
Lecture 2
Page 1

CS 111
Spring 2015

Operating System Basics
CS 111

Operating Systems
Peter Reiher

Lecture 2
Page 2

CS 111
Spring 2015

Outline

•  Important properties for an operating system
•  Critical abstractions for operating systems
•  System services

Lecture 2
Page 3

CS 111
Spring 2015

Important OS Properties

•  For real operating systems built and used by
real people

•  What’s most important depends on who you
are talking about
– Users
– Service providers
– Application developers
– OS developers

•  All are important clients for operating systems

Lecture 2
Page 4

CS 111
Spring 2015

For the End Users,

•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Support for differing hardware
– Currently available platforms
– What’s available in the future

•  Availability of key applications
•  Security

Lecture 2
Page 5

CS 111
Spring 2015

Reliability

•  Your OS really should never crash
– Since it takes everything else down with it

•  But also need dependability in a different sense
– The OS must be depended on to behave as it’s

specified
– Nobody wants surprises from their operating

system
– Since the OS controls everything, unexpected

behavior could be arbitrarily bad

Lecture 2
Page 6

CS 111
Spring 2015

Performance

•  A loose goal
•  The OS must perform well in critical situations
•  But optimizing the performance of all OS

operations not always critical
•  Nothing can take too long
•  But if something is “fast enough,” adding

complexity to make it faster not worthwhile
– Often overlooked by OS researchers and

developers

Lecture 2
Page 7

CS 111
Spring 2015

Upward Compatibility

•  People want new releases of an OS
– New features, bug fixes, enhancements

•  People also fear new releases of an OS
– OS changes can break old applications

•  What makes the compatibility issue
manageable?
– Stable interfaces

Lecture 2
Page 8

CS 111
Spring 2015

Stable Interfaces

•  Designers should start with well specified
Application Interfaces
– Must keep them stable from release to release

•  Application developers should only use
committed interfaces
– Don’t use undocumented features or erroneous

side effects

Lecture 2
Page 9

CS 111
Spring 2015

Interfaces and Standards

•  Standards in the Dark Ages (1965)
•  The S/W Reformation (1985)
•  The role of standards today
•  APIs
•  ABIs

Lecture 2
Page 10

CS 111
Spring 2015

Standards in the Dark Ages (1965)
•  No software industry as we now know it
•  All the money was made on hardware
– But hardware is useless without software
– All software built by hardware suppliers
– Platforms were distinguished by software

•  Software portability was an anti-goal
– Keep customers captive to your hardware
– Portability means they could go elsewhere

•  Standards were few and weak

Lecture 2
Page 11

CS 111
Spring 2015

The S/W Reformation (1985)
•  An outgrowth of the popular commodity PC
•  The advent of the “killer application”
– Desk-top publishing, spreadsheets, ...
– The rise of the Independent Software Vendor

•  Fundamental changes to platform industry
– The “applications, demand, volume” cycle
– Application capture became strategic

•  Applications portability also became strategic
– Standards are the key to portability
– Standards compliance became strategic

Lecture 2
Page 12

CS 111
Spring 2015

Standards Today

•  There are many software standards
– Subroutines, protocols and data formats, …
– Both portability and interoperability
– Some are general (e.g. POSIX 1003, TCP/IP)
– Some are very domain specific (e.g. MPEG2)

•  Key standards are widely required
– Non-compliance reduces application capture
– Non-compliance raises price to customers
– Proprietary extensions are usually ignored

Lecture 2
Page 13

CS 111
Spring 2015

APIs
•  Application Program Interfaces
– A source level interface, specifying:

•  Include files, data types, constants
•  Macros, routines and their parameters

•  A basis for software portability
– Recompile program for the desired architecture
– Linkage edit with OS-specific libraries
– Resulting binary runs on that architecture and OS

•  An API compliant program will compile & run
on any compliant system
– APIs are primarily for programmers

Lecture 2
Page 14

CS 111
Spring 2015

ABIs
•  Application Binary Interfaces
– A binary interface, specifying:

•  Dynamically loadable libraries (DLLs)
•  Data formats, calling sequences, linkage conventions

– The binding of an API to a hardware architecture
•  A basis for binary compatibility
– One binary serves all customers for that hardware

•  E.g. all x86 Linux/BSD/MacOS/Solaris/…

•  An ABI compliant program will run
(unmodified) on any compliant system

•  ABIs are primarily for users

Lecture 2
Page 15

CS 111
Spring 2015

For the Service Providers,
•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Platform support (wide range of platforms)
•  Manageability
•  Total cost of ownership
•  Support (updates and bug fixes)
•  Flexibility (in configurations and applications)
•  Security

Lecture 2
Page 16

CS 111
Spring 2015

For the Application Developers,
•  Reliability
•  Performance
•  Upwards compatibility in releases
•  Standards conformance
•  Functionality (current and roadmap)
•  Middleware and tools
•  Documentation
•  Support (how to ...)

Lecture 2
Page 17

CS 111
Spring 2015

For the OS Developers,

•  Reliability
•  Performance
•  Maintainability
•  Low cost of development
– Original and ongoing

Lecture 2
Page 18

CS 111
Spring 2015

Maintainability
•  Operating systems have very long lives
– Solaris, the “new kid on the block,” came out in 1993
– Even smart phone OSes have roots in the 80s or 90s

•  Basic requirements will change many times
•  Support costs will dwarf initial development
•  This makes maintainability critical
•  Aspects of maintainability:

–  Understandability
–  Modularity/modifiability
–  Testability

Lecture 2
Page 19

CS 111
Spring 2015

Maintainability: Understandability

•  Code must be learnable by mortals
–  It will not be maintained by the original developers
–  New people must be able to come up to speed

•  Code must be well organized
–  Nobody can understand 1 million lines of random code
–  It must have understandable, hierarchical structure

•  Documentation
–  High level structure, and organizing principles
–  Functionality, design, and rationale for modules
–  How to solve common problems

Lecture 2
Page 20

CS 111
Spring 2015

Why a Hierarachical Structure?
•  Not absolutely necessary, but . . .
•  Hierarchical layers usually understandable

without completely understanding the
implementation

•  Expansion of one sub-system in a hierarchy
usually understandable w/out understanding
the expansion of other sub-systems

•  Other structures tend not to have those
advantages

Lecture 2
Page 21

CS 111
Spring 2015

Maintainability: Modularity
and Modifiability

•  Modules must be understandable in isolation
–  Modules should perform coherent functions
–  Well-specified interfaces for each module
–  Implementation details hidden within module
–  Inter-module dependencies should be few/simple/clean

•  Modules must be independently changeable
–  Lots of side effects mean lots of bugs
–  Changes to one module should not affect others

•  Keep It Simple Stupid
–  Costs of complexity usually outweigh the rewards

Lecture 2
Page 22

CS 111
Spring 2015

Side Effects
•  A side effect is a situation where an action in

one object has non-obvious consequences
–  Perhaps even to other objects
–  Generally not following the interface

specification
•  Side effects often happen when state is

shared between seemingly independent
modules and functions

•  Side effects lead to unexpected behaviors
•  And the resulting bugs can be hard to find

Lecture 2
Page 23

CS 111
Spring 2015

Maintainability: Testability
•  OS must work, so its developers must test it
•  Thorough testing is key to reliability
–  All modules must be thoroughly testable
–  Most modules should be testable in isolation

•  Testability must be designed in from the start
–  Observability of internal state
–  Triggerability of all operations and situations
–  Isolability of functionality

•  Testing must be automated
–  Functionality, regression, performance,
–  Stress testing, error handling handling

Lecture 2
Page 24

CS 111
Spring 2015

Automated Testing

•  Why is it important that testing be
automated?

•  Automated tests can be run often (e.g. after
every change) with very little cost or effort

•  Automatically executed tests are much more
likely to be run completely and correctly
every time

•  And discrepancies are much more likely to be
noted and reported

Lecture 2
Page 25

CS 111
Spring 2015

Cost of Development

•  Another area where simplicity wins
•  If it’s simple, it will be quicker and cheaper to

build
•  Even better, there will be fewer bugs
– And thus less cost for bug fixes

•  And changing/extending it will be cheaper
•  Low cost development usually implies speedy

development
– Quicker time to market

Lecture 2
Page 26

CS 111
Spring 2015

Critical OS Abstractions

•  One of the main roles of an operating system is
to provide abstract services
– Services that are easier for programs and users to

work with
•  What are the important abstractions an OS

provides?

Lecture 2
Page 27

CS 111
Spring 2015

Abstractions of Memory

•  Many resources used by programs and people
relate to data storage
– Variables
– Chunks of allocated memory
– Files
– Database records
– Messages to be sent and received

•  These all have some similar properties

Lecture 2
Page 28

CS 111
Spring 2015

The Basic Memory Operations

•  Regardless of level or type, memory
abstractions support a couple of operations
– WRITE(name, value)

•  Put a value into a memory location specified by name

– value <- READ(name)
•  Get a value out of a memory location specified by name

•  Seems pretty simple
•  But going from a nice abstraction to a physical

implementation can be complex

Lecture 2
Page 29

CS 111
Spring 2015

Some Complicating Factors
•  Persistent vs. transient memory
•  Size of operations
– Size the user/application wants to work with
– Size the physical device actually works with

•  Coherence and atomicity
•  Latency
•  Same abstraction might be implemented with

many different physical devices
– Possibly of very different types

Lecture 2
Page 30

CS 111
Spring 2015

Where Do the Complications
Come From?

•  At the bottom, the OS doesn’t have abstract
devices with arbitrary properties

•  It has particular physical devices
– With unchangeable, often inconvenient, properties

•  The core OS abstraction problem:
– Creating the abstract device with the desirable

properties from the physical device without them

Lecture 2
Page 31

CS 111
Spring 2015

An Example
•  A typical file
•  We can read or write the file
•  We can read or write arbitrary amounts of data
•  If we write the file, we expect our next read to

reflect the results of the write
– Coherence

•  If there are several reads/writes to the file, we
expect each to occur in some order
– With respect to the others

Lecture 2
Page 32

CS 111
Spring 2015

What Is Implementing the File?
•  Most commonly a hard disk drive
•  Disk drives have peculiar characteristics
– Long, and worse, variable access latencies
– Accesses performed in chunks of fixed size

•  Atomicity only for accesses of that size

– Highly variable performance depending on exactly
what gets put where

– Unpleasant failure modes
•  So the operating system needs to smooth out

these oddities

Lecture 2
Page 33

CS 111
Spring 2015

What Does That Lead To?

•  Great effort by file system component of OS to
put things in the right place on a disk

•  Reordering of disk operations to improve
performance
– Which complicates providing atomicity

•  Optimizations based on caching and read-
ahead
– Which complicates maintaining consistency

•  Sophisticated organizations to handle failures

Lecture 2
Page 34

CS 111
Spring 2015

Abstractions of Interpreters

•  An interpreter is something that performs
commands

•  Basically, the element of a computer (abstract
or physical) that gets things done

•  At the physical level, we have a processor
•  That level is not easy to use
•  The OS provides us with higher level

interpreter abstractions

Lecture 2
Page 35

CS 111
Spring 2015

Basic Interpreter Components
•  An instruction reference
– Tells the interpreter which instruction to do next

•  A repertoire
– The set of things the interpreter can do

•  An environment reference
– Describes the current state on which the next

instruction should be performed
•  Interrupts
– Situations in which the instruction reference

pointer is overriden

Lecture 2
Page 36

CS 111
Spring 2015

For Example,

•  A CPU
•  It has a program counter register indicating

where the next instruction can be found
– An instruction reference

•  It supports a set of instructions
–  Its repertoire

•  It has contents in registers and RAM
–  Its environment

Lecture 2
Page 37

CS 111
Spring 2015

Another Example
•  A process
•  The OS maintains a program counter for the

process
– An instruction reference

•  Its source code specifies its repertoire
•  Its stack, heap, and register contents are its

environment
– With the OS maintaining pointers to all of them

•  No other interpreters should be able to mess up
the process’ resources

Lecture 2
Page 38

CS 111
Spring 2015

Implementing the Process
Abstraction in the OS

•  Easy if there’s only one process
•  But there almost always are multiple processes
•  The OS has a certain amount of physical

memory
– To hold the environment information

•  There is usually only one set of registers
•  The process doesn’t have exclusive access to

the CPU
– Due to other processes

Lecture 2
Page 39

CS 111
Spring 2015

What Does That Lead To?

•  Schedulers to share the CPU among various
processes

•  Memory management hardware and software
– To multiplex memory use among the processes
– Giving each the illusion of full exclusive use of

memory
•  Access control mechanisms for other memory

abstractions
– So other processes can’t fiddle with my files

Lecture 2
Page 40

CS 111
Spring 2015

Abstractions of
Communications Links

•  A communication link allows one interpreter to
talk to another
– On the same or different machines

•  At the physical level, wires and cables
•  At more abstract levels, networks and

interprocess communication mechanisms
•  Some similarities to memory abstractions
– But also differences

Lecture 2
Page 41

CS 111
Spring 2015

Basic Communication Link
Operations

•  SEND(link_name, outgoing_message_buffer)
– Send some information contained in the buffer on

the named link
•  RECEIVE(link_name,

incoming_message_buffer)
– Read some information off the named link and put

it into the buffer
•  Like WRITE and READ, in some respects

Lecture 2
Page 42

CS 111
Spring 2015

Why Are Communication Links
Distinct From Memory?

•  Highly variable performance
•  Potentially hostile environment for the

operations
•  Generally asynchronous
•  Receiver may only perform the operation

because the SEND occurred
– Unlike a typical READ

•  No necessary guarantee of delivery

Lecture 2
Page 43

CS 111
Spring 2015

An Example Communications Link
•  A Unix-style socket
•  SEND interface:
– send(int sockfd, const void *buf,
size_t len, int flags)

– The sockfd is the link name
– The buf is the outgoing message buffer

•  RECEIVE interface:
– recv(int sockfd, void *buf, size_t
len, int flags)

– Same parameters as for send

Lecture 2
Page 44

CS 111
Spring 2015

What About Those Other
Socket Parameters?

•  The len and flag fields?
•  A common attribute of instances of

abstractions
– Especially higher level versions

•  They provide additional semantics specific to
the abstraction

•  Generally improving the power of the higher
level abstraction

Lecture 2
Page 45

CS 111
Spring 2015

Implementing the Communications
Link Abstraction in the OS

•  A bit trickier than the memory and interpreter
abstraction, in some cases

•  Unlike those, the OS does not have full control
of what’s going on

•  The network doesn’t belong to the OS
– Only its own network interface does

•  Another entity is often doing half the work
– Typically another machine’s OS

Lecture 2
Page 46

CS 111
Spring 2015

What Are the Implications?
•  Greater uncertainty about the outcome of an

operation
– Things fail for reasons our OS can’t see or learn

•  Greater asynchrony
– The remote OS might not regard the operations as

equally important as our OS does
•  Higher possibilities for security problems
– Remote OS not equally trusted
– Network between the two potentially

untrustworthy

Lecture 2
Page 47

CS 111
Spring 2015

What Do We Do About
Those Issues?

•  OS must be prepared for likely failures
•  And high degrees of asynchrony
– Bad idea to block entire system while waiting for

the network
•  OS shouldn’t have complete trust in what

comes in from the network
– But often the OS is in no position to determine its

trustworthiness

Lecture 2
Page 48

CS 111
Spring 2015

Some Other Abstractions
•  Actors
– Users or other “active” entities

•  Virtual machines
– Collections of other abstractions

•  Protection environments
– Security related, usually

•  Names
•  Not a complete list
•  Not everyone would agree on what’s distinct

Lecture 2
Page 49

CS 111
Spring 2015

System Services for OSes

•  One major role of an operating system is
providing services
– To human users
– To applications

•  What services should an OS provide?

Lecture 2
Page 50

CS 111
Spring 2015

An Object Oriented View
of OS System Services

•  Services are delivered through objects
– Can be instantiated, named, and destroyed
– They have specified properties
– They support specified methods

•  To understand a service, study its objects
– How they are instantiated and managed
– How client refers to them (names/handles)
– What a client can do with them (methods)
– How objects behave (interface specifications)

Lecture 2
Page 51

CS 111
Spring 2015

Typical OS System Service Types
•  Execution objects
–  Processes, threads, timers, signals

•  Data objects
–  Files, devices, segments, file systems

•  Communications objects
–  Sockets, messages, remote procedure calls

•  Protection objects
–  Users, user groups, process groups

•  Naming objects
–  Directories, DNS domains, registries

Lecture 2
Page 52

CS 111
Spring 2015

System Services and Abstractions

•  Services are commonly implemented by
providing appropriate abstractions

•  For example,
– The service of allowing user code to run in a

computing environment
– Requires a couple of abstractions, at least:

•  The virtual environment abstraction
•  The process abstraction

Lecture 2
Page 53

CS 111
Spring 2015

The Virtual Environment
Abstraction

•  A CPU executes one program at a time
–  It is a serially reusable resource

•  But we want to run multiple programs
“simultaneously”
– Without them treading on each other’s toes

•  A good way to do that is to build a virtual
execution environment abstraction
– Make it look like each program has its own

computer

Lecture 2
Page 54

CS 111
Spring 2015

What Should This
Abstraction Provide?

•  Each program should see its own resource set
– A complete virtual computer with all elements

•  CPU
•  Memory
•  Persistent storage
•  Peripherals

•  Isolation from other activities
–  Including non-related OS activities

•  Each program should think it has the real
machine to itself

Lecture 2
Page 55

CS 111
Spring 2015

How To Do That?

•  We won’t go into detail now
– But will later

•  In essence, the OS must multiplex its real
resources
– Among the various process’ virtual computers

•  Requiring care in saving and restoring state
•  And attention to fair use and processes’ various

performance requirements

Lecture 2
Page 56

CS 111
Spring 2015

The Process Service
•  Given we want per program virtual environments,
•  We need an interpreter abstraction that provides the

ability to run user code
–  The process

•  With some very useful properties:
–  Isolation from other code
–  Isolation from many system failures
–  Guarantees of access to certain resources

•  Processes can communicate and coordinate
–  But do so through the OS
–  Which provides isolation and synchronization

Lecture 2
Page 57

CS 111
Spring 2015

What Is a Process?
•  An interpreter that executes a single program
–  It provides illusion of continuous execution
– Despite fact that the actual CPU is time-shared

•  Runs process A, then process B, then process A

•  What virtual environment does a program see?
– Programs don't run on a real bare computer
– They run inside of a process
– Process state is saved when it is not running
– Process state is restored when it runs again

Lecture 2
Page 58

CS 111
Spring 2015

Processes and Programs

•  Program = set of executable instructions
– Many processes can run the same program

•  Process = executing instance of program
–  It has saved state

•  Memory, contents, program counter, registers, ...

–  It has resources and privileges
•  Open files, user-ID, capabilities, ...

–  It may be the unit of CPU sharing
•  CPU runs one process, then another

Lecture 2
Page 59

CS 111
Spring 2015

Problems With the Process
Abstraction

•  Processes are very expensive
– To create: they own resources
– To dispatch: they have address spaces

•  Different processes are very distinct
– They cannot share the same address space
– They cannot (usually) share resources

•  Not all programs want strong separation
– Cooperating parallel threads of execution
– All are trusted because they run same code

Lecture 2
Page 60

CS 111
Spring 2015

So the Process Abstraction
Isn’t Sufficient

•  To meet common user needs
•  What if I have a program that can do multiple

things simultaneously?
•  And requires regular, cheap communications

between those different things?
•  Processes are too expensive
•  And make regular communications costly
•  So I need another abstraction

Lecture 2
Page 61

CS 111
Spring 2015

Threads
•  An abstraction built on top of the process

abstraction
•  Each process contains one or more threads
•  Each thread has some separate context of its

own
– Like a program counter and scheduling info

•  But otherwise shares the resources of its
process

•  Threads within a process can thus
communicate easily and cheaply

Lecture 2
Page 62

CS 111
Spring 2015

Characteristics of Threads

•  Strictly a unit of execution/scheduling
– Each thread has its own stack, PC, registers

•  Multiple threads can run in a process
– They all share the same code and data space
– They all have access to the same resources
– This makes the cheaper to create and run

•  Sharing the CPU between multiple threads
– User level threads (with voluntary yielding)
– Kernel threads (with preemption)

Lecture 2
Page 63

CS 111
Spring 2015

Using the Abstractions

•  When a programmer wants to run code, then,
he can choose between abstractions

•  Does he want just a process?
•  Or does he want a process containing multiple

threads?
•  Or perhaps multiple processes?
– With one thread each?
– With multiple threads?

Lecture 2
Page 64

CS 111
Spring 2015

When To Use Processes

•  When running multiple distinct programs
•  When creation/destruction are rare events
•  When running programs (even instances of the

same code) with distinct privileges
•  When there are limited interactions and few

shared resources
•  When you need to prevent interference

between programs
– Or need to protect one from failures of the other

Lecture 2
Page 65

CS 111
Spring 2015

An Example of Choosing Processes
•  When implementing compilation in a shell

script
cpp $1.c | cc1 | ccopt > $1.s
as $1.s
ld /lib/crt0.o $1.o /lib/libc.so
mv a.out $1
rm $1.s $1.o
•  Each of these programs gets a separate process

Lecture 2
Page 66

CS 111
Spring 2015

Why?

•  The activities are serial
•  The only resources to be shared are through

the file system
•  Failure of one program could damage the

others if too much is shared
– Who knows what rm might get rid of, for

example?

Lecture 2
Page 67

CS 111
Spring 2015

When To Use Threads
•  When there are parallel activities in a single

program
•  When there will be frequent creation and

destruction
•  When all activities can run with same

privileges
•  When they need to share resources
•  When they exchange many messages/signals
•  When there’s no need to protect them from

each other

Lecture 2
Page 68

CS 111
Spring 2015

An Example for Choosing Threads

•  A web server
•  Multiple users will request service
•  Desirable to share much of the server data
– Such as copies of pages many users want to see
– And information about overall load and

performance
•  But the pages can be served to users in parallel
–  In particular, if serving one user’s page is slow,

don’t slow down other users

Lecture 2
Page 69

CS 111
Spring 2015

Which Abstraction To Choose?
•  If you use multiple processes
– Your application may run much more slowly
–  It may be difficult to share some resources

•  If you use multiple threads
– You will have to create and manage them
– You will have serialize resource use
– Your program will be more complex to write
– You may get weird bugs

•  TANSTAAFL
– There Ain't No Such Thing As A Free Lunch

Lecture 2
Page 70

CS 111
Spring 2015

Generalizing the Concepts
•  There are many other abstractions offered by

the OS
•  Often they provide different ways of achieving

similar goals
– Some higher level, some lower level

•  The OS must do work to provide each
abstraction
– The higher level, the more work

•  Programmers and users have to choose the
right abstractions to work with

Lecture 2
Page 71

CS 111
Spring 2015

Abstractions and Layering
•  It’s common to create increasingly complex

services by layering abstractions
– E.g., a file system layers on top of an abstract disk,

which layers on top of a real disk
•  Layering allows good modularity
– Easy to build multiple services on a lower layer

•  E.g., multiple file systems on one disk

– Easy to use multiple underlying services to support
a higher layer

– E.g., file system can have either a single disk or a
RAID below it

Lecture 2
Page 72

CS 111
Spring 2015

A Downside of Layering
•  Layers typically add performance penalties
•  Often expensive to go from one layer to the

next
– Since it frequently requires changing data

structures or representations
– At least involves extra instructions

•  Another downside is that lower layer may limit
what the upper layer can do
– E.g., an abstract disk prevents disk operation

reorderings to maximize performance

Lecture 2
Page 73

CS 111
Spring 2015

Layer Bypassing

•  Often necessary to allow a high layer to access
much lower layers
– Not going through one or more intermediaries

•  Most commonly for performance reasons
•  If the higher layer plans to use the very low

level layer’s services,
– Why pay the cost of the intermediate layer?

•  Has its downsides, too
–  Intermediate layer can’t help or understand

