-

File Systems: Naming and
Performance
CS 111
Operating Systems
Peter Rether

\

/ [Outline} \

* File naming and directories

* File volumes

* File system performance issues

* File system reliability

CS 111 Lecture 14
Spring 2015 Page 2

/ [Naming in File Systems} \

 Each file needs some kind of handle to allow
us to refer to 1t

* Low level names (like inode numbers) aren’t
usable by people or even programs

* We need a better way to name our files
— User friendly

— Allowing for easy organization of large numbers of
files

— Readily realizable 1n file systems /

CS 111 Lecture 14
Spring 2015 Page 3

/ File Names and Binding \

* File system knows files by descriptor structures
* We must provide more useful names for users

* The file system must handle name-to-file mapping
— Associating names with new files
— Finding the underlying representation for a given name
— Changing names associated with existing files

— Allowing users to organize files using names

* Name spaces — the total collection of all names
known by some naming mechanism

— Sometimes all names that could be created by the)
., mechanism Lecture 14

Spring 2015 Page 4

/" Name Space Structure ~\

* There are many ways to structure a name space
— Flat name spaces
* All names exist in a single level

— Hierarchical name spaces
* A graph approach
* Can be a strict tree

* Or a more general graph (usually directed)

* Are all files on the machine under the same
name structure?

* Or are there several independent name spaces? /

CS 111 Lecture 14
Spring 2015 Page 5

/ Some Issues in Name \
Space Structure

* How many files can have the same name?

— One per file system ... flat name spaces
— One per directory ... hierarchical name spaces

* How many different names can one file have?
— A single “true name”
— Only one “true name”, but aliases are allowed
— Arbitrarily many

— What’s different about “true names”?

Do different names have different characteristics?

— Does deleting one name make others disappear too? /

s 77 Do all names see the same access permissions? Lecture 14
Spring 2015 Page 6

/ Flat Name Spaces \

* There 1s one naming context per file system

— All file names must be unique within that context

* All files have exactly one true name

— These names are probably very long

* File names may have some structure

Rl G s il)
— This structure may be used to optimize searches

— The structure 1s very useful to users

— But the structure has no meaning to the file system
o cslﬁ{o longer a widely used approach e

Spring 2015 Page 7

/A Sample Flat File System - MVS\

* A file system used in IBM mainframes in 60s and 70s

Each file has a unique name

— File name (usually very long) stored in the file's descriptor
* There 1s one master catalog file per volume
— Lists names and descriptor locations for every file

— Used to speed up searches

* The catalog is not critical
— It can be deleted and recreated at any time
— Files can be found without catalog ... 1t just takes longer

\ — Some files are not listed in catalog, for secrecy /

(15 : 29
«sp; ° They cannot be found by “browsing” the name space Lecture 14
Spring 2015 Page 8

/ MVS Names and Catalogs \

Volume Catalog

name DSCB
mark.filel.txt 101
mark.file2.txt 102
mark.file3.txt 103

DSCB #101 typel DSCB #102 typel DSCB #103 type 1

CS 111 Lecture 14
Spring 2015 Page 9

/ Hierarchical Name Spaces \

* Essentially a graphical organization

* Typically organized using directories
— A file containing references to other files
— A non-leaf node in the graph

— It can be used as a naming context
* Each process has a current directory
* File names are interpreted relative to that directory

 Nested directories can form a tree

— A file name describes a path through that tree

— The directory tree expands from a “root” node
* A name beginning from root 1s called “fully qualified”

— May actually form a directed graph
* If files are allowed to have multiple names /

CS 111 Lecture 14
Spring 2015 Page 10

/ A Rooted Directory Tree \

root
user 1 user 2 user 3

'

file a dir a file b file ¢ dir a

(/user 1/file a) (/user 1/dir a) (/user 2/file b) (/user 3/file ¢) (/user_3/dir_a)
ﬁle_a file b
(/user l/dir a/file a) (Juser 3/dir a/file b)/
CS 111 Lecture 14

Spring 2015 Page 11

/ Directories Are Files \

* Directories are a special type of file

— Used by OS to map file names into the associated files

* A directory contains multiple directory entries
— Each directory entry describes one file and its name

* User applications are allowed to read directories
— To get information about each file

— To find out what files exist

* Usually only the OS 1s allowed to write them

— Users can cause writes through special system calls
— The file system depends on the integrity of directories /

CS 111 Lecture 14
Spring 2015 Page 12

/ Traversing the Directory Tree \

* Some entries in directories point to child
directories

— Describing a lower level in the hierarchy

* To name a file at that level, name the parent
directory and the child directory, then the file

— With some kind of delimiter separating the file
name components

* Moving up the hierarchy 1s often useful

— Directories usually have special entry for parent
— Many file systems use the name “..” for that /

CS 111 Lecture 14
Spring 2015 Page 13

/ Example: The DOS File System\

* File & directory names separated by back-slashes
— E.g.,, \user 3\dir a\file b
* Directory entries are the file descriptors

— As such, only one entry can refer to a particular file

* Contents of a DOS directory entry
— Name (relative to this directory)
— Type (ordinary file, directory, ...)
— Location of first cluster of file

— Length of file in bytes
— Other privacy and protection attributes /

CS 111 Lecture 14
Spring 2015 Page 14

/ DOS File System Directories \

Root directory, starting in cluster #1

file name type length 15t cluster
user 1 DIR | 256 bytes 9
user 2 DIR | 512 bytes 31
user 3 DIR | 284 bytes 114
— Directory /user 3, starting in cluster #114
file name type length 15t cluster
DIR 256 bytes 1
dir a DIR 512 bytes 62
file c FILE | 1824 bytes 102 /
CS 111 Lecture 14
Page 15

Spring 2015

/ File Names Vs. Path Names \

* In some flat name space systems files had “true
names”
— Only one possible name for a file,

— Kept in a record somewhere

* In DOS, a file 1s described by a directory entry

— Local name is specified in that directory entry
— Fully qualified name 1s the path to that directory entry

* E.g., start from root, to user 3, to dir_a, to file b

— But DOS files still have only one name

 What if files had no intrinsic names of their own?

— All names came from directory paths /
CS 111 Lecture 14

Spring 2015 Page 16

/ Example: Unix Directories \

* A file system that allows multiple file names

— So there 1s no single “true” file name, unlike DOS

* File names separated by slashes
— E.g., /user 3/dir a/file b

* The actual file descriptors are the inodes
— Directory entries only point to inodes

— Association of a name with an 1node is called a hard link
— Multiple directory entries can point to the same inode

* Contents of a Unix directory entry
— Name (relative to this directory) /
\ - — Pointer to the inode of the associated file

Lecture 14
Spring 2015 Page 17

/ Unix Directories \

Root directory, inode #1
inode # file name

But what’s this “.”
entry?

It’s a directory entry

that points to the

directory itself!
We’ll see why that’s
useful later

Directory /user 3,inode #114 «+———

inode # file name

[T

Here’s a “..” entry,
pointing to the parent

directory /

CS 111 Lecture 14
Spring 2015 Page 18

/ Multiple File Names In Unix \

e How do links relate to files?

— They’re the names only

* All other metadata is stored in the file inode

— File owner sets file protection (e.g., read-only)

* All links provide the same access to the file

— Anyone with read access to file can create new link
— But directories are protected files too

* Not everyone has read or search access to every directory

* All links are equal

— There 1s nothing special about the first (or owner's) link /

CS 111 Lecture 14
Spring 2015 Page 19

/ [Links and De-allocation

Files exist under multiple names
What do we do 1f one name 1s removed?

If we also removed the file itself, what about
the other names?
— Do they now point to something non-existent?

The Unix solution says the file exists as long
as at least one name exists

Implying we must keep and maintain a
reference count of links

— In the file inode, not 1n a directory

CS 111

Spring 2015

\

Lecture 14
Page 20

/ Unix Hard Link Example \

Note that we now
associate names with links
rather than with files.

/user 1/file a and
/user 3/dir a/file Db

are both links to the same
1inode

/

CS 111 Lecture 14
Spring 2015 Page 21

ﬁ{ard Links, Directories, and Files\

inode #1, root directory

mode #9, directory <

— 1node #114, directory

— inode #29, file <

CS 111 Lecture 14

/

Spring 2015 Page 22

/ A Potential Problem With \
Hard Links

* Hard links are essentially edges in the graph

* Those edges can lead backwards to other graph
nodes

* Might that not create cycles in the graph?

 If 1t does, what happens when we delete one of
the links?

* Might we not disconnect the graph?

CS 111 Lecture 14
Spring 2015 Page 23

/ [llustrating the Problem \

The link count
here 1s still 1,

SO we can’t
delete the file

Now let’s add a link

And now let’s
delete a link

But our graph
has become
disconnected!

/

CS 111 Lecture 14
Spring 2015 Page 24

/ Solving the Problem \

* Only directories contain links
— Not regular files

* So if a link can’t point to a directory, there
can’t be a loop

* In which case, there’s no problem with
deletions

* This 1s the Unix solution: no hard links to
directories
— The *“.” and “..” links are harmless exceptions)

CS 111 Lecture 14
Spring 2015 Page 25

/ Symbolic Links \

* A different way of giving files multiple names

* Symbolic links implemented as a special type of file
— An indirect reference to some other file
— Contents is a path name to another file

* OS recognizes symbolic links

— Automatically opens associated file instead

— If file 1s inaccessible or non-existent, the open fails
* Symbolic link 1s not a reference to the inode

— Symbolic links will not prevent deletion

\ — Do not guarantee ability to follow the specified path /

— Internet URLs are similar to symbolic links .
CS 111 ecture 14
Spring 2015 Page 26

/ Symbolic Link Example \

file b

" (/user 1/file a)

The link count for
this file 1s still 1,

though A/

CS 111 Lecture 14
Spring 2015 Page 27

/ Symbolic Links, Files, and \
Directories

inode #1, root directory

inode #9, directory <

\
\ N — 1node #114, directory

inode #29, fileM N

\
Link count inode #46, symlink +—

CS 111 Lecture 14
Spring 2015 Page 28

/ What About Looping Problems?\

* Do symbolic links have the potential to introduce
loops 1nto a pathname?

— Yes, if the target of the symbolic link includes the symbolic
link 1tself

— Or some transitive combination of symbolic links

* How can such loops be detected?

— Could keep a list of every inode we have visited in the
interpretation of this path

— But simpler to limit the number of directory searches
allowed 1n the interpretation of a single path name

— E.g., after 256 searches, just fail

— The usual solution for Unix-style systems /
CS 111 Lecture 14

Spring 2015 Page 29

/[F 1le Systems and Multiple Disks}\

* You can (and often do) attach more than one disk to a
machine

Would i1t make sense to have a single file system span
the several disks?

— Considering the kinds of disk specific information a file
system keeps

— Like cylinder information

Usually more trouble than 1t’s worth
— With the exception of RAID . . .

* Instead, put separate file system on each disk

e Or several file systems on one disk /

CS 111 Lecture 14
Spring 2015 Page 30

ﬁow About the Other Way Around%

* Multiple file systems on one disk

* Divide physical disk into multiple logical disks
— Often implemented within disk device drivers
— Rest of system sees them as separate disk drives

* Typical motivations
— Permit multiple OS to coexist on a single disk
* E.g., a notebook that can boot either Windows or Linux

— Separation for installation, back-up and recovery

* E.g., separate personal files from the installed OS file system

— Separation for free-space

s Running out of space on one file system doesn't affect others

Spring 2015

/

Lecture 14
Page 31

/ Disk Partitioning Mechanisms \

* Some are designed for use by a single OS
— E.g., Unix slices (one file system per slice)

* Some are designed to support multiple OS
— E.g., DOS FDISK partitions, and VM/370 mini-disks

* Important features for supporting multiple OS's
— Must be possible to boot from any partition
— Must be possible to keep OS A out of OS B's partition
* There may be hierarchical partitioning
— E.g., multiple UNIX slices within an FDISK partition

/

CS 111 Lecture 14
Spring 2015 Page 32

/Example: FDISK Disk Partitioning \

Physical sector 0 (Master Boot Record)

Disk
bootstrap
program

start end type

FDISK
partition
table

CS 111
Spring 2015

00:01:00

99:7:63

linux

100:1:00

149:7:63

DOS

150:1:00

199:7:63

Solaris

o |lo|o|— (>

0

0

0

Note that the first sector of each logical
partition also contains a Partition Boot Record,
which will be used to boot the operating system

for that partition.

/

Lecture 14
Page 33

/ Master Boot Records and \

Partition Boot Records

* Given the Master Boot Record bootstrap, why
another Partition Boot Record bootstrap per partition?

* The bootstrap in the MBR typically only gives the
user the option of choosing a partition to boot from
— And then loads the boot block from the selected (or default)
partition
* The PBR bootstrap in the selected partition knows
how to traverse the file system in that partition
— And how to interpret the load modules stored 1n 1t

/

Lecture 14

CS 111
Page 34

Spring 2015

/ Working With Multiple File \
Systems

* One machine can have multiple independent file
systems

— Each handling its own disk layout, free space, and other
organizational 1ssues

How will the overall system work with those several
file systems?

* Treat them as totally independent namespaces?
* Or somehow stitch the separate namespaces together?
* Key questions:

1. How does an application specify which file it wants? /
4 How does the OS find that file? Lecture 14

Spring 2015 Page 35

/ Finding Files With Multiple File ™\
Systems

* Finding files 1s easy if there 1s only one file system
— Any file we want must be on that one file system

— Directories enable us to name files within a file system

* What if there are multiple file systems available?

— Somehow, we have to say which one our file 1s on

* How do we specify which file system to use?
— One way or another, it must be part of the file name
— It may be implicit (e.g., same as current directory)

— Or explicit (e.g., every name specifies it)

— Regardless, we need some way of specifying which file /

cs11 System to look into for a given file name Lecture 14
Spring 2015 Page 36

/" Options for Naming With ™\

Multiple Partitions
* Could specity the physical device it resides on

—E.g., /devices/pci/pcil000,4/disk/lunl/partition?
* that would get old real quick
* Could assign logical names to our partitions
—E.g., “A:”, “C.”, “D.”
* You only have to think physical when you set them up
* But you still have to be aware multiple volumes exist

* Could weave a multi-file-system name space

— E.g., Unix mounts Y,

CS 111 Lecture 14
Spring 2015 Page 37

/ Unix File System Mounts \
* Goal:

— To make many file systems appear to be one giant
one

— Users need not be aware of file system boundaries

e Mechanism:

— Mount device on directory

— Creates a warp from the named directory to the
top of the file system on the specified device

— Any file name beneath that directory 1s interpreted
relative to the root of the mounted file system

CS 111 Lecture 14
Spring 2015 Page 38

/ Unix Mounted File System \
Example

root file system

mount filesystem2 on /export/userl
mount filesystem3 on /export/user2

mount filesystem4 on /opt AWA /opt /bin

userl user2

I I I

i file system 2 file system 3 file system 4 | oo 14

Spring 2015 Page 39

/ How Does This Actually Work?\

* Mark the directory that was mounted on

* When file system opens that directory, don’t
treat 1t as an ordinary directory

— Instead, consult a table of mounts to figure out
where the root of the new file system 1s

* (o to that device and open its root directory
* And proceed from there

CS 111 Lecture 14
Spring 2015 Page 40

/" What Happened To the Real ™\

Directory?
* You can mount on top of any directory

— Not just 1n some special places 1n the file hierarchy
— Not even just empty directories

* Did the mount wipe out the contents of the
directory mounted on?

* No, it just hid them

— Since traversals jump to a new file system, rather
than reading the directory contents

\- It’s all still there when you unmount /

CS 111 Lecture 14
Spring 2015 Page 41

/[File System Performance Issues}\

* Key factors 1n file system performance
— Head motion

— Block size

* Possible optimizations for file systems
— Read-ahead
— Delayed writes

— Caching (general and special purpose)

CS 111

Spring 2015

Lecture 14
Page 42

/~ Head Motion and File System

Performance
* File system organization affects head motion

— If blocks 1n a single file are spread across the disk
— If files are spread randomly across the disk
— If files and “meta-data” are widely separated

* All files are not used equally often
— 5% of the files account for 90% of disk accesses

— File locality should translate into head cylinder
locality

e So how can we reduce head motion?)

CS 111 Lecture 14
Spring 2015 Page 43

/ Ways To Reduce Head Motion \

* Keep blocks of a file together
— Easiest to do on original write
— Try to allocate each new block close to the last one
— Especially keep them 1n the same cylinder
* Keep metadata close to files
— Again, easiest to do at creation time
* Keep files in the same directory close together
— On the assumption directory implies locality of reference

* If performing compaction, move popular files close
together

CS 111
Spring 2015

/

Lecture 14
Page 44

/~ File System Performance and ™\
Block Size

Larger block sizes result 1n efficient transfers

— DMA 1s very fast, once 1t gets started
— Per request set-up and head-motion 1s substantial

They also result in internal fragmentation
— Expected waste: Y2 block per file

As disks get larger, speed outweighs wasted space

— File systems support ever-larger block sizes

* Clever schemes can reduce fragmentation

— E.g., use smaller block size for the last block of a file

/

CS 111 Lecture 14
Spring 2015 Page 45

/" Read Early, Write Late ~ \

 If we read blocks before we actually need
them, we don’t have to wait for them

— But how can we know which blocks to read early?

* If we write blocks long after we told the
application it was done, we don’t have to wait

— But are there bad consequences of delaying those
writes?

* Some optimizations depend on good answers
to these questions /

CS 111 Lecture 14
Spring 2015 Page 46

/ Read-Ahead \

* Request blocks from the disk before any
process asked for them

* Reduces process wait time

* When does 1t make sense?
— When client specifically requests sequential access
— When client seems to be reading sequentially

e What are the risks?

— May waste disk access time reading unwanted
blocks

— May waste buffer space on unneeded blocks .
CS 111 ecture 14

Spring 2015 Page 47

Delayed Writes \

* Don’t wait for disk write to complete to tell
application it can proceed

Written block 1s 1n a buffer in memory

o Wait until it’s “convenient” to write 1t to disk
— Handle reads from in-memory buffer
 Benefits:

— Applications don’t wait for disk writes
— Writes to disk can be optimally ordered
— If file 1s deleted soon, may never need to perform disk I/O

Potential problems:

— Lost writes when system crashes /

s r Buffers holding delayed writes can’t be re-used Lecture 14
Spring 2015 Page 48

__

__

* Big performance wins are possible if caches
work well

* Should we have one big LRU cache for all
purposes?

— If so, 1s LRU right for them?

CS 111

— They typically contain the block you’re looking for

* Should we have some special-purpose caches?

Spring 2015

Lecture 14
Page 49

/Common Types of Disk Caching\

* General block caching
— Popular files that are read frequently
— Files that are written and then promptly re-read
— Provides buffers for read-ahead and deferred write

* Special purpose caches
— Directory caches speed up searches of same dirs

— Inode caches speed up re-uses of same file

* Special purpose caches are more complex

— But they often work much better /

CS 111 Lecture 14
Spring 2015 Page 50

/Performance Gain For Different\
Performance Types of Caches

Special Purpose Cache

General Block Cache

Cs 111 Cache size (bytes) Lecture 14
Spring 2015 ~ age

Why Are Special Purpose
Caches More Effective?

* They match caching granularity to their need

— E.g., cache modes or directory entries
— Rather than full blocks

* Why does that help?

* Consider an example:

— A block might contain 100 directory entries, only four of
which are regularly used

— Caching the other 96 as part of the block 1s a waste of
cache space

— Caching 4 entries allows more popular entries to be cached

— Tending to lead to higher hit ratios /

CS 111 Lecture 14
Spring 2015 Page 52

/ [Remote File System ExamplesJ\

* Common Internet File System (classic client/
Server)

* Network File System (peer-to-peer file
sharing)

* Hyper-Text Transfer Protocol (a different
approach)

CS 111 Lecture 14
Spring 2015 Page 53

__

__

* Originally a proprietary Microsofit Protocol
— Newer versions (CIFS 1.0) are IETF standard

* Designed to enable “work group” computing
— Group of PCs sharing same data, printers
— Any PC can export its resources to the group
— Work group is the union of those resources

* Designed for PC clients and NT servers

— Originally designed for FAT and NT file systems
— Now supports clients and servers of all types /

CS 111 Lec
Spring 2015 Page 54

ture 14

/ CIFS Architecture \

e Standard remote file access architecture

State-full per-user client/server sessions
— Password or challenge/response authentication
— Server tracks open files, offsets, updates

— Makes server fail-over much more difficult

* Opportunistic locking
— Client can cache file if nobody else using/writing it
— Otherwise all reads/writes must be synchronous

* Servers regularly advertise what they export

— Enabling clients to “browse’ the workgroup /

CS 111 Lecture 14
Spring 2015 Page 55

/Beneﬁts of Opportunistic Locking\

* A big performance win

* Getting permission from server before each
write 1s a huge expense
— In both time and server loading

* If no conflicting file use 99.99% of the time,
opportunistic locks greatly reduce overhead

* When they can’t be used, CIFS does provide
correct centralized serialization

CS 111 Lecture 14
Spring 2015 Page 56

/ CIFS/SMB Protocol \
* SMB (old, proprietary) ran over NetBIOS

— Provided transport, reliable delivery, sessions,
request/response, name service

* CIFS (new, IETF), uses TCP and DNS
* Scope
— Session authentication

— File and directory access and access control
— File and record-level locking (opportunistic)

— File and directory change notification

— Remote printing

CS 111 Lecture 14
Spring 2015 Page 57

/ CIFS/SMB Pros and Cons \

* Performance/Scalability

— Opportunistic locks enable good performance
— Otherwise, forced synchronous 1/0O 1s slow

* Transparency
— Very good, especially the global name space

 (Conflict Prevention

— File/record locking and synchronous writes work well

Robustness

— State-full servers make seamless fail-over impossible

/

CS 111 Lecture 14
Spring 2015 Page 58

/" The Network File System (NFS)

» Transparent, heterogeneous file system sharing

— Local and remote files are indistinguishable

* Peer-to-peer and client-server sharing
— Disk-full clients can export file systems to others
— Able to support diskless (or dataless) clients

— Minimal client-side administration

* High efficiency and high availability

— Read performance competitive with local disks

— Scalable to huge numbers of clients
— Seamless fail-over for all readers and some writers /

CS 111 Lecture 14
Spring 2015 Page 59

/ The NFS Protocol \

* Relies on idempotent operations and stateless server
— Built on top of a remote procedure call protocol
— With eXternal Data Representation, server binding
— Versions of RPC over both TCP or UDP
— Optional encryption (may be provided at lower level)

* Scope — basic file operations only
— Lookup (open), read, write, read-directory, stat
— Supports client or server-side authentication
— Supports client-side caching of file contents

— Locking and auto-mounting done with another protocol

/

CS 111 Lecture 14
Spring 2015 Page 60

/ NFS Authentication \

e How can we trust NSF clients to authenticate
themselves?

* NFS not not designed for direct use by user
applications

* It permits one operating system instance to
access files belonging to another OS instance

* If we trust the remote OS to see the files, might
as well trust 1t to authenticate the user

\° Obviously, don’t use NFS 1f you don’t trust the)
<temote OS . . . Leeture 14

Spring 2015 Page 61

/ NFS Replication \

* NFS file systems can be replicated
— Improves read performance and availability

— Only one replica can be written to

* Client-side agent (1n OS) handles fail-over
— Detects server failure, rebinds to new server
* Limited transparency for server failures

— Most readers will not notice failure (only brief
delay)

— Users of changed files may get “stale handle” error

/

« = Active locks may have to be re-obtained Lecture 14

Spring 2015 Page 62

/ NFS and Updates \

* An NFS server does not prevent conflicting updates
— As with local file systems, this 1s application’s job

* Auxiliary server/protocol for file and record locking
— All leases are maintained on the lock server

— All lock/unlock operations handed by lock server

* Client/network failure handling
— Server can break locks if client dies or times out
— “Stale-handle” errors inform client of broken lock

— Client response to these errors are application specific

* Lock server failure handling 1s very complex Y,

CS 111 Lecture 14
Spring 2015 Page 63

/ NFS Pros and Cons \

* Transparency/Heterogeneity
— Local/remote transparency 1s excellent
— NFS works with all major ISAs, OSs, and FSs
* Performance
— Read performance may be better than local disk
— Replication option for scalable read bandwidth

— Write performance slower than local disk

e Robustness

— Transparent fail-over capability for readers)
s Recoverable fail-over capability for writers Lecture 14

Spring 2015 Page 64

-

— NI

NES Vs. CIES

* Functionality
— NFS 1s much more portable (platforms, OS, FS)

— CIFS provides much better write serialization

e Performance and robustness

H'S provides much greater read scalability

— N

<S has much better fail-over characteristics

* Security

— NFS supports more security models

\

— CIFS gives the server better authorization control J

CS 111

Lecture 14

Spring 2015

Page 65

/" The Andrew File System

__

AFS
Developed at CMU

Designed originally to support student and
faculty use

— Generally, large numbers of users of a single
organization

Uses a client/server model

Makes use of whole-file caching

CS 111

\

Lecture 14

Spring 2015

Page 66

-

AFS Basics

* Designed for scalability, performance
— Large numbers of clients and very few servers
— Needed performance of local file systems
— Very low per-client load imposed on servers
— No administration or back-up for client disks

* Master files reside on a file server
Local file system is used as a local cache
Local reads satisfied from cache when possible

— Files are only read from server 1f not in cache

\ Simple synchronization of updates

Sp ng 2015

\

Lecture 14

Page 67

AFS Architecture

client server

Andrew cache
mangaer
A

Andrew Agent

Ke[oy maipuy

block I/0

block I/0

/

Lecture 14
Page 68

CS 111
Spring 2015

/ AFS Replication

* One replica at server, possibly many at clients

* Check for local copies 1n cache at open time
— If no local copy exists, fetch it from server
— If local copy exists, see if 1t 1s still up-to-date

* Compare file size and modification time with server

— Optimizations reduce overhead of checking
* Subscribe/broadcast change notifications

 Time-to-live on cached file attributes and contents

* Send updates to server when file 1s closed
— Wait for all changes to be completed

— File may be deleted before it 1s closed

* E.g., temporary files that servers need not know about
CS 111

\

/

Lecture 14

Spring 2015

Page 69

/ AFS Reconciliation \

* Client sends updates to server when local copy
closed

* Server notifies all clients of change
— Warns them to invalidate their local copy
— Warns them of potential write conflicts

* Server supports only advisory file locking
— Distributed file locking is extremely complex

* Clients are expected to handle conflicts

— Noticing updates to files open for write access
s i~ Notification/reconciliation strategy is unspecifiediceue 14

Spring 2015 Page 70

/ AFS Pros and Cons

* Performance and Scalability
— All file access by user/applications is local
— Update checking (with time-to-live) 1s relatively cheap
— Both fetch and update propagation are very efficient
— Minimal per-client server load (once cache filled)

* Robustness
— No server fail-over, but have local copies of most files

* Transparency

— Mostly perfect - all file access operations are local

— Pray that we don't have any update conflicts

CS 111

\

/

Lecture 14

Spring 2015

Page 71

/ AFS vs. NFS

* Basic designs
— Both designed for continuous connection client/server
— NFS supports diskless clients without local file systems
* Performance
— AFS generates much less network traffic, server load
— They yield similar client response times
* Ease of use
— NFS provides for better transparency

— NFS has enforced locking and limited fail-over

\° NFS requires more support in operating system

CS 111

\

/

Lecture 14

Spring 2015

Page 72

* A different approach, for a different purpose

* Stateless protocol with idempotent operations
— Implemented atop TCP (or other reliable transport)

— Whole file transport (not remote data access)
 get file, put file, delete file, post form-contents

— Anonymous file access, but secure (SSL) transfers
— Keep-alive sessions (for performance only)

* A truly global file namespace (URLs)

— Client and 1n-network caching to reduce server load

— A wide range of client redirection options

CS 111

Spring 2015

/

Lecture 14
Page 73

/ HTTP Architecture \

 Not a traditional remote file access mechanism

* We do not try to make 1t look like local file access
— Apps are written to HTTP or other web-aware APIs
— No interception and translation of local file operations

— But URLSs can be constructed for local files

* Server 1s entirely implemented in user-mode
— Authentication via SSL or higher level dialogs
— All data 1s assumed readable by all clients

 HTTP servers provide more than remote file access

— POST operations invoke server-side processing

-No attempt to provide write locking or serialization |,

/

re 14

Spring 2015 Page 74

/ HTTP Pros and Cons

* Transparency

— Universal namespace for heterogeneous data
— Requires use of new APIs and namespace

— No attempt at compatibility with old semantics

* Performance

— Simple implementations, efficient transport
— Unlimited read throughput scalability

— Excellent caching and load balancing

e Robustness

— Automatic retrys, seamless fail-over, easy redirects

— Not much attempt to handle issues related to writes

CS 111

Spring 2015

/

Lecture 14
Page 75

/ HTTP vs. NFS/CIFS \

* The file model and services provided by HTTP are
much weaker than those provided by CIFS or NFS

* So why would anyone choose to use HTTP for
remote file access?

* It’s easy to use, provides excellent performance,
scalability and availability, and 1s ubiquitous

* If I don’t need per-user authorization, walk-able name
spaces, and synchronized updates,

— Why pay the costs of more elaborate protocols?
— If I do need, them, though, . .. /

CS 111 Lecture 14
Spring 2015 Page 76

/ [Conclusion} \

* Be clear about your remote file system requirements

— Different priorities lead to different tradeoffs & designs
* The remote file access protocol 1s the key

— It determines the performance and robustness
— It imposes or presumes security mechanisms

— It 1s designed around synchronization & fail-over
mechanisms

* Stateless protocols with idempotent ops are limiting

— But very rewarding if you can accept those limitations

* Read-only content is a pleasure to work with
— Synchronized and replicated updates are very hard /

CS 111 Lecture 14
Spring 2015 Page 77

