
Lecture 14
Page 1

CS 111
Spring 2015

File Systems: Naming and
Performance

CS 111
Operating Systems

Peter Reiher

Lecture 14
Page 2

CS 111
Spring 2015

Outline

•  File naming and directories
•  File volumes
•  File system performance issues
•  File system reliability

Lecture 14
Page 3

CS 111
Spring 2015

Naming in File Systems

•  Each file needs some kind of handle to allow
us to refer to it

•  Low level names (like inode numbers) aren’t
usable by people or even programs

•  We need a better way to name our files
– User friendly
– Allowing for easy organization of large numbers of

files
– Readily realizable in file systems

Lecture 14
Page 4

CS 111
Spring 2015

File Names and Binding
•  File system knows files by descriptor structures
•  We must provide more useful names for users
•  The file system must handle name-to-file mapping

–  Associating names with new files
–  Finding the underlying representation for a given name
–  Changing names associated with existing files
–  Allowing users to organize files using names

•  Name spaces – the total collection of all names
known by some naming mechanism
– Sometimes all names that could be created by the

mechanism

Lecture 14
Page 5

CS 111
Spring 2015

Name Space Structure
•  There are many ways to structure a name space

– Flat name spaces
•  All names exist in a single level

– Hierarchical name spaces
•  A graph approach
•  Can be a strict tree
•  Or a more general graph (usually directed)

•  Are all files on the machine under the same
name structure?

•  Or are there several independent name spaces?

Lecture 14
Page 6

CS 111
Spring 2015

Some Issues in Name
Space Structure

•  How many files can have the same name?
–  One per file system ... flat name spaces
–  One per directory ... hierarchical name spaces

•  How many different names can one file have?
–  A single “true name”
–  Only one “true name”, but aliases are allowed
–  Arbitrarily many
–  What’s different about “true names”?

•  Do different names have different characteristics?
–  Does deleting one name make others disappear too?
–  Do all names see the same access permissions?

Lecture 14
Page 7

CS 111
Spring 2015

Flat Name Spaces
•  There is one naming context per file system

– All file names must be unique within that context

•  All files have exactly one true name
– These names are probably very long

•  File names may have some structure
– E.g., CAC101.CS111.SECTION1.SLIDES.LECTURE_13

– This structure may be used to optimize searches
– The structure is very useful to users
– But the structure has no meaning to the file system

•  No longer a widely used approach

Lecture 14
Page 8

CS 111
Spring 2015

A Sample Flat File System - MVS
•  A file system used in IBM mainframes in 60s and 70s
•  Each file has a unique name

–  File name (usually very long) stored in the file's descriptor
•  There is one master catalog file per volume

–  Lists names and descriptor locations for every file
–  Used to speed up searches

•  The catalog is not critical
–  It can be deleted and recreated at any time
–  Files can be found without catalog ... it just takes longer
–  Some files are not listed in catalog, for secrecy

•  They cannot be found by “browsing” the name space

Lecture 14
Page 9

CS 111
Spring 2015

MVS Names and Catalogs
Volume Catalog

name: mark.file1.txt
other attributes

1st extent
2nd extent
3rd extent

…

DSCB #101, type 1
name: mark.file2.txt

other attributes
1st extent
2nd extent
3rd extent

…

DSCB #102, type 1
name: mark.file3.txt

other attributes
1st extent
2nd extent
3rd extent

…

DSCB #103, type 1

name DSCB

mark.file1.txt 101
mark.file2.txt 102
mark.file3.txt 103

Lecture 14
Page 10

CS 111
Spring 2015

Hierarchical Name Spaces
•  Essentially a graphical organization
•  Typically organized using directories

–  A file containing references to other files
–  A non-leaf node in the graph
–  It can be used as a naming context

•  Each process has a current directory
•  File names are interpreted relative to that directory

•  Nested directories can form a tree
–  A file name describes a path through that tree
–  The directory tree expands from a “root” node

•  A name beginning from root is called “fully qualified”
–  May actually form a directed graph

•  If files are allowed to have multiple names

Lecture 14
Page 11

CS 111
Spring 2015

A Rooted Directory Tree
root

user_1 user_2 user_3

file_a

(/user_1/file_a)

file_b

(/user_2/file_b)

file_c

(/user_3/file_c)

dir_a

(/user_1/dir_a)

dir_a

(/user_3/dir_a)

file_a

(/user_1/dir_a/file_a)
file_b

(/user_3/dir_a/file_b)

Lecture 14
Page 12

CS 111
Spring 2015

Directories Are Files
•  Directories are a special type of file

–  Used by OS to map file names into the associated files
•  A directory contains multiple directory entries

–  Each directory entry describes one file and its name

•  User applications are allowed to read directories
–  To get information about each file
–  To find out what files exist

•  Usually only the OS is allowed to write them
–  Users can cause writes through special system calls
–  The file system depends on the integrity of directories

Lecture 14
Page 13

CS 111
Spring 2015

Traversing the Directory Tree
•  Some entries in directories point to child

directories
– Describing a lower level in the hierarchy

•  To name a file at that level, name the parent
directory and the child directory, then the file
– With some kind of delimiter separating the file

name components
•  Moving up the hierarchy is often useful

– Directories usually have special entry for parent
– Many file systems use the name “..” for that

Lecture 14
Page 14

CS 111
Spring 2015

Example: The DOS File System

•  File & directory names separated by back-slashes
–  E.g., \user_3\dir_a\file_b

•  Directory entries are the file descriptors
–  As such, only one entry can refer to a particular file

•  Contents of a DOS directory entry
–  Name (relative to this directory)
–  Type (ordinary file, directory, ...)
–  Location of first cluster of file
–  Length of file in bytes
–  Other privacy and protection attributes

Lecture 14
Page 15

CS 111
Spring 2015

DOS File System Directories

user_1 256 bytes 9 DIR …

Root directory, starting in cluster #1

file name length 1st cluster type …

user_2 512 bytes 31 DIR …

user_3 284 bytes 114 DIR …

Directory /user_3, starting in cluster #114

file name length 1st cluster type …

.. 256 bytes 1 DIR …

dir_a 512 bytes 62 DIR …

file_c 1824 bytes 102 FILE …

Lecture 14
Page 16

CS 111
Spring 2015

File Names Vs. Path Names
•  In some flat name space systems files had “true

names”
–  Only one possible name for a file,
–  Kept in a record somewhere

•  In DOS, a file is described by a directory entry
–  Local name is specified in that directory entry
–  Fully qualified name is the path to that directory entry

•  E.g., start from root, to user_3, to dir_a, to file_b

–  But DOS files still have only one name
•  What if files had no intrinsic names of their own?

–  All names came from directory paths

Lecture 14
Page 17

CS 111
Spring 2015

Example: Unix Directories
•  A file system that allows multiple file names

–  So there is no single “true” file name, unlike DOS

•  File names separated by slashes
–  E.g., /user_3/dir_a/file_b

•  The actual file descriptors are the inodes
–  Directory entries only point to inodes
–  Association of a name with an inode is called a hard link
–  Multiple directory entries can point to the same inode

•  Contents of a Unix directory entry
–  Name (relative to this directory)
–  Pointer to the inode of the associated file

Lecture 14
Page 18

CS 111
Spring 2015

Unix Directories

user_1 9

file name inode #

user_2 31

user_3 114

Directory /user_3, inode #114

dir_a

file_c

. 1

.. 1

Root directory, inode #1

194

307

. 114

.. 1

file name inode #

Here’s a “..” entry,
pointing to the parent
directory

But what’s this “.”
entry?

It’s a directory entry
that points to the
directory itself!

We’ll see why that’s
useful later

Lecture 14
Page 19

CS 111
Spring 2015

Multiple File Names In Unix
•  How do links relate to files?

–  They’re the names only

•  All other metadata is stored in the file inode
–  File owner sets file protection (e.g., read-only)

•  All links provide the same access to the file
–  Anyone with read access to file can create new link
–  But directories are protected files too

•  Not everyone has read or search access to every directory

•  All links are equal
–  There is nothing special about the first (or owner's) link

Lecture 14
Page 20

CS 111
Spring 2015

Links and De-allocation
•  Files exist under multiple names
•  What do we do if one name is removed?
•  If we also removed the file itself, what about

the other names?
– Do they now point to something non-existent?

•  The Unix solution says the file exists as long
as at least one name exists

•  Implying we must keep and maintain a
reference count of links
–  In the file inode, not in a directory

Lecture 14
Page 21

CS 111
Spring 2015

Unix Hard Link Example

root

user_1 user_3

dir_a file_c

file_a

file_b

Note that we now
associate names with links
rather than with files.

/user_1/file_a and

/user_3/dir_a/file_b

are both links to the same
inode

Lecture 14
Page 22

CS 111
Spring 2015

Hard Links, Directories, and Files

user_1 9

user_2 31

user_3 114

inode #9, directory

dir_a

file_c

. 1

.. 1

inode #1, root directory

194

29

. 114

.. 1

inode #114, directory

dir_a

file_a

118

29

. 9

.. 1

inode #29, file

Lecture 14
Page 23

CS 111
Spring 2015

A Potential Problem With
Hard Links

•  Hard links are essentially edges in the graph
•  Those edges can lead backwards to other graph

nodes
•  Might that not create cycles in the graph?
•  If it does, what happens when we delete one of

the links?
•  Might we not disconnect the graph?

Lecture 14
Page 24

CS 111
Spring 2015

Illustrating the Problem

Now let’s add a link

And now let’s
delete a link

The link count
here is still 1,
so we can’t
delete the file

But our graph
has become
disconnected!

Lecture 14
Page 25

CS 111
Spring 2015

Solving the Problem
•  Only directories contain links

– Not regular files

•  So if a link can’t point to a directory, there
can’t be a loop

•  In which case, there’s no problem with
deletions

•  This is the Unix solution: no hard links to
directories
– The “.” and “..” links are harmless exceptions

Lecture 14
Page 26

CS 111
Spring 2015

Symbolic Links
•  A different way of giving files multiple names
•  Symbolic links implemented as a special type of file

–  An indirect reference to some other file
–  Contents is a path name to another file

•  OS recognizes symbolic links
–  Automatically opens associated file instead
–  If file is inaccessible or non-existent, the open fails

•  Symbolic link is not a reference to the inode
–  Symbolic links will not prevent deletion
–  Do not guarantee ability to follow the specified path
–  Internet URLs are similar to symbolic links

Lecture 14
Page 27

CS 111
Spring 2015

Symbolic Link Example

root

user_1 user_3

dir_a file_c

file_a

file_b
(/user_1/file_a)

The link count for
this file is still 1,
though

Lecture 14
Page 28

CS 111
Spring 2015

Symbolic Links, Files, and
Directories

user_1 9

user_2 31

user_3 114

inode #9, directory

dir_a

file_c

. 1

.. 1

inode #1, root directory

194

46

. 114

.. 1

inode #114, directory

dir_a

file_a

118

29

. 9

.. 1

inode #29, file

/user_1/file_a

inode #46, symlink Link count
still equals 1!

Lecture 14
Page 29

CS 111
Spring 2015

What About Looping Problems?
•  Do symbolic links have the potential to introduce

loops into a pathname?
–  Yes, if the target of the symbolic link includes the symbolic

link itself
–  Or some transitive combination of symbolic links

•  How can such loops be detected?
–  Could keep a list of every inode we have visited in the

interpretation of this path
–  But simpler to limit the number of directory searches

allowed in the interpretation of a single path name
–  E.g., after 256 searches, just fail
–  The usual solution for Unix-style systems

Lecture 14
Page 30

CS 111
Spring 2015

File Systems and Multiple Disks
•  You can (and often do) attach more than one disk to a

machine
•  Would it make sense to have a single file system span

the several disks?
–  Considering the kinds of disk specific information a file

system keeps
–  Like cylinder information

•  Usually more trouble than it’s worth
–  With the exception of RAID . . .

•  Instead, put separate file system on each disk
•  Or several file systems on one disk

Lecture 14
Page 31

CS 111
Spring 2015

How About the Other Way Around?

•  Multiple file systems on one disk
•  Divide physical disk into multiple logical disks

–  Often implemented within disk device drivers
–  Rest of system sees them as separate disk drives

•  Typical motivations
–  Permit multiple OS to coexist on a single disk

•  E.g., a notebook that can boot either Windows or Linux

–  Separation for installation, back-up and recovery
•  E.g., separate personal files from the installed OS file system

–  Separation for free-space
•  Running out of space on one file system doesn't affect others

Lecture 14
Page 32

CS 111
Spring 2015

Disk Partitioning Mechanisms

•  Some are designed for use by a single OS
–  E.g., Unix slices (one file system per slice)

•  Some are designed to support multiple OS
–  E.g., DOS FDISK partitions, and VM/370 mini-disks

•  Important features for supporting multiple OS's
–  Must be possible to boot from any partition
–  Must be possible to keep OS A out of OS B's partition

•  There may be hierarchical partitioning
–  E.g., multiple UNIX slices within an FDISK partition

Lecture 14
Page 33

CS 111
Spring 2015

Example: FDISK Disk Partitioning

Disk
bootstrap
program

Physical sector 0 (Master Boot Record)

149:7:63
99:7:63

199:7:63
100:1:00
00:01:00

150:1:00
DOS
linux

Solaris
0 0 0

0
1

0
0

end start type A
FDISK
partition

table

linux
partition

DOS
partition

Solaris
partition

PBR

PBR

PBR

Note that the first sector of each logical
partition also contains a Partition Boot Record,
which will be used to boot the operating system
for that partition.

99:7:63 00:01:00
149:7:63 100:1:00
199:7:63 150:1:00

Lecture 14
Page 34

CS 111
Spring 2015

Master Boot Records and
Partition Boot Records

•  Given the Master Boot Record bootstrap, why
another Partition Boot Record bootstrap per partition?

•  The bootstrap in the MBR typically only gives the
user the option of choosing a partition to boot from
–  And then loads the boot block from the selected (or default)

partition
•  The PBR bootstrap in the selected partition knows

how to traverse the file system in that partition
–  And how to interpret the load modules stored in it

Lecture 14
Page 35

CS 111
Spring 2015

Working With Multiple File
Systems

•  One machine can have multiple independent file
systems
–  Each handling its own disk layout, free space, and other

organizational issues

•  How will the overall system work with those several
file systems?

•  Treat them as totally independent namespaces?
•  Or somehow stitch the separate namespaces together?
•  Key questions:

1.  How does an application specify which file it wants?
2.  How does the OS find that file?

Lecture 14
Page 36

CS 111
Spring 2015

Finding Files With Multiple File
Systems

•  Finding files is easy if there is only one file system
–  Any file we want must be on that one file system
–  Directories enable us to name files within a file system

•  What if there are multiple file systems available?
–  Somehow, we have to say which one our file is on

•  How do we specify which file system to use?
–  One way or another, it must be part of the file name
–  It may be implicit (e.g., same as current directory)
–  Or explicit (e.g., every name specifies it)
–  Regardless, we need some way of specifying which file

system to look into for a given file name

Lecture 14
Page 37

CS 111
Spring 2015

Options for Naming With
Multiple Partitions

•  Could specify the physical device it resides on
– E.g., /devices/pci/pci1000,4/disk/lun1/partition2

•  that would get old real quick

•  Could assign logical names to our partitions
– E.g., “A:”, “C:”, “D:”

•  You only have to think physical when you set them up
•  But you still have to be aware multiple volumes exist

•  Could weave a multi-file-system name space
– E.g., Unix mounts

Lecture 14
Page 38

CS 111
Spring 2015

Unix File System Mounts
•  Goal:

– To make many file systems appear to be one giant
one

– Users need not be aware of file system boundaries

•  Mechanism:
– Mount device on directory
– Creates a warp from the named directory to the

top of the file system on the specified device
– Any file name beneath that directory is interpreted

relative to the root of the mounted file system

Lecture 14
Page 39

CS 111
Spring 2015

Unix Mounted File System
Example

file system 4 file system 2 file system 3

root file system

/bin /opt /export

user1 user2

mount filesystem2 on /export/user1
mount filesystem3 on /export/user2
mount filesystem4 on /opt

Lecture 14
Page 40

CS 111
Spring 2015

How Does This Actually Work?

•  Mark the directory that was mounted on
•  When file system opens that directory, don’t

treat it as an ordinary directory
–  Instead, consult a table of mounts to figure out

where the root of the new file system is
•  Go to that device and open its root directory
•  And proceed from there

Lecture 14
Page 41

CS 111
Spring 2015

What Happened To the Real
Directory?

•  You can mount on top of any directory
– Not just in some special places in the file hierarchy
– Not even just empty directories

•  Did the mount wipe out the contents of the
directory mounted on?

•  No, it just hid them
– Since traversals jump to a new file system, rather

than reading the directory contents
•  It’s all still there when you unmount

Lecture 14
Page 42

CS 111
Spring 2015

File System Performance Issues

•  Key factors in file system performance
– Head motion
– Block size

•  Possible optimizations for file systems
– Read-ahead
– Delayed writes
– Caching (general and special purpose)

Lecture 14
Page 43

CS 111
Spring 2015

Head Motion and File System
Performance

•  File system organization affects head motion
–  If blocks in a single file are spread across the disk
–  If files are spread randomly across the disk
–  If files and “meta-data” are widely separated

•  All files are not used equally often
– 5% of the files account for 90% of disk accesses
– File locality should translate into head cylinder

locality
•  So how can we reduce head motion?

Lecture 14
Page 44

CS 111
Spring 2015

Ways To Reduce Head Motion
•  Keep blocks of a file together

–  Easiest to do on original write
–  Try to allocate each new block close to the last one
–  Especially keep them in the same cylinder

•  Keep metadata close to files
–  Again, easiest to do at creation time

•  Keep files in the same directory close together
–  On the assumption directory implies locality of reference

•  If performing compaction, move popular files close
together

Lecture 14
Page 45

CS 111
Spring 2015

File System Performance and
Block Size

•  Larger block sizes result in efficient transfers
–  DMA is very fast, once it gets started
–  Per request set-up and head-motion is substantial

•  They also result in internal fragmentation
–  Expected waste: ½ block per file

•  As disks get larger, speed outweighs wasted space
–  File systems support ever-larger block sizes

•  Clever schemes can reduce fragmentation
–  E.g., use smaller block size for the last block of a file

Lecture 14
Page 46

CS 111
Spring 2015

Read Early, Write Late

•  If we read blocks before we actually need
them, we don’t have to wait for them
– But how can we know which blocks to read early?

•  If we write blocks long after we told the
application it was done, we don’t have to wait
– But are there bad consequences of delaying those

writes?
•  Some optimizations depend on good answers

to these questions

Lecture 14
Page 47

CS 111
Spring 2015

Read-Ahead
•  Request blocks from the disk before any

process asked for them
•  Reduces process wait time
•  When does it make sense?

– When client specifically requests sequential access
– When client seems to be reading sequentially

•  What are the risks?
– May waste disk access time reading unwanted

blocks
– May waste buffer space on unneeded blocks

Lecture 14
Page 48

CS 111
Spring 2015

Delayed Writes
•  Don’t wait for disk write to complete to tell

application it can proceed
•  Written block is in a buffer in memory
•  Wait until it’s “convenient” to write it to disk

–  Handle reads from in-memory buffer
•  Benefits:

–  Applications don’t wait for disk writes
–  Writes to disk can be optimally ordered
–  If file is deleted soon, may never need to perform disk I/O

•  Potential problems:
–  Lost writes when system crashes
–  Buffers holding delayed writes can’t be re-used

Lecture 14
Page 49

CS 111
Spring 2015

Caching and Performance

•  Big performance wins are possible if caches
work well
– They typically contain the block you’re looking for

•  Should we have one big LRU cache for all
purposes?

•  Should we have some special-purpose caches?
–  If so, is LRU right for them?

Lecture 14
Page 50

CS 111
Spring 2015

Common Types of Disk Caching
•  General block caching

– Popular files that are read frequently
– Files that are written and then promptly re-read
– Provides buffers for read-ahead and deferred write

•  Special purpose caches
– Directory caches speed up searches of same dirs
–  Inode caches speed up re-uses of same file

•  Special purpose caches are more complex
– But they often work much better

Lecture 14
Page 51

CS 111
Spring 2015

Performance Gain For Different
Types of Caches

General Block Cache

Special Purpose Cache

Cache size (bytes)

 Performance

Lecture 14
Page 52

CS 111
Spring 2015

Why Are Special Purpose
Caches More Effective?

•  They match caching granularity to their need
–  E.g., cache inodes or directory entries
–  Rather than full blocks

•  Why does that help?
•  Consider an example:

–  A block might contain 100 directory entries, only four of
which are regularly used

–  Caching the other 96 as part of the block is a waste of
cache space

–  Caching 4 entries allows more popular entries to be cached
–  Tending to lead to higher hit ratios

Lecture 14
Page 53

CS 111
Spring 2015

Remote File System Examples

•  Common Internet File System (classic client/
server)

•  Network File System (peer-to-peer file
sharing)

•  Hyper-Text Transfer Protocol (a different
approach)

Lecture 14
Page 54

CS 111
Spring 2015

Common Internet File System

•  Originally a proprietary Microsoft Protocol
– Newer versions (CIFS 1.0) are IETF standard

•  Designed to enable “work group” computing
– Group of PCs sharing same data, printers
– Any PC can export its resources to the group
– Work group is the union of those resources

•  Designed for PC clients and NT servers
– Originally designed for FAT and NT file systems
– Now supports clients and servers of all types

Lecture 14
Page 55

CS 111
Spring 2015

CIFS Architecture

•  Standard remote file access architecture
•  State-full per-user client/server sessions

–  Password or challenge/response authentication
–  Server tracks open files, offsets, updates
–  Makes server fail-over much more difficult

•  Opportunistic locking
–  Client can cache file if nobody else using/writing it
–  Otherwise all reads/writes must be synchronous

•  Servers regularly advertise what they export
–  Enabling clients to “browse” the workgroup

Lecture 14
Page 56

CS 111
Spring 2015

Benefits of Opportunistic Locking

•  A big performance win
•  Getting permission from server before each

write is a huge expense
–  In both time and server loading

•  If no conflicting file use 99.99% of the time,
opportunistic locks greatly reduce overhead

•  When they can’t be used, CIFS does provide
correct centralized serialization

Lecture 14
Page 57

CS 111
Spring 2015

CIFS/SMB Protocol
•  SMB (old, proprietary) ran over NetBIOS

– Provided transport, reliable delivery, sessions,
request/response, name service

•  CIFS (new, IETF), uses TCP and DNS
•  Scope

– Session authentication
– File and directory access and access control
– File and record-level locking (opportunistic)
– File and directory change notification
– Remote printing

Lecture 14
Page 58

CS 111
Spring 2015

CIFS/SMB Pros and Cons

•  Performance/Scalability
–  Opportunistic locks enable good performance
–  Otherwise, forced synchronous I/O is slow

•  Transparency
–  Very good, especially the global name space

•  Conflict Prevention
–  File/record locking and synchronous writes work well

•  Robustness
–  State-full servers make seamless fail-over impossible

Lecture 14
Page 59

CS 111
Spring 2015

The Network File System (NFS)
•  Transparent, heterogeneous file system sharing

– Local and remote files are indistinguishable

•  Peer-to-peer and client-server sharing
– Disk-full clients can export file systems to others
– Able to support diskless (or dataless) clients
– Minimal client-side administration

•  High efficiency and high availability
– Read performance competitive with local disks
– Scalable to huge numbers of clients
– Seamless fail-over for all readers and some writers

Lecture 14
Page 60

CS 111
Spring 2015

The NFS Protocol
•  Relies on idempotent operations and stateless server

–  Built on top of a remote procedure call protocol
–  With eXternal Data Representation, server binding
–  Versions of RPC over both TCP or UDP
–  Optional encryption (may be provided at lower level)

•  Scope – basic file operations only
–  Lookup (open), read, write, read-directory, stat
–  Supports client or server-side authentication
–  Supports client-side caching of file contents
–  Locking and auto-mounting done with another protocol

Lecture 14
Page 61

CS 111
Spring 2015

NFS Authentication
•  How can we trust NSF clients to authenticate

themselves?
•  NFS not not designed for direct use by user

applications
•  It permits one operating system instance to

access files belonging to another OS instance
•  If we trust the remote OS to see the files, might

as well trust it to authenticate the user
•  Obviously, don’t use NFS if you don’t trust the

remote OS . . .

Lecture 14
Page 62

CS 111
Spring 2015

NFS Replication
•  NFS file systems can be replicated

–  Improves read performance and availability
– Only one replica can be written to

•  Client-side agent (in OS) handles fail-over
– Detects server failure, rebinds to new server

•  Limited transparency for server failures
– Most readers will not notice failure (only brief

delay)
– Users of changed files may get “stale handle” error
– Active locks may have to be re-obtained

Lecture 14
Page 63

CS 111
Spring 2015

NFS and Updates
•  An NFS server does not prevent conflicting updates

–  As with local file systems, this is application’s job
•  Auxiliary server/protocol for file and record locking

–  All leases are maintained on the lock server
–  All lock/unlock operations handed by lock server

•  Client/network failure handling
–  Server can break locks if client dies or times out
–  “Stale-handle” errors inform client of broken lock
–  Client response to these errors are application specific

•  Lock server failure handling is very complex

Lecture 14
Page 64

CS 111
Spring 2015

NFS Pros and Cons
•  Transparency/Heterogeneity

– Local/remote transparency is excellent
– NFS works with all major ISAs, OSs, and FSs

•  Performance
– Read performance may be better than local disk
– Replication option for scalable read bandwidth
– Write performance slower than local disk

•  Robustness
– Transparent fail-over capability for readers
– Recoverable fail-over capability for writers

Lecture 14
Page 65

CS 111
Spring 2015

NFS Vs. CIFS
•  Functionality

– NFS is much more portable (platforms, OS, FS)
– CIFS provides much better write serialization

•  Performance and robustness
– NFS provides much greater read scalability
– NFS has much better fail-over characteristics

•  Security
– NFS supports more security models
– CIFS gives the server better authorization control

Lecture 14
Page 66

CS 111
Spring 2015

The Andrew File System

•  AFS
•  Developed at CMU
•  Designed originally to support student and

faculty use
– Generally, large numbers of users of a single

organization
•  Uses a client/server model
•  Makes use of whole-file caching

Lecture 14
Page 67

CS 111
Spring 2015

AFS Basics
•  Designed for scalability, performance

– Large numbers of clients and very few servers
– Needed performance of local file systems
– Very low per-client load imposed on servers
– No administration or back-up for client disks

•  Master files reside on a file server
– Local file system is used as a local cache
– Local reads satisfied from cache when possible
– Files are only read from server if not in cache

•  Simple synchronization of updates

Lecture 14
Page 68

CS 111
Spring 2015

AFS Architecture

EX
T3 FS

block I/O

A
ndrew

 R
elay

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

remote server
file system

client server

TCP

block I/O

EX
T3 FS

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

TCP

Andrew Agent

local FS
(cache only)

Andrew cache
mangaer

Lecture 14
Page 69

CS 111
Spring 2015

AFS Replication
•  One replica at server, possibly many at clients
•  Check for local copies in cache at open time

–  If no local copy exists, fetch it from server
–  If local copy exists, see if it is still up-to-date

•  Compare file size and modification time with server

–  Optimizations reduce overhead of checking
•  Subscribe/broadcast change notifications
•  Time-to-live on cached file attributes and contents

•  Send updates to server when file is closed
–  Wait for all changes to be completed
–  File may be deleted before it is closed

•  E.g., temporary files that servers need not know about

Lecture 14
Page 70

CS 111
Spring 2015

AFS Reconciliation
•  Client sends updates to server when local copy

closed
•  Server notifies all clients of change

– Warns them to invalidate their local copy
– Warns them of potential write conflicts

•  Server supports only advisory file locking
– Distributed file locking is extremely complex

•  Clients are expected to handle conflicts
– Noticing updates to files open for write access
– Notification/reconciliation strategy is unspecified

Lecture 14
Page 71

CS 111
Spring 2015

AFS Pros and Cons
•  Performance and Scalability

–  All file access by user/applications is local
–  Update checking (with time-to-live) is relatively cheap
–  Both fetch and update propagation are very efficient
–  Minimal per-client server load (once cache filled)

•  Robustness
–  No server fail-over, but have local copies of most files

•  Transparency
–  Mostly perfect - all file access operations are local
–  Pray that we don't have any update conflicts

Lecture 14
Page 72

CS 111
Spring 2015

AFS vs. NFS

•  Basic designs
–  Both designed for continuous connection client/server
–  NFS supports diskless clients without local file systems

•  Performance
–  AFS generates much less network traffic, server load
–  They yield similar client response times

•  Ease of use
–  NFS provides for better transparency
–  NFS has enforced locking and limited fail-over

•  NFS requires more support in operating system

Lecture 14
Page 73

CS 111
Spring 2015

HTTP
•  A different approach, for a different purpose
•  Stateless protocol with idempotent operations

–  Implemented atop TCP (or other reliable transport)
–  Whole file transport (not remote data access)

•  get file, put file, delete file, post form-contents

–  Anonymous file access, but secure (SSL) transfers
–  Keep-alive sessions (for performance only)

•  A truly global file namespace (URLs)
–  Client and in-network caching to reduce server load
–  A wide range of client redirection options

Lecture 14
Page 74

CS 111
Spring 2015

HTTP Architecture
•  Not a traditional remote file access mechanism
•  We do not try to make it look like local file access

–  Apps are written to HTTP or other web-aware APIs
–  No interception and translation of local file operations
–  But URLs can be constructed for local files

•  Server is entirely implemented in user-mode
–  Authentication via SSL or higher level dialogs
–  All data is assumed readable by all clients

•  HTTP servers provide more than remote file access
–  POST operations invoke server-side processing

•  No attempt to provide write locking or serialization

Lecture 14
Page 75

CS 111
Spring 2015

HTTP Pros and Cons
•  Transparency

–  Universal namespace for heterogeneous data
–  Requires use of new APIs and namespace
–  No attempt at compatibility with old semantics

•  Performance
–  Simple implementations, efficient transport
–  Unlimited read throughput scalability
–  Excellent caching and load balancing

•  Robustness
–  Automatic retrys, seamless fail-over, easy redirects
–  Not much attempt to handle issues related to writes

Lecture 14
Page 76

CS 111
Spring 2015

HTTP vs. NFS/CIFS

•  The file model and services provided by HTTP are
much weaker than those provided by CIFS or NFS

•  So why would anyone choose to use HTTP for
remote file access?

•  It’s easy to use, provides excellent performance,
scalability and availability, and is ubiquitous

•  If I don’t need per-user authorization, walk-able name
spaces, and synchronized updates,
–  Why pay the costs of more elaborate protocols?
–  If I do need, them, though, . . .

Lecture 14
Page 77

CS 111
Spring 2015

Conclusion
•  Be clear about your remote file system requirements

–  Different priorities lead to different tradeoffs & designs
•  The remote file access protocol is the key

–  It determines the performance and robustness
–  It imposes or presumes security mechanisms
–  It is designed around synchronization & fail-over

mechanisms

•  Stateless protocols with idempotent ops are limiting
–  But very rewarding if you can accept those limitations

•  Read-only content is a pleasure to work with
–  Synchronized and replicated updates are very hard

