

Introduction

CS 118

Computer Network Fundamentals

Peter Reiher

Purpose of the class

- To familiarize you with the basic concepts of computer networking
- Computer networks are increasingly key to most systems
- All educated computer scientists should have a good understanding of how they work

Pre-requisite

- CS 111 – Operating System Principles
 - Which itself has CS 31, 32, and 35 as pre-requisites
- So you're expected to be able to program
- And to have a reasonable understanding about how computer software systems work

Textbooks

- Shannon/Weaver,
The Mathematical Theory of Communication
(any edition)
- Peterson/Davie,
Computer Networks: A systems approach
(any edition)*
 - *readings are cited from the Sixth Edition; students are responsible for location of corresponding material if using other editions

Assignments

- Programming projects
 - Two
 - On a schedule set by the TA
- All work is to be completed INDIVIDUALLY.

Grading

- 30% projects
 - 15% each for 2 assignments
- 30% midterm
 - Feb. 4, in class
- 40% final exam
 - March 14, 8-11 AM
- Projects due as announced
 - Due at the start of class on date indicated
 - TA will set policy for late submissions

Office Hours

- TTh 2-3 PM
- In 3532F Boelter Hall
- Other times possible by arrangement

The TA

- Seungbae Kim
 - ksb2043@gmail.com
- He will handle all issues related to the projects
- Also will hold weekly recitation sections and office hours
 - Times to be announced

A bit about style

- A bit more “abstract” than typical
 - This is an education, not merely training
 - It’s for your entire life, not just your first job
- You’re expected to **apply** what you learn
 - Repeating what you learn will not be enough
 - Just attending class will not be enough
- You will be challenged
- I am here to help
 - Specific questions will always be answered

Mastering the material

- There's a lot of stuff
 - What should you focus on?
- Things to keep in mind:
 - Understanding
 - Recognizing
 - NOT memorizing
- Focus on the subject
 - Side-discussions are intended to illuminate, not dump extra stuff on you

Let's begin...

A Roadmap

- Introduction and history
- Performance and efficiency

Overview

- Definitions
- What about the layers we've heard about?
- The first-principles approach
- A little history

Why are we here?

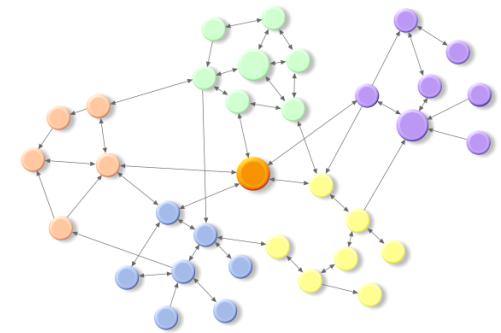
- Computer networking
 - Really: networked computer communication
 - Information exchange between computers
- The challenge:
 - What is information?
 - What is communication?
 - What is networking?
 - How are these related?

What is communication?

- Methods for exchanging information between:
 - a fixed set of
 - directly-connected parties
 - using a single, shared set of pre-agreed rules

So then what's a protocol?

- A single, shared set of pre-agreed rules
- *E.g.:*
 - I call you
 - The phone rings
 - You pickup and say “Hello”
 - We start talking


Protocol variations

- What word (for the telephone)?
 - Bell originally proposed “Ahoy!”
- Who talks first when I call you?
 - Typically:
 - You pickup and you say “Hello” [callee first]
 - Alternate:
 - You pickup and I say “Hello” [caller first]
 - Either one works
 - Only if both sides agree in advance

There is a lot of complexity
in just two-party communication.

What is networking?

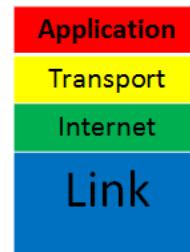
- Methods to enable communication between:
 - varying sets of
 - indirectly connected parties
 - that don't share a single set of rules
- Networking:
 - how we get from “nothing” to being able to communicate

Let's compare...

Communication

- Methods for exchanging information between:
 - a *fixed* set of
 - *directly-connected* parties
 - using a *single, shared set* of pre-agreed rules (a protocol)
- How you exchange info when you know *who* you're talking to and *how*

Networking


- Methods to enable communication between:
 - *varying* sets of
 - *indirectly connected* parties
 - that *don't share a single set* of rules
- How you figure out *who* you're talking to and *how*

Summary definitions

- Communication
 - Methods for exchanging information between a fixed set of directly-connected parties using a single protocol
- Networking
 - Methods to enable communication between varying sets of indirectly connected parties that don't share a single protocol
- Protocol
 - A set of rules, agreed in advance, that enable communication

Where are the layers we've heard about?

- International Standards Organization (ISO)
 - Open Systems Interconnect (OSI)
 - Seven layers based on function/capability
 - Developed as a reference model
 - Implemented but not really used
- Internet
 - Four layers
 - More or less . . .

Slapping Names on Layers Isn't Useful

- The name doesn't really tell you anything
 - Calling it “transport” doesn't mean much
- What's important is what happens in the network
- There can be many ways of mapping desired functionality into elements of the system

Names – What's valuable about them

- They allow us to specify things
- To make sure the right actions happen to the right things
- In networks, to get messages to the right recipients
- In network layers, to ensure that we understand what layer we're dealing with

Names – What's unimportant about them

- The actual name is meaningless
- Meaning is achieved by binding it to something
- The same thing can have several different names
- The same name can be applied to several different things
 - Depending on context
 - Changing over time

The important lesson about names

- Don't obsess about the name itself
- Concentrate on how the name relates to reality

These Layers Aren't the Truth, Anyway

- It's not 1984 anymore
 - Both models describe early networking
- Layers aren't defined by function
 - Most layers do most functions now
- There are too many exceptions
 - In-between layers
 - Virtual layers (tunnels)

Let's go back to the beginning...

Two fundamental ideas of CS:

- Abstraction
- Recursion

Abstraction

- Represent something complex...
 - with something simpler...
 - that is easier to understand
 - AND
 - that can be used to predict the behavior of the complex

A MODEL

Recursion

- The converse of induction
 - decompose a large problem into the combination of its components
 - declare a value for the minimal atomic component

The goal of our approach

- To describe networked computer communication from first principles of:
 - Abstraction
 - Recursion
- We'll still have layers
 - Just recursive ones

If layers aren't fixed things?

- Then what are they?
 - A layer is the largest set that can communicate
 - *i.e.*, a layer is the largest group that is:
 - directly connected
 - shares a single, common protocol

A Roadmap Through the Course

- Bits
 - A very fine place to start...
- Communication
 - Two-party bit sharing
- Networking
 - Multiparty bit sharing

Course roadmap

- Communication
 - Two-party shared state
 - Channels
 - Protocols

Course roadmap

- Communication

- Networking

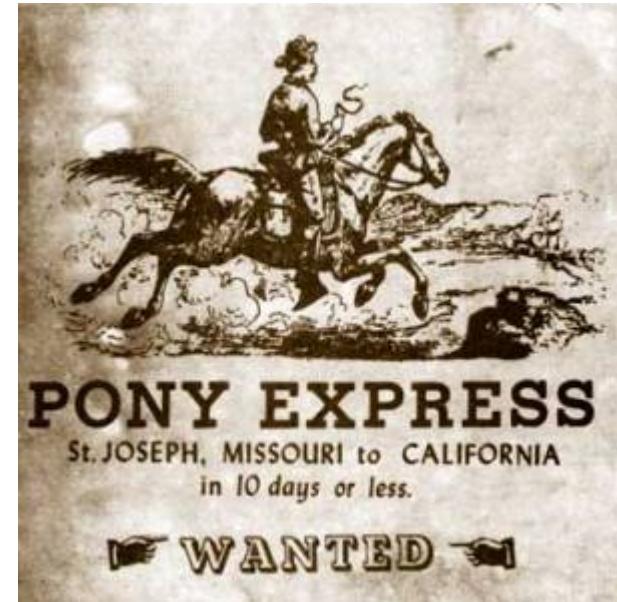
- Two-party shared state
- Channels
- Protocols
- Multiparty complications
- Layers
- Naming
- Recursion/forwarding

Course roadmap

- Communication
- Networking

```
graph TD; A[Communication] --> B[Networking]; B --> C[Examples & mechanisms]; B --> D[Examples & mechanisms];
```

- Two-party shared state
- Channels
- Protocols
- Multiparty complications
- Layers
- Naming
- Recursion/forwarding


- Examples & mechanisms
 - Communication
 - Networking

A little history too

- ~5000 years of networking to consider!

Couriers

- Human-based
 - More reliable
- Slow
 - Walking, horse galloping
- Limited range
 - Tens of miles
 - Relay only where pre-deployed
- Vulnerable
 - Loss, corruption, interference
- Costly

Carrier pigeons

- Unidirectional messaging
 - From release to “home”
- Hard to “reset”
 - Bring the pigeon back
- Fixed locations
 - Messages go only where pigeons are “homed”
- Unpredictable
 - High loss rate!

Beacons

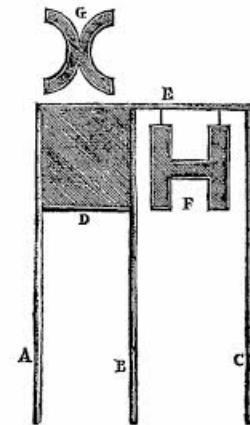
- Limited BW
 - One signal
 - Slow to reset
- Long distance
 - Relays over hundreds of miles
- Costly
 - Requires resident attendant
- First optical comms!
 - Works at night
 - Better than daytime
 - Worked for Paul Revere

Heliograph

- More optical comms
 - Sunlight
- Unreliable
 - Hard to aim
- Limited use
 - Sunny days only
 - Low bitrate

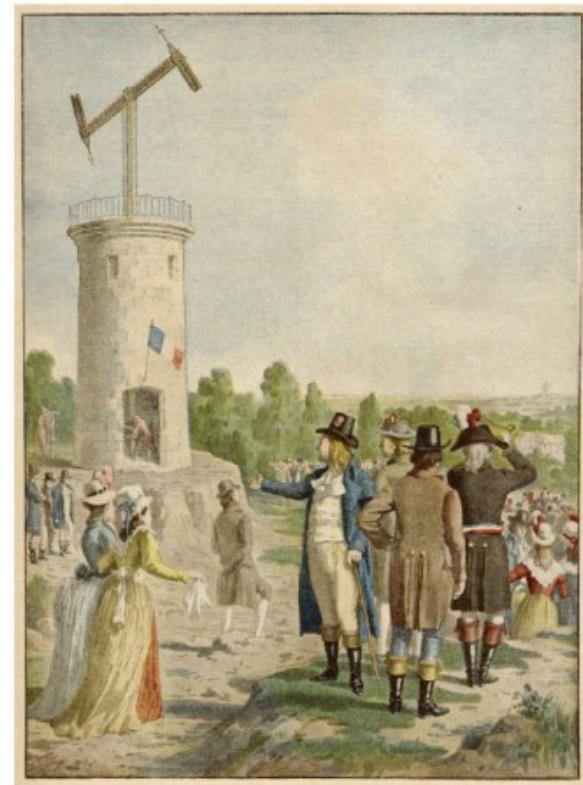
Flags

- Still in current use
 - Maritime communications
 - Public communications
 - E.g., swim safety



Origins

- Couriers Spoken/written (30,000 BC)
- Pigeons 2900 BC, Egypt
- Beacons 1200 BC, Troy
- Heliographs 400 BC, Greece
- Flags 400 BC, Greece


Hooke

- Yes, the microscope guy
 - 1680's
 - “On Showing a Way How to Communicate One's Mind at a Distance”
 - Telescope + semaphores

French Telegraph

- Semaphore telegraph
 - 1790s, Claude Chappe
 - Letters, numbers
 - Time sync
 - Contention (message collision)
 - Priority
 - Flow control
 - Error recovery

Emergence of electricity

- Electromagnets invented 1820 (Sturgeon)
 - Electrical relays – 1835
- Cooke/Wheatstone – 1837
 - Multiple needles
 - 13 miles near London
- Morse – 1837
 - Single relay
 - Killed the Pony Express (courier) by 1861

Cooke/Wheatstone

Morse

- Symbols == letters
- Time encoding
 - Dot
 - 3 dots = dash
 - Intra-symbol
 - dot delay
 - Inter-symbol
 - dash delay
 - Inter-word
 - seven dot delay

MORSE CODE

A	•—	J	•-----	S	•••
B	—•••	K	—•—	T	—
C	—•—•	L	•—••	U	••—
D	—••	M	——	V	•••—
E	•	N	—•	W	•—•—
F	••—•	O	———	X	—••—
G	——•	P	•—••	Y	—•—•—
H	••••	Q	——•—	Z	——••
I	••	R	•—•		

Telephone

- First patented by Alexander Graham Bell
 - In 1876
- Carried actual voice over electromagnetic media
- In wide use by early 20th century
- Still in wide use today

Radio

- Transmission of signals without wires
 - Originally encoding sound
 - Eventually encoding many forms of data
- Theoretical possibility shown by Maxwell (1864)
- Patent of practical device by Marconi (1896)

Computer networking

- Small, special purpose computer networks in 1950s, 1960s
- Packet switching developed in 1960s
- ARPANET went online in 1969
- Internet replaced the ARPANET in 1981
 - And became commercial in 1989
- World Wide Web introduced in 1991
 - Not a new hardware technique
 - But a revolution in what networks could do

Characterizing Networks

- Some characterizations are based on purpose
 - “It’s a network for voice”
- Others are numerical
 - “It can transmit 10 Mbytes per second”
 - Numerical characterizations tend to be more useful
- What will we measure for networks?
- Values to characterize work and power
 - Time
 - Number & size of messages

Communications is all about time...

- Time for information transfer
 - Info at A \rightarrow info at B
- Time for a transformation
 - Info \rightarrow $f(\text{info})$
- Time for a transaction

I at A \rightarrow

request starts at A

I at B \rightarrow

request arrives at B

$f(I)$ at B \rightarrow

response created at B

$f(I)$ at A

response moves to A

Communications/Network Measures

- Frequency
 - Bandwidth
 - Processing
- Speed
 - Propagation speed
- Delay
 - Propagation latency
 - Access delay
- Loss rate

Rate *vs.* Frequency

- Rate
 - Events per unit time
- Frequency
 - Time between events
 - Sometimes: time to complete (TTC) a given event
- Not always related!
 - $\text{Rate} = 1/\text{TTC} * \#\text{servers}$
 - *E.g.*, you can cook pies at a rate faster than 1 pie per hour, but each pie will still take 1 hour to cook (i.e., pie baking frequency doesn't change)

The importance of being quick

- Latency is the fundamental metric of computing and communication
 - Performance is measured as the latency required to perform a task
 - Everything else is a means to that end
 - Exceptions aren't computing or communication (e.g., I/O capabilities such as screen size, pixel depth, digitizer resolution)

What is latency?

- Latency is...

(focus)	The time between:
Generic	two events
Interaction	asking question and receiving an answer
Communication	creating information at a source and receiving it at a destination

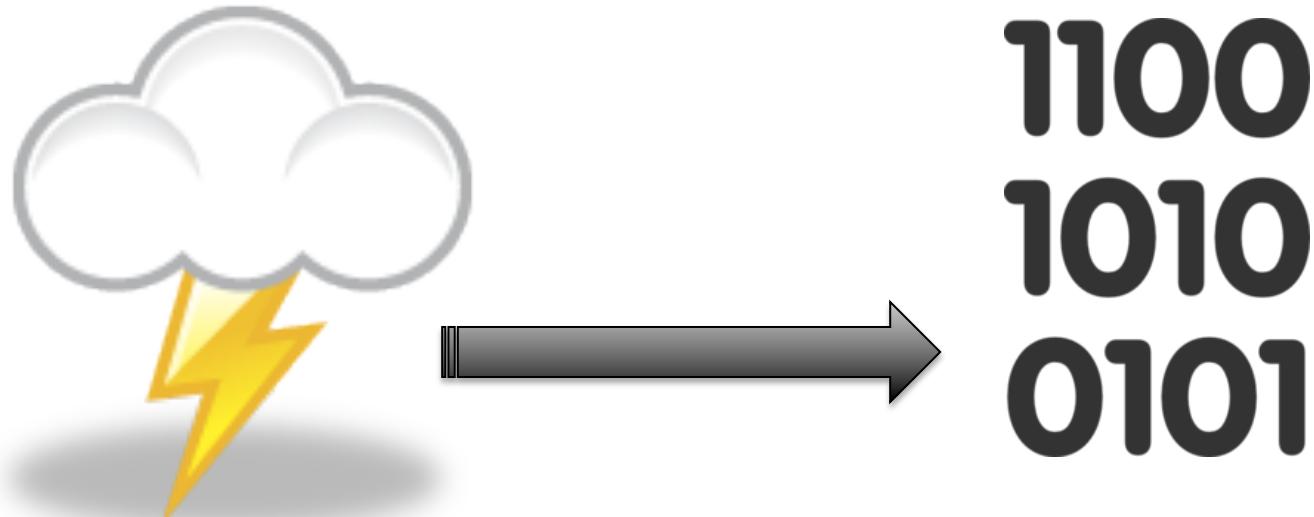
Defining latency

- Latency is:
 - The time between creating information at a source and receiving it at a destination
- Latency is:
 - A **cumulative effect**
 - A property of *two events* and a *message* in a *system* (sender/receiver/path)

Latency isn't a single value

- The cumulative system impact on a message
 - Fixed, per-message costs
 - Header processing
 - Message house-keeping
 - Propagation delay
 - Proportional, per-bit costs
 - Message composition/interpretation
 - Transmission delay
 - Unpredictable aggregate effect
 - Not strictly additive
 - Some latencies overlap (pipeline), others don't

} **Message size
matters**


Five Root Causes

1. Generation
2. Transmission
3. Processing
4. Multiplexing
5. Grouping

More than propagation + transmit + queue!

Cost #1: Generation

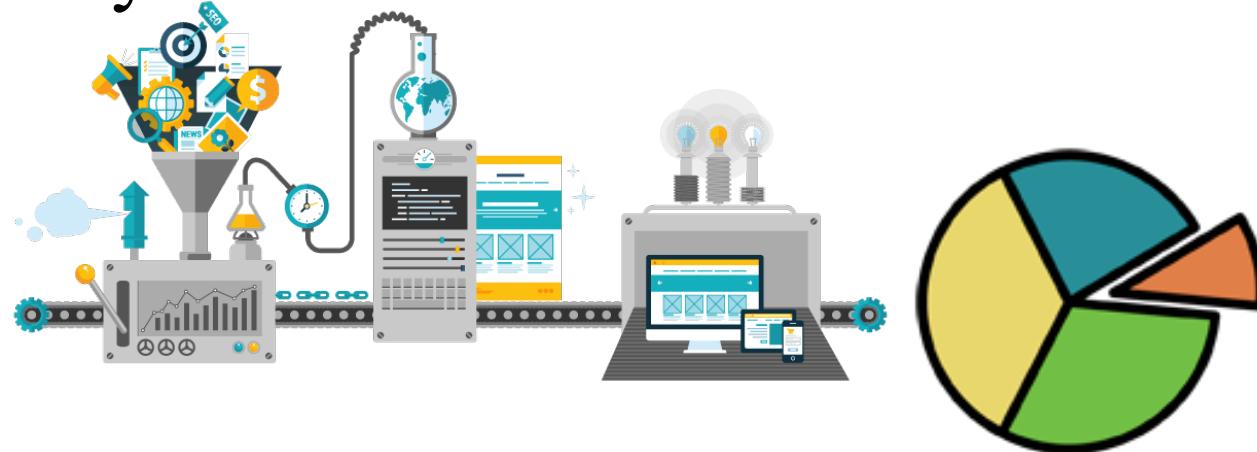
- Delay between occurrence of a physical event and the availability of information

Cost #2: Transmission

- The delay in transferring information from one location to another

The speed of light – or less

- Constant *in each medium*:


Vacuum	c (3E8 m/s)
Air (RF)	0.9997 c
Open-ladder wire	0.95 c
Twin-axial wire	0.8 c
Coax wire	
Twisted –pair wire	0.66 c
Optical fiber	

Cost #3: Processing

- The delay due to the computational translation or frequency of information

**1100
1010
0101**

Cost #4: Multiplexing

- The delay incurred as the result of sharing a resource

Cost #5: Grouping

- The delay incurred to reduce the amount of control information and overhead

Summary

- Definitions
 - Communication, networking, and protocol
- Names are just names
 - You do need to know them
 - But their meaning is just as important
- Networking didn't start with the Internet
 - There's a lot of history that's still useful
- Important characterization of network performance are time related
 - Especially latency