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Outline 

•  Mutual Exclusion 
•  Asynchronous Completions 
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Mutual Exclusion  

•  Critical sections can cause trouble when more than 
one thread executes them at a time 
–  Each thread doing part of the critical section before any of 

them do all of it 

•  Preventable if we ensure that only one thread can 
execute a critical section at a time 

•  We need to achieve mutual exclusion of the critical 
section 
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Critical Sections in Operating System 
•  Operating systems are loaded with internal critical sections 
•  Shared data used by concurrent threads 

–  Process state variables 
–  Resource pools 
–  Device driver state 

•  Logical parallelism 
–  Created by preemptive scheduling and asynchronous 

interrupts 
•  Physical parallelism 

–  Shared memory, symmetric multi-processors  
•  OSes extensively use locks to avoid these problems 

–  Without any user-visible effects 
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Critical Sections in Applications 

•  Most common for multithreaded applications 
– Which frequently share data structures 

•  Can also happen with processes 
– Which share operating system resources 
– Like files 

•  Avoidable if you don’t share resources of any 
kind 
– But that’s not always feasible 
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Recognizing Critical Sections 

•  Generally involves updates to object state 
– May be updates to a single object 
– May be related updates to multiple objects 

•  Generally involves multi-step operations 
– Object state inconsistent until operation finishes 
– Pre-emption compromises object or operation 

•  Correct operation requires mutual exclusion 
– Only one thread at a time has access to object(s) 
– Client 1 completes before client 2 starts 
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Critical Sections and Atomicity 
•  Using mutual exclusion allows us to achieve 

atomicity of a critical section 
•  Atomicity has two aspects: 
1.  Before or After atomicity 

–  A enters critical section before B starts 
–  B enters critical section after A completes 
–  There is no overlap 

2.  All or None atomicity 
–  An update that starts will complete 
–  An uncompleted update has no effect 

•  Correctness generally requires both 
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Options for Protecting  
Critical Sections 

•  Turn off interrupts 
–  We covered that in the last class 
–  Prevents concurrency 

•  Avoid shared data whenever possible 
•  Protect critical sections using hardware mutual 

exclusion 
–  In particular, atomic CPU instructions 
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Avoiding Shared Data 

•  A good design choice when feasible 
•  Don’t share things you don’t need to share 
•  But not always an option 
•  Even if possible, may lead to inefficient 

resource use 
•  Sharing read only data also avoids problems 

–  If no writes, the order of reads doesn’t matter 
– But a single write can blow everything out of the 

water 
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Atomic Instructions 

•  CPU instructions are uninterruptable 
•  What can they do? 

–  Read/modify/write operations 
–  Can be applied to 1-8 contiguous bytes 
–  Simple: increment/decrement, and/or/xor 
–  Complex: test-and-set, exchange, compare-and-swap 

•  Either do entire critical section in one atomic 
instruction 

•  Or use atomic instructions to implement locks  
–  Use the lock operations to protect critical sections 
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Atomic Instructions – Test and Set 

A C description of a machine language 
instruction 

bool TS( char *p) { 
bool rc; 
rc = *p;    /* note the current value   */ 
*p = TRUE;  /* set the value to be TRUE   */ 
return rc;    /* return the value before we set it  */ 

} 

if !TS(flag) { 
 /* We have control of the critical section! */ 

} 
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Atomic Instructions – Compare  
and Swap 

Again, a C description of machine instruction 
bool compare_and_swap( int *p, int old, int new ) { 
if (*p == old) {  /* see if value has been changed  */ 

*p = new;   /* if not, set it to new value   */ 
return( TRUE);  /* tell caller he succeeded   */ 

} else    /* value has been changed   */ 
 return( FALSE);  /* tell caller he failed    */ 

} 

if (compare_and_swap(flag,UNUSED,IN_USE) { 
 /* I got the critical section! */ 

} else { 
 /* I didn’t get it.  */ 

} 
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Preventimg Concurrency Via  
Atomic Instructions 

•  CPU instructions are hardware-atomic 
–  So if you can squeeze a critical section into one 

instruction, no concurrency problems 
•  What can you do in one instruction? 

–  Simple operations like read/write 
–  Some slightly more complex operations 
– With careful design, some data structures can be 

implemented this way 
•  Limitations 

– Unusable for complex critical sections 
– Unusable as a waiting mechanism 
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Lock-Free Operations 
•  Multi-thread safe data structures and operations 

–  An alternative to locking or disabling interrupts 
•  How do they work? 

–  Carefully program data structure to perform critical 
operations with one instruction 

•  Allows: 
–  Single reader/writer with ordinary instructions 
–  Multi-reader/writer with atomic instructions 
–  All-or-none and before-or-after semantics 

•  Limitations 
–  Unusable for complex critical sections 
–  Unusable as a waiting mechanism 
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An Example 

// push an element on to a singly linked LIFO list 
void SLL_push(SLL *head, SLL *element) { 

 do { 
  SLL *prev = head->next; 
  element->next = prev; 
 } while ( CompareAndSwap(&head->next, prev, element) != prev); 

} 
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Evaluating Lock-Free Operations 
•  Effectiveness/Correctness 

– Effective against all conflicting updates 
– Cannot be used for complex critical sections 

•  Progress 
– No possibility of deadlock or convoy 

•  Fairness 
–  Small possibility of brief spins 
– Like the compare-and-swap while loop in example 

•  Performance 
– Expensive instructions, but cheaper than syscalls 
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Locking 
•  Protect critical sections with a data structure 

–  Use atomic instructions to implement that structure 
•  Locks  

–  The party holding a lock can access the critical section 
–  Parties not holding the lock cannot access it 

•  A party needing to use the critical section tries to 
acquire the lock 
–  If it succeeds, it goes ahead 
–  If not . . .? 

•  When finished with critical section, release the lock 
–  Which someone else can then acquire 
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Using Locks 

thread #1 
counter = counter + 1; 

thread #2 
counter = counter + 1; 

mov counter, %eax 
add $0x1, %eax 
mov %eax, counter 

What looks like one instruction in C 
gets compiled to: 

Three instructions . . . 

•  Remember this example? 

•  How can we solve this with locks? 
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Using Locks For Mutual Exclusion 

pthread_mutex_t lock; 
pthread_mutex_init(&lock, NULL); 
… 
if (pthread_mutex_lock(&lock) == 0) { 

 counter = counter + 1; 
 pthread_mutex_unlock(&lock); 

} 
Now the three assembly instructions are mutually exclusive 
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What Happens When You Don’t 
Get the Lock? 

•  You could just give up 
– But then you’ll never execute your critical section 

•  You could try to get it again 
•  But it still might not be available 
•  So you could try to get it again . . . 
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Locks and Interrupts: 
A Dangerous Combination 

Synchronous Code 

while( TS(lockp) ); 
/* critical section */ 
… 
*lockp = 0; 

Interrupt Handler 

while( TS(lockp) ); 
/* critical section */ 
... 

Synchronous code will never complete 
So lock will never be released 

Interrupt handler will loop 
Interrupts disabled when handler entered 

Interrupt handler can’t get the lock 
Interrupts will remain disabled 

Infinite Loop! 
! 
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Spin Waiting 
•   The computer science 

equivalent 
•  Check if the event 

occurred 
•  If not, check again 
•  And again 
•  And again 
•  . . . 
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Spin Locks: Pluses and Minuses 
•  Good points 

– Properly enforces access to critical sections 
•  Assuming properly implemented locks 

– Simple to program 

•  Dangers 
– Wasteful 

•  Spinning uses processor cycles 

– Likely to delay freeing of desired resource 
•  Spinning uses processor cycles 

– Bug may lead to infinite spin-waits 
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How Do We Build Locks? 
•  The very operation of locking and unlocking a 

lock is itself a critical section 
–  If we don’t protect it, two threads might acquire 

the same lock 
•  Sounds like a chicken-and-egg problem 
•  But we can solve it with hardware assistance 
•  Individual CPU instructions are atomic 

– So if we can implement a lock with one 
instruction . . . 
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Single Instruction Locks 

•  Sounds tricky 
•  The core operation of acquiring a lock (when 

it’s free) requires: 
1.  Check that no one else has it 
2.  Change something so others know we have it 

•  Sounds like we need to do two things in one 
instruction 

•  No problem – hardware designers have 
provided for that 
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Building Locks From Single 
Instructions 

•  Requires a complex atomic instruction 
– Test and set 
– Compare and swap 

•  Instruction must atomically: 
– Determine if someone already has the lock 
– Grant it if no one has it 
– Return something that lets the caller know what 

happened 
•  Caller must honor the lock . . .  
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Using Atomic Instructions to 
Implement a Lock 

•  Assuming C implementation of test and set 
bool getlock( lock *lockp) { 
if (TS(lockp) == 0 ) 

return( TRUE); 
else 

return( FALSE); 
} 
void freelock( lock *lockp ) { 
*lockp = 0; 

} 
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Locks Come in Many Flavors 
•  Lock and wait 

–  Block until resource becomes available 
•  Non-blocking 

–  Return an error if resource is unavailable 
•  Timed wait 

–  Block a specified maximum time, then fail 
•  Spin and wait (futex) 

–  Spin briefly, and then join a waiting list 
•  Strict FIFO 

–  Join a FIFO queue of those waiting on the lock 
–  Other wait options might not guarantee FIFO 
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The Asynchronous  
Completion Problem 

•  Parallel activities move at different speeds 
•  One activity may need to wait for another to complete 
•  The asynchronous completion problem is how to 

perform such waits without killing performance 
•  Examples of asynchronous completions 

–  Waiting for an I/O operation to complete 
–  Waiting for a response to a network request 
–  Delaying execution for a fixed period of real time 
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How Can We Wait? 
•  Spin locking/busy waiting 
•  Yield and spin … 
•  Either spin option may still require mutual 

exclusion 
•  Completion events 
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Spin Waiting For Asynchronous 
Completions 

•  Wastes CPU, memory, bus bandwidth 
– Each path through the loop costs instructions 

•  May actually delay the desired event 
– One of your cores is busy spinning 
– Maybe it could be doing the work required to 

complete the event instead 
– But it’s spinning . . . 
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Spinning Sometimes Makes Sense 
1.  When awaited operation proceeds in parallel 

– A hardware device accepts a command 
– Another CPU releases a briefly held spin-lock 

2.  When awaited operation is guaranteed to be soon 
–  Spinning is less expensive than sleep/wakeup 

3.  When spinning does not delay awaited operation 
– Burning CPU delays running another process 
– Burning memory bandwidth slows I/O 

4.  When contention is expected to be rare 
–  Multiple waiters greatly increase the cost 
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A Classic “spin-wait” 
/* set a specified register in the ZZ controller to a specified value  */ 

zzSetReg( struct zzcontrol *dp, short reg, long value ) { 
 while( (dp->zz_status & ZZ_CMD_READY) == 0) 
  ; 
 dp->zz_value = value; 
 dp->zz_reg = reg; 
 dp->zz_cmd = ZZ_SET_REG; 

} 

/* program the ZZ for a specified DMA read or write operation   */ 

zzStartIO( struct zzcontrol *dp, struct ioreq *bp ) { 

 zzSetReg(dp, ZZ_R_ADDR, bp->buffer_start); 

 zzSetReg(dp, ZZ_R_LEN, bp->buffer_length); 

 zzSetReg(dp, ZZ_R_CMD, bp->write ? ZZ_C_WRITE : ZZ_C_READ ); 

 zzSetReg(dp, ZZ_R_CTRL, ZZ_INTR + ZZ_GO); 

} 

No guarantee 
that hardware 
is ready when 

this routine 
returns. 
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Yield and Spin 

•  Check if your event occurred 
•  Maybe check a few more times 
•  But then yield 
•  Sooner or later you get rescheduled 
•  And then you check again  
•  Repeat checking and yielding until your event 

is ready 



Lecture 8 
Page 35 

CS 111 
Fall 2016  

Problems With Yield and Spin 

•  Extra context switches 
– Which are expensive 

•  Still wastes cycles if you spin each time you’re 
scheduled 

•  You might not get scheduled to check until 
long after event occurs 

•  Works very poorly with multiple waiters 
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Another Approach: Condition 
Variables 

•  Create a synchronization object associated 
with a resource or request 
– Requester blocks awaiting event on that object 
– Upon completion, the event is “posted” 
– Posting event to object unblocks the waiter 

blocked ready 

running exit 

post 

create 

wait 
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Condition Variables and the OS 

•  Generally the OS provides condition variables 
– Or library code that implements threads does 

•  It blocks a process or thread when condition 
variable is used 
– Moving it out of the ready queue 

•  It observes when the desired event occurs 
•  It then unblocks the blocked process or thread 

– Putting it back in the ready queue 
– Possibly preempting the running process 
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Waiting Lists 
•  Likely to have threads waiting on several 

different things 
•  Pointless to wake up everyone on every event 

– Each should wake up when his event happens 
•  Suggests all events need a waiting list 

– When posting an event, look up who to awaken 
•  Wake up everyone on the list? 
•  One-at-a-time in FIFO order? 
•  One-at-a-time in priority order (possible starvation)? 

– Choice depends on event and application 
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Who To Wake Up? 

•  Who wakes up when a condition variable is 
signaled? 
– pthread_cond_wait … at least one blocked thread 
– pthread_cond_broadcast … all blocked threads 

•  The broadcast approach may be wasteful 
–  If the event can only be consumed once 
– Potentially unbounded waiting times 

•  A waiting queue would solve these problems 
– Each post wakes up the first client on the queue 
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Evaluating Waiting List Options 

•  Effectiveness/Correctness 
– Should be very good 

•  Progress 
– There is a trade-off involving cutting in line 

•  Fairness 
– Should be very good 

•  Performance 
– Should be very efficient 
– Depends on frequency of spurious wakeups 
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Locking and Waiting Lists 

•  Spinning for a lock is usually a bad thing 
– Locks should probably have waiting lists 

•  A waiting list is a (shared) data structure 
–  Implementation will likely have critical sections 
– Which may need to be protected by a lock 

•  This seems to be a circular dependency 
– Locks have waiting lists 
– Which must be protected by locks 
– What if we must wait for the waiting list lock? 
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A Possible Problem 

•  The sleep/wakeup race condition 

void sleep( eventp *e ) { 
while(e->posted == FALSE) { 

add_to_queue( &e->queue, 
myproc ); 
myproc->runstate |= BLOCKED; 
yield(); 

} 
} 

void wakeup( eventp *e) { 
      struct proce *p; 

      e->posted = TRUE; 
      p = get_from_queue(&e-> 
queue); 
      if (p) { 

      p->runstate &= ~BLOCKED; 
      resched(); 

      }  /* if !p, nobody’s 
waiting */ 
} 

Consider this sleep code: And this wakeup code: 

What’s the problem with this? 
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A Sleep/Wakeup Race 

•  Let’s say thread B is using a resource and 
thread A needs to get it 

•  So thread A will call sleep() 
•  Meanwhile, thread B finishes using the 

resource 
– So thread B will call wakeup() 

•  No other threads are waiting for the resource  
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The Race At Work 
void sleep( eventp *e ) { 

while(e->posted == FALSE) { 

void wakeup( eventp *e) { 
struct proce *p; 

e->posted = TRUE; 
p = get_from_queue(&e-> queue); 

if (p) { 

 }  /* if !p, nobody’s waiting */ 
} 

Nope, nobody’s in the queue! 

add_to_queue( &e->queue, myproc ); 

myproc->runsate |= BLOCKED; 
yield(); 

  } 
   } 

Yep, somebody’s locked it! 

Thread A Thread B 

The effect?  
Thread A is sleeping But there’s no one to 

wake him up 

CONTEXT SWITCH! 

CONTEXT SWITCH! 
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Solving the Problem 

•  There is clearly a critical section in sleep() 
– Starting before we test the posted flag 
– Ending after we put ourselves on the notify list 

•  During this section, we need to prevent 
– Wakeups of the event 
– Other people waiting on the event 

•  This is a mutual-exclusion problem 
– Fortunately, we already know how to solve those 
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Progress vs. Fairness 
•  Consider … 

–  P1: lock(), park() 
–  P2: unlock(), unpark() 
–  P3: lock() 

•  Progress says: 
–  It is available, so P3 gets it 
–  Spurious wakeup of P1 

•  Fairness says: 
–  FIFO, P3 gets in line 
–  And a convoy forms 

void	unlock(lock_t	*m)	{	

	while	(TestAndSet(&m->guard,	1)	==	1);	
 m->locked = 0;	
	if	(!queue_empty(m->q))	
  unpark(queue_remove(m->q); 
 m->guard = 0; 

}	

void	lock(lock_t	*m)	{	
	while(true)	{	
	 	while	(TestAndSet(&m->guard,	1)	==	1);	
	 	if	(!m->locked)	{	
	 	 	m->locked	=	1;	
	 	 	m->guard	=	0;	
	 	 	return;	
	 	}		
	 	queue_add(m->q,	me);	
	 	m->guard	=	0;	
	 	park();	
	}	

}	



Lecture 8 
Page 47 

CS 111 
Fall 2016  

Spin-Waits Revisited 

•  Spin-waits await asynchronous completions 
– But they do so by busy-waiting 
            while (event_not_ready) ; 

•  Sleep/wake-up is almost always better 
–  Fewer wasted cycles and faster response 
– But these are software completion mechanisms  

•  There are hardware-related situations where they don't work 
(or don't make sense) 

•  There are cases where it makes sense to spin 
– Very briefly for events originating outside our CPU 
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Spin-waits: when to use them 
•  When the event does not come from our CPU 

–  So spinning will not delay the completion 
•  And waiting time guaranteed to be very brief 

–  Fewer cycles than would be required to go to sleep 
•  Examples: 

– Waiting a few µ-seconds for hardware to come ready 
•  IF it is guaranteed to be come back promptly 

– Waiting for another CPU to release a lock 
•  IF critical section is very short (e.g. 1 digit # of instructions) 
•  IF interrupts are disabled so preemption is impossible 

•  Almost never appropriate in user-mode code 


