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Outline 

•  File naming and directories 
•  File volumes 
•  File system performance issues 
•  File system reliability 
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Naming in File Systems  

•  Each file needs some kind of handle to allow 
us to refer to it 

•  Low level names (like inode numbers) aren’t 
usable by people or even programs 

•  We need a better way to name our files 
– User friendly 
– Allowing for easy organization of large numbers of 

files 
– Readily realizable in file systems 
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File Names and Binding 
•  File system knows files by descriptor structures 
•  We must provide more useful names for users 
•  The file system must handle name-to-file mapping 

–  Associating names with new files 
–  Finding the underlying representation for a given name 
–  Changing names associated with existing files 
–  Allowing users to organize files using names 

•  Name spaces – the total collection of all names 
known by some naming mechanism 
– Sometimes all names that could be created by the 

mechanism 
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Name Space Structure 
•  There are many ways to structure a name space 

– Flat name spaces 
•  All names exist in a single level 

– Hierarchical name spaces 
•  A graph approach 
•  Can be a strict tree 
•  Or a more general graph (usually directed) 

•  Are all files on the machine under the same 
name structure? 

•  Or are there several independent name spaces? 
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Some Issues in Name  
Space Structure 

•  How many files can have the same name? 
–  One per file system ... flat name spaces 
–  One per directory ... hierarchical name spaces 

•  How many different names can one file have? 
–  A single “true name” 
–  Only one “true name”, but aliases are allowed 
–  Arbitrarily many 
–  What’s different about “true names”? 

•  Do different names have different characteristics? 
–  Does deleting one name make others disappear too? 
–  Do all names see the same access permissions? 
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Flat Name Spaces 
•  There is one naming context per file system 

– All file names must be unique within that context 

•  All files have exactly one true name 
– These names are probably very long 

•  File names may have some structure 
– E.g., CAC101.CS111.SECTION1.SLIDES.LECTURE_13 

– This structure may be used to optimize searches 
– The structure is very useful to users 
– But the structure has no meaning to the file system 

•  No longer a widely used approach 
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A Sample Flat File System - MVS 
•  A file system used in IBM mainframes in 60s and 70s 
•  Each file has a unique name 

–  File name (usually very long) stored in the file's descriptor 
•  There is one master catalog file per volume 

–  Lists names and descriptor locations for every file 
–  Used to speed up searches 

•  The catalog is not critical 
–  It can be deleted and recreated at any time 
–  Files can be found without catalog ... it just takes longer 
–  Some files are not listed in catalog, for secrecy 

•  They cannot be found by “browsing” the name space 
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MVS Names and Catalogs 
Volume Catalog 

name: mark.file1.txt 
other attributes 

1st extent 
2nd extent 
3rd extent 

… 

DSCB #101, type 1 
name: mark.file2.txt 

other attributes 
1st extent 
2nd extent 
3rd extent 

… 

DSCB #102, type 1 
name: mark.file3.txt 

other attributes 
1st extent 
2nd extent 
3rd extent 

… 

DSCB #103, type 1 

name               DSCB 

mark.file1.txt 101 
mark.file2.txt 102 
mark.file3.txt 103 
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Hierarchical Name Spaces 
•  Essentially a graphical organization 
•  Typically organized using directories  

–  A file containing references to other files 
–  A non-leaf node in the graph 
–  It can be used as a naming context 

•  Each process has a current directory 
•  File names are interpreted relative to that directory 

•  Nested directories can form a tree 
–  A file name describes a path through that tree 
–  The directory tree expands from a “root” node 

•  A name beginning from root is called “fully qualified” 
–  May actually form a directed graph 

•  If files are allowed to have multiple names 
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A Rooted Directory Tree 
root 

user_1 user_2 user_3 

file_a 

(/user_1/file_a) 

file_b 

(/user_2/file_b) 

file_c 

(/user_3/file_c) 

dir_a 

(/user_1/dir_a) 

dir_a 

(/user_3/dir_a) 

file_a 

(/user_1/dir_a/file_a) 
file_b 

(/user_3/dir_a/file_b) 
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Directories Are Files 
•  Directories are a special type of file 

–  Used by OS to map file names into the associated files 
•  A directory contains multiple directory entries  

–  Each directory entry describes one file and its name 

•  User applications are allowed to read directories 
–  To get information about each file 
–  To find out what files exist 

•  Usually only the OS is allowed to write them 
–  Users can cause writes through special system calls 
–  The file system depends on the integrity of directories 
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Traversing the Directory Tree 
•  Some entries in directories point to child 

directories 
– Describing a lower level in the hierarchy 

•  To name a file at that level, name the parent 
directory and the child directory, then the file 
– With some kind of delimiter separating the file 

name components 
•  Moving up the hierarchy is often useful 

– Directories usually have special entry for parent 
– Many file systems use the name “..” for that 
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Example: The DOS File System 

•  File & directory names separated by back-slashes 
–  E.g., \user_3\dir_a\file_b 

•  Directory entries are the file descriptors 
–  As such, only one entry can refer to a particular file 

•  Contents of a DOS directory entry 
–  Name (relative to this directory) 
–  Type (ordinary file, directory, ...) 
–  Location of first cluster of file 
–  Length of file in bytes 
–  Other privacy and protection attributes  
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DOS File System Directories 

user_1 256 bytes 9 DIR … 

Root directory, starting in cluster #1 

file name length 1st cluster type … 

user_2 512 bytes 31 DIR … 

user_3 284 bytes 114 DIR … 

Directory /user_3, starting in cluster #114 

file name length 1st cluster type … 

.. 256 bytes 1 DIR … 

dir_a 512 bytes 62 DIR … 

file_c 1824 bytes 102 FILE … 
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File Names Vs. Path Names 
•  In some flat name space systems files had “true 

names” 
–  Only one possible name for a file, 
–  Kept in a record somewhere 

•  In DOS, a file is described by a directory entry 
–  Local name is specified in that directory entry 
–  Fully qualified name is the path to that directory entry 

•  E.g., start from root, to user_3, to dir_a, to file_b 

–  But DOS files still have only one name 
•  What if files had no intrinsic names of their own? 

–  All names came from directory paths 
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Example:  Unix Directories 
•  A file system that allows multiple file names 

–  So there is no single “true” file name, unlike DOS 

•  File names separated by slashes 
–  E.g., /user_3/dir_a/file_b 

•  The actual file descriptors are the inodes 
–  Directory entries only point to inodes 
–  Association of a name with an inode is called a hard link 
–  Multiple directory entries can point to the same inode 

•  Contents of a Unix directory entry 
–  Name (relative to this directory) 
–  Pointer to the inode of the associated file 
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Unix Directories 

user_1 9 

file name inode # 

user_2 31 

user_3 114 

Directory /user_3, inode #114 

dir_a 

file_c 

. 1 

.. 1 

Root directory, inode #1 

194 

307 

. 114 

.. 1 

file name inode # 

Here’s a “..” entry, 
pointing to the parent 
directory 

But what’s this “.” 
entry? 

It’s a directory entry 
that points to the 
directory itself! 

We’ll see why that’s 
useful later 
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Multiple File Names In Unix 
•  How do links relate to files? 

–  They’re the names only 

•  All other metadata is stored in the file inode 
–  File owner sets file protection (e.g., read-only) 

•  All links provide the same access to the file 
–  Anyone with read access to file can create new link 
–  But directories are protected files too 

•  Not everyone has read or search access to every directory 

•  All links are equal 
–  There is nothing special about the first (or owner's) link 
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Links and De-allocation 
•  Files exist under multiple names 
•  What do we do if one name is removed? 
•  If we also removed the file itself, what about 

the other names? 
– Do they now point to something non-existent? 

•  The Unix solution says the file exists as long 
as at least one name exists 

•  Implying we must keep and maintain a 
reference count of links 
–  In the file inode, not in a directory 
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Unix Hard Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 

Note that we now 
associate names with links 
rather than with files. 

/user_1/file_a and 

/user_3/dir_a/file_b 

are both links to the same 
inode 
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Hard Links, Directories, and Files 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

29 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 
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A Potential Problem With  
Hard Links 

•  Hard links are essentially edges in the graph 
•  Those edges can lead backwards to other graph 

nodes 
•  Might that not create cycles in the graph? 
•  If it does, what happens when we delete one of 

the links? 
•  Might we not disconnect the graph? 
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Illustrating the Problem 

Now let’s add a link 

And now let’s 
delete a link 

The link count 
here is still 1, 
so we can’t 
delete the file 

But our graph 
has become 
disconnected! 
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Solving the Problem 
•  Only directories contain links 

– Not regular files 

•  So if a link can’t point to a directory, there 
can’t be a loop 

•  In which case, there’s no problem with 
deletions 

•  This is the Unix solution:  no hard links to 
directories 
– The “.” and “..” links are harmless exceptions 
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Symbolic Links 
•  A different way of giving files multiple names 
•  Symbolic links implemented as a special type of file 

–  An indirect reference to some other file 
–  Contents is a path name to another file 

•  OS recognizes symbolic links 
–  Automatically opens associated file instead 
–  If file is inaccessible or non-existent, the open fails 

•  Symbolic link is not a reference to the inode 
–  Symbolic links will not prevent deletion 
–  Do not guarantee ability to follow the specified path 
–  Internet URLs are similar to symbolic links 
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Symbolic Link Example 

root 

user_1 user_3 

dir_a file_c 

file_a 

file_b 
(/user_1/file_a) 

The link count for 
this file is still 1, 
though 
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Symbolic Links, Files, and 
Directories 

user_1 9 

user_2 31 

user_3 114 

inode #9, directory 

dir_a 

file_c 

. 1 

.. 1 

inode #1, root directory 

194 

46 

. 114 

.. 1 

inode #114, directory 

dir_a 

file_a 

118 

29 

. 9 

.. 1 

inode #29, file 

/user_1/file_a 

inode #46, symlink Link count 
still equals 1! 
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What About Looping Problems? 
•  Do symbolic links have the potential to introduce 

loops into a pathname? 
–  Yes, if the target of the symbolic link includes the symbolic 

link itself  
–  Or some transitive combination of symbolic links 

•  How can such loops be detected? 
–  Could keep a list of every inode we have visited in the 

interpretation of this path 
–  But simpler to limit the number of directory searches 

allowed in the interpretation of a single path name 
–  E.g., after 256 searches, just fail 
–  The usual solution for Unix-style systems 



Lecture 14 
Page 30 

CS 111 
Spring 2015  

File Systems and Multiple Disks 
•  You can (and often do) attach more than one disk to a 

machine 
•  Would it make sense to have a single file system span 

the several disks? 
–  Considering the kinds of disk specific information a file 

system keeps 
–  Like cylinder information 

•  Usually more trouble than it’s worth 
–  With the exception of RAID . . . 

•  Instead, put separate file system on each disk 
•  Or several file systems on one disk 
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How About the Other Way Around? 

•  Multiple file systems on one disk 
•  Divide physical disk into multiple logical disks 

–  Often implemented within disk device drivers 
–  Rest of system sees them as separate disk drives 

•  Typical motivations 
–  Permit multiple OS to coexist on a single disk 

•  E.g., a notebook that can boot either Windows or Linux 

–  Separation for installation, back-up and recovery 
•  E.g., separate personal files from the installed OS file system 

–  Separation for free-space 
•  Running out of space on one file system doesn't affect others 
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Disk Partitioning Mechanisms 

•  Some are designed for use by a single OS 
–  E.g., Unix slices (one file system per slice) 

•  Some are designed to support multiple OS 
–  E.g., DOS FDISK partitions, and VM/370 mini-disks 

•  Important features for supporting multiple OS's 
–  Must be possible to boot from any partition 
–  Must be possible to keep OS A out of OS B's partition 

•  There may be hierarchical partitioning 
–  E.g., multiple UNIX slices within an FDISK partition 
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Example: FDISK Disk Partitioning 

Disk  
bootstrap 
program 

Physical sector 0 (Master Boot Record) 

149:7:63 
99:7:63 

199:7:63 
100:1:00 
00:01:00 

150:1:00 
DOS 
linux 

Solaris 
0 0 0 

0 
1 

0 
0 

end start type A 
FDISK 
partition 

table 

linux 
partition 

DOS 
partition 

Solaris 
partition 

PBR 

PBR 

PBR 

Note that the first sector of each logical 
partition also contains a Partition Boot Record, 
which will be used to boot the operating system 
for that partition. 

99:7:63 00:01:00 
149:7:63 100:1:00 
199:7:63 150:1:00 
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Master Boot Records and  
Partition Boot Records 

•  Given the Master Boot Record bootstrap, why 
another Partition Boot Record bootstrap per partition? 

•  The bootstrap in the MBR typically only gives the 
user the option of choosing a partition to boot from 
–  And then loads the boot block from the selected (or default) 

partition 
•  The PBR bootstrap in the selected partition knows 

how to traverse the file system in that partition 
–  And how to interpret the load modules stored in it 
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Working With Multiple File 
Systems 

•  One machine can have multiple independent file 
systems 
–  Each handling its own disk layout, free space, and other 

organizational issues 

•  How will the overall system work with those several 
file systems? 

•  Treat them as totally independent namespaces? 
•  Or somehow stitch the separate namespaces together? 
•  Key questions:  

1.  How does an application specify which file it wants? 
2.  How does the OS find that file? 
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Finding Files With Multiple File 
Systems 

•  Finding files is easy if there is only one file system 
–  Any file we want must be on that one file system 
–  Directories enable us to name files within a file system 

•  What if there are multiple file systems available? 
–  Somehow, we have to say which one our file is on 

•  How do we specify which file system to use? 
–  One way or another, it must be part of the file name 
–  It may be implicit (e.g., same as current directory) 
–  Or explicit (e.g., every name specifies it) 
–  Regardless, we need some way of specifying which file 

system to look into for a given file name 
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Options for Naming With  
Multiple Partitions 

•  Could specify the physical device it resides on 
– E.g., /devices/pci/pci1000,4/disk/lun1/partition2 

•  that would get old real quick 

•  Could assign logical names to our partitions 
– E.g., “A:”, “C:”, “D:” 

•  You only have to think physical when you set them up 
•  But you still have to be aware multiple volumes exist 

•  Could weave a multi-file-system name space 
– E.g., Unix mounts 
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Unix File System Mounts 
•  Goal: 

– To make many file systems appear to be one giant 
one 

– Users need not be aware of file system boundaries 

•  Mechanism: 
– Mount device on directory 
– Creates a warp from the named directory to the  

top of the file system on the specified device 
– Any file name beneath that directory is interpreted 

relative to the root of the mounted file system 
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Unix Mounted File System 
Example 

file system 4 file system 2 file system 3 

root file system 

/bin /opt /export 

user1 user2 

mount filesystem2 on /export/user1 
mount filesystem3 on /export/user2 
mount filesystem4 on /opt 
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How Does This Actually Work? 

•  Mark the directory that was mounted on  
•  When file system opens that directory, don’t 

treat it as an ordinary directory 
–  Instead, consult a table of mounts to figure out 

where the root of the new file system is 
•  Go to that device and open its root directory 
•  And proceed from there 
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What Happened To the Real 
Directory? 

•  You can mount on top of any directory 
– Not just in some special places in the file hierarchy 
– Not even just empty directories 

•  Did the mount wipe out the contents of the 
directory mounted on? 

•  No, it just hid them  
– Since traversals jump to a new file system, rather 

than reading the directory contents 
•  It’s all still there when you unmount 



Lecture 14 
Page 42 

CS 111 
Spring 2015  

File System Performance Issues 

•  Key factors in file system performance 
– Head motion 
– Block size 

•  Possible optimizations for file systems 
– Read-ahead 
– Delayed writes 
– Caching (general and special purpose) 
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Head Motion and File System 
Performance 

•  File system organization affects head motion 
–  If blocks in a single file are spread across the disk 
–  If files are spread randomly across the disk 
–  If files and “meta-data” are widely separated 

•  All files are not used equally often 
– 5% of the files account for 90% of disk accesses 
– File locality should translate into head cylinder 

locality 
•  So how can we reduce head motion? 
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Ways To Reduce Head Motion 
•  Keep blocks of a file together 

–  Easiest to do on original write 
–  Try to allocate each new block close to the last one 
–  Especially keep them in the same cylinder 

•  Keep metadata close to files 
–  Again, easiest to do at creation time 

•  Keep files in the same directory close together 
–  On the assumption directory implies locality of reference 

•  If performing compaction, move popular files close 
together 
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File System Performance and 
Block Size 

•  Larger block sizes result in efficient transfers 
–  DMA is very fast, once it gets started 
–  Per request set-up and head-motion is substantial 

•  They also result in internal fragmentation 
–  Expected waste: ½ block per file 

•  As disks get larger, speed outweighs wasted space 
–  File systems support ever-larger block sizes 

•  Clever schemes can reduce fragmentation 
–  E.g., use smaller block size for the last block of a file 
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Read Early, Write Late 

•  If we read blocks before we actually need 
them, we don’t have to wait for them 
– But how can we know which blocks to read early? 

•  If we write blocks long after we told the 
application it was done, we don’t have to wait 
– But are there bad consequences of delaying those 

writes? 
•  Some optimizations depend on good answers 

to these questions 
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Read-Ahead 
•  Request blocks from the disk before any 

process asked for them 
•  Reduces process wait time 
•  When does it make sense? 

– When client specifically requests sequential access 
– When client seems to be reading sequentially 

•  What are the risks? 
– May waste disk access time reading unwanted 

blocks 
– May waste buffer space on unneeded blocks 
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Delayed Writes 
•  Don’t wait for disk write to complete to tell 

application it can proceed 
•  Written block is in a buffer in memory 
•  Wait until it’s “convenient” to write it to disk 

–  Handle reads from in-memory buffer  
•  Benefits: 

–  Applications don’t wait for disk writes 
–  Writes to disk can be optimally ordered 
–  If file is deleted soon, may never need to perform disk I/O 

•  Potential problems: 
–  Lost writes when system crashes 
–  Buffers holding delayed writes can’t be re-used 
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Caching and Performance 

•  Big performance wins are possible if caches 
work well 
– They typically contain the block you’re looking for 

•  Should we have one big LRU cache for all 
purposes? 

•  Should we have some special-purpose caches? 
–  If so, is LRU right for them? 
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Common Types of Disk Caching 
•  General block caching 

– Popular files that are read frequently 
– Files that are written and then promptly re-read 
– Provides buffers for read-ahead and deferred write 

•  Special purpose caches 
– Directory caches speed up searches of same dirs 
–  Inode caches speed up re-uses of same file 

•  Special purpose caches are more complex 
– But they often work much better 
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Performance Gain For Different 
Types of Caches 

General Block Cache 

Special Purpose Cache 

Cache size (bytes) 

 Performance 
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Why Are Special Purpose  
Caches More Effective? 

•  They match caching granularity to their need 
–  E.g., cache inodes or directory entries 
–  Rather than full blocks 

•  Why does that help? 
•  Consider an example: 

–  A block might contain 100 directory entries, only four of 
which are regularly used 

–  Caching the other 96 as part of the block is a waste of 
cache space 

–  Caching 4 entries allows more popular entries to be cached 
–  Tending to lead to higher hit ratios 
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Remote File System Examples 

•  Common Internet File System (classic client/
server) 

•  Network File System (peer-to-peer file 
sharing) 

•  Hyper-Text Transfer Protocol (a different 
approach) 
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Common Internet File System 

•  Originally a proprietary Microsoft Protocol 
– Newer versions (CIFS 1.0) are IETF standard 

•  Designed to enable “work group” computing 
– Group of PCs sharing same data, printers 
– Any PC can export its resources to the group 
– Work group is the union of those resources 

•  Designed for PC clients and NT servers 
– Originally designed for FAT and NT file systems 
– Now supports clients and servers of all types 
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CIFS Architecture 

•  Standard remote file access architecture 
•  State-full per-user client/server sessions 

–  Password or challenge/response authentication 
–  Server tracks open files, offsets, updates 
–  Makes server fail-over much more difficult 

•  Opportunistic locking 
–  Client can cache file if nobody else using/writing it 
–  Otherwise all reads/writes must be synchronous 

•  Servers regularly advertise what they export 
–  Enabling clients to “browse” the workgroup 
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Benefits of Opportunistic Locking 

•  A big performance win 
•  Getting permission from server before each 

write is a huge expense  
–  In both time and server loading   

•  If no conflicting file use 99.99% of the time, 
opportunistic locks greatly reduce overhead   

•  When they can’t be used, CIFS does provide 
correct centralized serialization 
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CIFS/SMB Protocol 
•  SMB (old, proprietary) ran over NetBIOS 

– Provided transport, reliable delivery, sessions, 
request/response, name service  

•  CIFS (new, IETF), uses TCP and DNS 
•  Scope 

– Session authentication 
– File and directory access and access control 
– File and record-level locking (opportunistic) 
– File and directory change notification 
– Remote printing 
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CIFS/SMB Pros and Cons 

•  Performance/Scalability 
–  Opportunistic locks enable good performance 
–  Otherwise, forced synchronous I/O is slow 

•  Transparency 
–  Very good, especially the global name space 

•  Conflict Prevention 
–  File/record locking and synchronous writes work well 

•  Robustness 
–  State-full servers make seamless fail-over impossible 
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The Network File System (NFS) 
•  Transparent, heterogeneous file system sharing 

– Local and remote files are indistinguishable 

•  Peer-to-peer and client-server sharing 
– Disk-full clients can export file systems to others 
– Able to support diskless (or dataless) clients 
– Minimal client-side administration 

•  High efficiency and high availability 
– Read performance competitive with local disks 
– Scalable to huge numbers of clients 
– Seamless fail-over for all readers and some writers 
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The NFS Protocol 
•  Relies on idempotent operations and stateless server 

–  Built on top of a remote procedure call protocol 
–  With eXternal Data Representation, server binding 
–  Versions of RPC over both TCP or UDP 
–  Optional encryption (may be provided at lower level) 

•  Scope – basic file operations only 
–  Lookup (open), read, write, read-directory, stat 
–  Supports client or server-side authentication 
–  Supports client-side caching of file contents 
–  Locking and auto-mounting done with another protocol 
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NFS Authentication 
•  How can we trust NSF clients to authenticate 

themselves? 
•  NFS not not designed for direct use by user 

applications 
•  It permits one operating system instance to 

access files belonging to another OS instance 
•  If we trust the remote OS to see the files, might 

as well trust it to authenticate the user 
•  Obviously, don’t use NFS if you don’t trust the 

remote OS . . . 
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NFS Replication 
•  NFS file systems can be replicated 

–  Improves read performance and availability 
– Only one replica can be written to 

•  Client-side agent (in OS) handles fail-over 
– Detects server failure, rebinds to new server 

•  Limited transparency for server failures 
– Most readers will not notice failure (only brief 

delay) 
– Users of changed files may get “stale handle” error 
– Active locks may have to be re-obtained 
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NFS and Updates 
•  An NFS server does not prevent conflicting updates 

–  As with local file systems, this is application’s job 
•  Auxiliary server/protocol for file and record locking 

–  All leases are maintained on the lock server 
–  All lock/unlock operations handed by lock server 

•  Client/network failure handling 
–  Server can break locks if client dies or times out 
–  “Stale-handle” errors inform client of broken lock 
–  Client response to these errors are application specific 

•  Lock server failure handling is very complex 
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NFS Pros and Cons 
•  Transparency/Heterogeneity 

– Local/remote transparency is excellent 
– NFS works with all major ISAs, OSs, and FSs  

•  Performance 
– Read performance may be better than local disk 
– Replication option for scalable read bandwidth 
– Write performance slower than local disk 

•  Robustness 
– Transparent fail-over capability for readers 
– Recoverable fail-over capability for writers 
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NFS Vs. CIFS 
•  Functionality 

– NFS is much more portable (platforms, OS, FS) 
– CIFS provides much better write serialization 

•  Performance and robustness 
– NFS provides much greater read scalability 
– NFS has much better fail-over characteristics 

•  Security 
– NFS supports more security models 
– CIFS gives the server better authorization control 
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The Andrew File System 

•  AFS 
•  Developed at CMU 
•  Designed originally to support student and 

faculty use  
– Generally, large numbers of users of a single 

organization 
•  Uses a client/server model 
•  Makes use of whole-file caching 
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AFS Basics 
•  Designed for scalability, performance 

– Large numbers of clients and very few servers 
– Needed performance of local file systems 
– Very low per-client load imposed on servers 
– No administration or back-up for client disks 

•  Master files reside on a file server 
– Local file system is used as a local cache 
– Local reads satisfied from cache when possible 
– Files are only read from server if not in cache 

•  Simple synchronization of updates 
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AFS Architecture 
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AFS Replication 
•  One replica at server, possibly many at clients 
•  Check for local copies in cache at open time 

–  If no local copy exists, fetch it from server 
–  If local copy exists, see if it is still up-to-date 

•  Compare file size and modification time with server 

–  Optimizations reduce overhead of checking 
•  Subscribe/broadcast change notifications 
•  Time-to-live on cached file attributes and contents 

•  Send updates to server when file is closed 
–  Wait for all changes to be completed 
–  File may be deleted before it is closed   

•  E.g., temporary files that servers need not know about 
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AFS Reconciliation 
•  Client sends updates to server when local copy 

closed 
•  Server notifies all clients of change 

– Warns them to invalidate their local copy 
– Warns them of potential write conflicts 

•  Server supports only advisory file locking 
– Distributed file locking is extremely complex 

•  Clients are expected to handle conflicts 
– Noticing updates to files open for write access 
– Notification/reconciliation strategy is unspecified 
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AFS Pros and Cons 
•  Performance and Scalability 

–  All file access by user/applications is local 
–  Update checking (with time-to-live) is relatively cheap 
–  Both fetch and update propagation are very efficient 
–  Minimal per-client server load (once cache filled) 

•  Robustness 
–  No server fail-over, but have local copies of most files 

•  Transparency 
–  Mostly perfect - all file access operations are local 
–  Pray that we don't have any update conflicts 
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AFS vs. NFS 

•  Basic designs 
–  Both designed for continuous connection client/server 
–  NFS supports diskless clients without local file systems 

•  Performance 
–  AFS generates much less network traffic, server load 
–  They yield similar client response times 

•  Ease of use 
–  NFS provides for better transparency 
–  NFS has enforced locking and limited fail-over 

•  NFS requires more support in operating system 
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HTTP 
•  A different approach, for a different purpose 
•  Stateless protocol with idempotent operations 

–  Implemented atop TCP (or other reliable transport) 
–  Whole file transport (not remote data access) 

•  get file, put file, delete file, post form-contents 

–  Anonymous file access, but secure (SSL) transfers 
–  Keep-alive sessions (for performance only) 

•  A truly global file namespace (URLs) 
–  Client and in-network caching to reduce server load 
–  A wide range of client redirection options 
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HTTP Architecture 
•  Not a traditional remote file access mechanism 
•  We do not try to make it look like local file access 

–  Apps are written to HTTP or other web-aware APIs 
–  No interception and translation of local file operations 
–  But URLs can be constructed for local files 

•  Server is entirely implemented in user-mode 
–  Authentication via SSL or higher level dialogs 
–  All data is assumed readable by all clients 

•  HTTP servers provide more than remote file access 
–  POST operations invoke server-side processing 

•  No attempt to provide write locking or serialization 
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HTTP Pros and Cons 
•  Transparency 

–  Universal namespace for heterogeneous data 
–  Requires use of new APIs and namespace 
–  No attempt at compatibility with old semantics 

•  Performance 
–  Simple implementations, efficient transport 
–  Unlimited read throughput scalability 
–  Excellent caching and load balancing 

•  Robustness 
–  Automatic retrys, seamless fail-over, easy redirects 
–  Not much attempt to handle issues related to writes 
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HTTP vs. NFS/CIFS 

•  The file model and services provided by HTTP are 
much weaker than those provided by CIFS or NFS   

•  So why would anyone choose to use HTTP for 
remote file access? 

•  It’s easy to use, provides excellent performance, 
scalability and availability, and is ubiquitous  

•  If I don’t need per-user authorization, walk-able name 
spaces, and synchronized updates,  
–  Why pay the costs of more elaborate protocols? 
–  If I do need, them, though, . . . 
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Conclusion 
•  Be clear about your remote file system requirements 

–  Different priorities lead to different tradeoffs & designs 
•  The remote file access protocol is the key 

–  It determines the performance and robustness 
–  It imposes or presumes security mechanisms 
–  It is designed around synchronization & fail-over 

mechanisms 

•  Stateless protocols with idempotent ops are limiting 
–  But very rewarding if you can accept those limitations 

•  Read-only content is a pleasure to work with 
–  Synchronized and replicated updates are very hard 


