/ “Inside” names \

* Names within a party

— A communication source
or sink from the view
within the endpoint

\ /

CS 118 Lecture 10
Winter 2016 Page 29




/ Inside names. .. \

e What do we need to refer to?

— The data itself (objects)

— The process that uses or creates it

\ /

CS 118 Lecture 10
Winter 2016 Page 30




/ Object related names \

* File names (static data)
— C:\Users\guest\Desktop\file.doc

— /usr/include/stdio.h

* I/O names (infinite source/sink of data)
— LPT1:, COMO:
— /dev/pty0, /dev/ttya, /dev/eth3

— Socket descriptor (complex data structure)

\ /

CS 118 Lecture 10
Winter 2016 Page 31




/ Process related names \

e Process
— 8842

e Thread
— 223

e Other related names

— User — 521, “rether”
— Group — 9111, “lasr”

\ /

CS 118 Lecture 10
Winter 2016 Page 32




/ OS Review \

* Process

— Smallest independent running program with 1ts
OWNn Memory space

— Resources include program code, memory, and
thread(s)

e Thread

— Smallest independently-schedulable running
program

\ /

CS 118 Lecture 10
Winter 2016 Page 33




KV hy we prefer process names to.}

e Thread names

— Single address space of a process ensures each
pProcess name 1s unique

— Thread names might be unique only within their
parent process space

e File, I/0, etc. names
— In this class, comm. endpoints are TMs

— A TM more closely maps to a process

\ /

CS 118 Lecture 10
Winter 2016 Page 34




/ Properties of inside names \

* Syntax
— Defined only for that node

 Value

— Unique within the node

Meaningless as network identifiers

\ /

CS 118 Lecture 10
Winter 2016 Page 35




/ Job of an OS \

* Coordinate resource sharing

— Share memory, CPU capacity, devices, channels,
etc.

 Provide abstractions
— Of machines
* To allow multiprocessing

— Of other resources

* Like the network layers

\ /

CS 118 Lecture 10
Winter 2016 Page 36




ﬁow do OSes abstract layer endpoint@

* Socket
— Created by ARPAnet research (RFC33, 1970)

— A communication endpoint from the view of the
“user” (program)

— Usually two-way

— Basically: a socket 1s an inside name for outside
communication...

\ /

CS 118 Lecture 10
Winter 2016 Page 37




/ What’s that mean? \

Proc A ) Channel X ) GO 816

T

We need to tell the computer’s operating system to
connect

Process A
To channel X

A socket is A's inside name for the outside /

cs1is  name (channelX) Lecture 10
Winter 2016 Page 38




/ Room for confusion. . . \

* Unix-style systems also use sockets for
machine-internal IPC

— Where one process communicates to another

— With no actual (or even virtual) networking
involved

 Our concern 1s with network sockets

\ /

CS 118 Lecture 10
Winter 2016 Page 39




/ Inside and outside \

e How do we link:
inside names and outside names?

\ /

CS 118 Lecture 10
Winter 2016 Page 40




/ Linking the two

\

CS 118

Winter 2016

 Bind

— Currently common OS convention

— OS operation linking an internal I/O name to an
external communication layer name

\

Lecture 10

Page 41



/ Two sides to a socket

e Server side

e Client side

Channel X

|

CS 118

Proc J

~

Lecture 10

Winter 2016

Page 42



/ A socket (either side)

* Ask the OS to create a placeholder

— Attached to the process that creates it
— A data structure that will link to the outside

perror ("Server: socket");

}

* Now I’ve got a socket

\

CS 118

— But I need to attach it to an inside name

if ((sockfd = socket (AF_INET, SOCK_STREAM,0)) == -1) {

\

/

Lecture 10

Winter 2016

Page 43



/ Common kinds of sockets

* Datagram (e.g., Ethernet, IP, UDP, ATM AALO)

— Direct to the channel
— Separate messages
— Individually addressed

* Stream (e.g., TCP, ATM AALZ2-5)

— Two-party association (“connection”)

— Two steps:
 Establish shared context with an address
* Exchange data using that shared context

* Others are possible, but not common

\

CS 118

Winter 2016

/

Lecture 10
Page 44



/ Bind \

\

CS 118
Winter 2016

e Link a socket to an address on the server end
— For TCP

 Describes server end of the connection

— For UDP

* To limit messages you receive
* To avoid source-addressing each message sent

if (bind(sockfd, (struct sockaddr *)&server, sockaddr _len) == -1) {
close(sockfd);
perror(''Server: bind");

}

/

Lecture 10
Page 45



/ Server first steps

\

CS 118

Winter 2016

* Socket
— Create a channel placeholder local to the process

 Bind

— Link the channel placeholder to an external name

O Channel X

Proc J

\

Lecture 10

Page 46



/ Stateless: receiving messages \

e Recvirom

— Accept a message
— Indicate who 1t 1s from (other end)

recvlen = recvfrom(sockfd, inbuf, MAXDATASIZE, O,

(struct sockaddr *)&client, &clientlen);

\ /

CS 118 Lecture 10
Winter 2016 Page 47




/ Stateless: sending messages \

* Sendto
— Send a message

— Indicate who 1t 1s to (other end)

if (sendto(sockfd, outbuf, outbuflen, O,
(struct sockaddr *)&client, clientlen) < 0) {
perror ("Server: sendto failed");

\ /

CS 118 Lecture 10
Winter 2016 Page 48




/ Server side - connections \

e Listen

* Accept

\ /

CS 118 Lecture 10
Winter 2016 Page 49




/ Listen \

* Wait for incoming connection
— Mark socket available for incoming requests
— Prepare for someone to connect to the other end
— Limit max waiting to be handled

if (listen(sockfd, MAX CLIENTS) == -1) {
perror("Server: listen");
exit(1);

CS 118 Lecture 10
Winter 2016 Page 50




/ Accept

* Turns a socket into a socket pair
— Socket pair defines a connection (both ends)

— Now someone 1s connected to the other end

— NB: 1n Unix, a socket and a socket pair are both
described by the same data structure (a Unix
socket)

new fd = accept (sockid,
(struct sockaddr *)&client,
(socklen t *) &sockaddr len);

\

CS 118

\\\

Lecture 10

Winter 2016

Page 51



/ Client side — connections \

* Socket
— Need something to connect to

e Connect

— Connect socket to the channel

Channel X Proc J

\ L /

CS 118 Lecture 10
Winter 2016 Page 52




/ Connect \

e Initiate a connection to a remote end
— Indicate the remote end

— Wait for the connection to be accepted

if ((connect(sockfd,
(struct sockaddr *)&server,sizeof(server))) == -1) {
perror("Client: connection error");
exit(-1);
\ /
CS 118 Lecture 10
Winter 2016 Page 53




/ sockaddr and names \

\

CS 118

Winter 2016

* What 1s the sockaddr?
* A data structure containing an external name

— A name the client can use to specify which server

socket to connect to

* In practice, an IP address and a port

— Which 1s, remember, the type of name used by
TCP and UDP

Lecture 10
Page 54



/ Client and server data exchange\

e Send

e Recv

\ /

CS 118 Lecture 10
Winter 2016 Page 55




/ Send \

* Write data on the connected socket
— Same as sendto with NULL remote endpoint

— Can be wrapped with a write call for stmpler use

if (send(sendsock,sendbuf,strlen(sendbuf), 0) == -1){
perror("Client: send");
exit(1l);
}

\ /

CS 118 Lecture 10
Winter 2016 Page 56




/ Recv \

* Read data from a connected socket
— Same as recvirom with NULL remote endpoint

— Can be wrapped with a read call for simpler use

if ((num = recv(recvsock, &buf, MAXLEN, 0)) == -1) {
perror ("Server: recv failed");
exit(1);

\ /

CS 118 Lecture 10
Winter 2016 Page 57




/ Putting 1t all together \

* How do you arrange a client/server connection
with sockets?

e Server creates a local socket and binds to it

e Client creates a local socket and connects
1t to the server’s external name

e Server 1istens on the socket and accepts
Incoming messages

e Client writes, server reads

\ /

CS 118 Lecture 10
Winter 2016 Page 58




Client creates

Client writes
to socket

\

CS 118

For example,

TCP Server

Server creates socket

Server binds to
socket

well-known
Por' .
Server listens
—
<« Server accepts
SOCkC t TCP Client
s blocks until connection
—> [ socket() from client
Client connects e e il T
\ connect () TP three-way handshake)
write() data (request) Server reads
read() -
from socket
Pmss ﬂ.‘qul’s'
data (reply) write()
read()
close() | end-of-file notification
read() /
close()
Lecture 10
Page 59

Winter 2016



/ Issues \

* Messages without bind
* A horse with no name

* Socket type and boundaries

\ /

CS 118 Lecture 10
Winter 2016 Page 60




/ No bind, no problem \

* Stateless (connectionless) messages
— Bind indicates local end

— What 1f you omit bind?

— The OS figures out where the message should go
and adds the source address itself

\ /

CS 118 Lecture 10
Winter 2016 Page 61




/ Automatic source addressing \

* What do you already indicate?
— Destination address (required in sendto)

— Includes “address family”
* Unix-speak for layer name

* Only one layer of each name!

— Includes destination address

* Use that with an internal (route) table to pick an
outgoing interface

* Set the source address to the outgoing interface

\ /

CS 118 Lecture 10
Winter 2016 Page 62




/ What about ports? \

* Recall:
— Port distinguishes different TCP or UDP layer
endpoints within a IP layer
* How do you know the one to send to?
— Someone tells you!
— From a published list
— Because you’re replying to a message (or within a

connection) already know

\ /

CS 118 Lecture 10
Winter 2016 Page 63




-

\

CS 118

What’s your port number?

* Messages

T'he one you know to send to

T'he one you got a message from (to reply)

 Connections

T'he one a server LISTENSs on

T'he one a client CONNECTs to

Winter 2016

Lecture 10
Page 64



/ Port numbers \

* Ports are local to the pair communicating
— Identifies the socket (thus the process) on each end

* Sometimes ports have common meaning

— At “first contact”, they help you pick who you’re
talking with (1.e., client-side)

— That’s why they’re registered by IJANA

\ /

CS 118 Lecture 10
Winter 2016 Page 65




-

\

CS 118
Winter 2016

Two meanings of ports

* During first contact — expected process
— E.g., web server (80), secure server (443), email

server (110), etc.

 After that, just an endpoint 1dentifier
— At the TCP/UDP layer

\

Lecture 10

Page 66



/ Port meaning \

By common convention (assumption)
— Groups:
* System ports (80, 110, 53)
* User ports (8080, etc.)
* Dynamic ports (unassigned!)
— Assigned to “services” (TM expecting messages)

* By other coordination
— Because you and the other endpoint agree

— Port can mean anything you (and they) want

\ /

CS 118 Lecture 10
Winter 2016 Page 67




/ Having no name \

* Bind with no name?
— Technically, you cannot
— Bind to “0” = ANY (i.e., “don’t care™)
— Works for IP address, TCP/UDP port

* What happens when you need a name?
— If you picked ANY, the OS assigns you one
— Address = based on path, from ones you “own”

\ — Port = pick one not 1n use )

CS 118 Lecture 10
Winter 2016 Page 68




/ Socket types and boundaries \

* Sometimes send/recv boundaries match
— E.g., the channel preserves the boundaries
— Sending messages
— Sending data over a connection with markers

e Sometimes, not so much
— E.g., TCP!

— If you send 100 bytes, that might go in one TCP
message, two, three, etc.

— When the other side recvs, you don’t know what data
1s ready

/

CS 118 Lecture 10
Winter 2016 Page 69




/ Summary \

* Naming 1s more than just for networking
— Names inside the machine

— Binding between 1nside and outside names

* Names are linked 1n a set of steps
— We used Unix as an example

* Names also set expectations
\ — E.g., port number implies TM type (“service” )

CS 118 Lecture 10
Winter 2016 Page 70




