
Lecture 8
Page 1

CS 111
Fall 2016

Operating System Principles:
Mutual Exclusion and

Asynchronous Completion
CS 111

Operating Systems
Peter Reiher

Lecture 8
Page 2

CS 111
Fall 2016

Outline

•  Mutual Exclusion
•  Asynchronous Completions

Lecture 8
Page 3

CS 111
Fall 2016

Mutual Exclusion

•  Critical sections can cause trouble when more than
one thread executes them at a time
–  Each thread doing part of the critical section before any of

them do all of it

•  Preventable if we ensure that only one thread can
execute a critical section at a time

•  We need to achieve mutual exclusion of the critical
section

Lecture 8
Page 4

CS 111
Fall 2016

Critical Sections in Operating System
•  Operating systems are loaded with internal critical sections
•  Shared data used by concurrent threads

–  Process state variables
–  Resource pools
–  Device driver state

•  Logical parallelism
–  Created by preemptive scheduling and asynchronous

interrupts
•  Physical parallelism

–  Shared memory, symmetric multi-processors
•  OSes extensively use locks to avoid these problems

–  Without any user-visible effects

Lecture 8
Page 5

CS 111
Fall 2016

Critical Sections in Applications

•  Most common for multithreaded applications
– Which frequently share data structures

•  Can also happen with processes
– Which share operating system resources
– Like files

•  Avoidable if you don’t share resources of any
kind
– But that’s not always feasible

Lecture 8
Page 6

CS 111
Fall 2016

Recognizing Critical Sections

•  Generally involves updates to object state
– May be updates to a single object
– May be related updates to multiple objects

•  Generally involves multi-step operations
– Object state inconsistent until operation finishes
– Pre-emption compromises object or operation

•  Correct operation requires mutual exclusion
– Only one thread at a time has access to object(s)
– Client 1 completes before client 2 starts

Lecture 8
Page 7

CS 111
Fall 2016

Critical Sections and Atomicity
•  Using mutual exclusion allows us to achieve

atomicity of a critical section
•  Atomicity has two aspects:
1.  Before or After atomicity

–  A enters critical section before B starts
–  B enters critical section after A completes
–  There is no overlap

2.  All or None atomicity
–  An update that starts will complete
–  An uncompleted update has no effect

•  Correctness generally requires both

Lecture 8
Page 8

CS 111
Fall 2016

Options for Protecting
Critical Sections

•  Turn off interrupts
–  We covered that in the last class
–  Prevents concurrency

•  Avoid shared data whenever possible
•  Protect critical sections using hardware mutual

exclusion
–  In particular, atomic CPU instructions

Lecture 8
Page 9

CS 111
Fall 2016

Avoiding Shared Data

•  A good design choice when feasible
•  Don’t share things you don’t need to share
•  But not always an option
•  Even if possible, may lead to inefficient

resource use
•  Sharing read only data also avoids problems

–  If no writes, the order of reads doesn’t matter
– But a single write can blow everything out of the

water

Lecture 8
Page 10

CS 111
Fall 2016

Atomic Instructions

•  CPU instructions are uninterruptable
•  What can they do?

–  Read/modify/write operations
–  Can be applied to 1-8 contiguous bytes
–  Simple: increment/decrement, and/or/xor
–  Complex: test-and-set, exchange, compare-and-swap

•  Either do entire critical section in one atomic
instruction

•  Or use atomic instructions to implement locks
–  Use the lock operations to protect critical sections

Lecture 8
Page 11

CS 111
Fall 2016

Atomic Instructions – Test and Set

A C description of a machine language
instruction

bool TS(char *p) {
bool rc;
rc = *p; /* note the current value */
p = TRUE; / set the value to be TRUE */
return rc; /* return the value before we set it */

}

if !TS(flag) {
 /* We have control of the critical section! */

}

Lecture 8
Page 12

CS 111
Fall 2016

Atomic Instructions – Compare
and Swap

Again, a C description of machine instruction
bool compare_and_swap(int *p, int old, int new) {
if (*p == old) { /* see if value has been changed */

p = new; / if not, set it to new value */
return(TRUE); /* tell caller he succeeded */

} else /* value has been changed */
 return(FALSE); /* tell caller he failed */

}

if (compare_and_swap(flag,UNUSED,IN_USE) {
 /* I got the critical section! */

} else {
 /* I didn’t get it. */

}

Lecture 8
Page 13

CS 111
Fall 2016

Preventimg Concurrency Via
Atomic Instructions

•  CPU instructions are hardware-atomic
–  So if you can squeeze a critical section into one

instruction, no concurrency problems
•  What can you do in one instruction?

–  Simple operations like read/write
–  Some slightly more complex operations
– With careful design, some data structures can be

implemented this way
•  Limitations

– Unusable for complex critical sections
– Unusable as a waiting mechanism

Lecture 8
Page 14

CS 111
Fall 2016

Lock-Free Operations
•  Multi-thread safe data structures and operations

–  An alternative to locking or disabling interrupts
•  How do they work?

–  Carefully program data structure to perform critical
operations with one instruction

•  Allows:
–  Single reader/writer with ordinary instructions
–  Multi-reader/writer with atomic instructions
–  All-or-none and before-or-after semantics

•  Limitations
–  Unusable for complex critical sections
–  Unusable as a waiting mechanism

Lecture 8
Page 15

CS 111
Fall 2016

An Example

// push an element on to a singly linked LIFO list
void SLL_push(SLL *head, SLL *element) {

 do {
 SLL *prev = head->next;
 element->next = prev;
 } while (CompareAndSwap(&head->next, prev, element) != prev);

}

Lecture 8
Page 16

CS 111
Fall 2016

Evaluating Lock-Free Operations
•  Effectiveness/Correctness

– Effective against all conflicting updates
– Cannot be used for complex critical sections

•  Progress
– No possibility of deadlock or convoy

•  Fairness
–  Small possibility of brief spins
– Like the compare-and-swap while loop in example

•  Performance
– Expensive instructions, but cheaper than syscalls

Lecture 8
Page 17

CS 111
Fall 2016

Locking
•  Protect critical sections with a data structure

–  Use atomic instructions to implement that structure
•  Locks

–  The party holding a lock can access the critical section
–  Parties not holding the lock cannot access it

•  A party needing to use the critical section tries to
acquire the lock
–  If it succeeds, it goes ahead
–  If not . . .?

•  When finished with critical section, release the lock
–  Which someone else can then acquire

Lecture 8
Page 18

CS 111
Fall 2016

Using Locks

thread #1
counter = counter + 1;

thread #2
counter = counter + 1;

mov counter, %eax
add $0x1, %eax
mov %eax, counter

What looks like one instruction in C
gets compiled to:

Three instructions . . .

•  Remember this example?

•  How can we solve this with locks?

Lecture 8
Page 19

CS 111
Fall 2016

Using Locks For Mutual Exclusion

pthread_mutex_t lock;
pthread_mutex_init(&lock, NULL);
…
if (pthread_mutex_lock(&lock) == 0) {

 counter = counter + 1;
 pthread_mutex_unlock(&lock);

}
Now the three assembly instructions are mutually exclusive

Lecture 8
Page 20

CS 111
Fall 2016

What Happens When You Don’t
Get the Lock?

•  You could just give up
– But then you’ll never execute your critical section

•  You could try to get it again
•  But it still might not be available
•  So you could try to get it again . . .

Lecture 8
Page 21

CS 111
Fall 2016

Locks and Interrupts:
A Dangerous Combination

Synchronous Code

while(TS(lockp));
/* critical section */
…
*lockp = 0;

Interrupt Handler

while(TS(lockp));
/* critical section */
...

Synchronous code will never complete
So lock will never be released

Interrupt handler will loop
Interrupts disabled when handler entered

Interrupt handler can’t get the lock
Interrupts will remain disabled

Infinite Loop!
!

Lecture 8
Page 22

CS 111
Fall 2016

Spin Waiting
•  The computer science

equivalent
•  Check if the event

occurred
•  If not, check again
•  And again
•  And again
•  . . .

Lecture 8
Page 23

CS 111
Fall 2016

Spin Locks: Pluses and Minuses
•  Good points

– Properly enforces access to critical sections
•  Assuming properly implemented locks

– Simple to program

•  Dangers
– Wasteful

•  Spinning uses processor cycles

– Likely to delay freeing of desired resource
•  Spinning uses processor cycles

– Bug may lead to infinite spin-waits

Lecture 8
Page 24

CS 111
Fall 2016

How Do We Build Locks?
•  The very operation of locking and unlocking a

lock is itself a critical section
–  If we don’t protect it, two threads might acquire

the same lock
•  Sounds like a chicken-and-egg problem
•  But we can solve it with hardware assistance
•  Individual CPU instructions are atomic

– So if we can implement a lock with one
instruction . . .

Lecture 8
Page 25

CS 111
Fall 2016

Single Instruction Locks

•  Sounds tricky
•  The core operation of acquiring a lock (when

it’s free) requires:
1.  Check that no one else has it
2.  Change something so others know we have it

•  Sounds like we need to do two things in one
instruction

•  No problem – hardware designers have
provided for that

Lecture 8
Page 26

CS 111
Fall 2016

Building Locks From Single
Instructions

•  Requires a complex atomic instruction
– Test and set
– Compare and swap

•  Instruction must atomically:
– Determine if someone already has the lock
– Grant it if no one has it
– Return something that lets the caller know what

happened
•  Caller must honor the lock . . .

Lecture 8
Page 27

CS 111
Fall 2016

Using Atomic Instructions to
Implement a Lock

•  Assuming C implementation of test and set
bool getlock(lock *lockp) {
if (TS(lockp) == 0)

return(TRUE);
else

return(FALSE);
}
void freelock(lock *lockp) {
*lockp = 0;

}

Lecture 8
Page 28

CS 111
Fall 2016

Locks Come in Many Flavors
•  Lock and wait

–  Block until resource becomes available
•  Non-blocking

–  Return an error if resource is unavailable
•  Timed wait

–  Block a specified maximum time, then fail
•  Spin and wait (futex)

–  Spin briefly, and then join a waiting list
•  Strict FIFO

–  Join a FIFO queue of those waiting on the lock
–  Other wait options might not guarantee FIFO

Lecture 8
Page 29

CS 111
Fall 2016

The Asynchronous
Completion Problem

•  Parallel activities move at different speeds
•  One activity may need to wait for another to complete
•  The asynchronous completion problem is how to

perform such waits without killing performance
•  Examples of asynchronous completions

–  Waiting for an I/O operation to complete
–  Waiting for a response to a network request
–  Delaying execution for a fixed period of real time

Lecture 8
Page 30

CS 111
Fall 2016

How Can We Wait?
•  Spin locking/busy waiting
•  Yield and spin …
•  Either spin option may still require mutual

exclusion
•  Completion events

Lecture 8
Page 31

CS 111
Fall 2016

Spin Waiting For Asynchronous
Completions

•  Wastes CPU, memory, bus bandwidth
– Each path through the loop costs instructions

•  May actually delay the desired event
– One of your cores is busy spinning
– Maybe it could be doing the work required to

complete the event instead
– But it’s spinning . . .

Lecture 8
Page 32

CS 111
Fall 2016

Spinning Sometimes Makes Sense
1.  When awaited operation proceeds in parallel

– A hardware device accepts a command
– Another CPU releases a briefly held spin-lock

2.  When awaited operation is guaranteed to be soon
–  Spinning is less expensive than sleep/wakeup

3.  When spinning does not delay awaited operation
– Burning CPU delays running another process
– Burning memory bandwidth slows I/O

4.  When contention is expected to be rare
–  Multiple waiters greatly increase the cost

Lecture 8
Page 33

CS 111
Fall 2016

A Classic “spin-wait”
/* set a specified register in the ZZ controller to a specified value */

zzSetReg(struct zzcontrol *dp, short reg, long value) {
 while((dp->zz_status & ZZ_CMD_READY) == 0)
 ;
 dp->zz_value = value;
 dp->zz_reg = reg;
 dp->zz_cmd = ZZ_SET_REG;

}

/* program the ZZ for a specified DMA read or write operation */

zzStartIO(struct zzcontrol *dp, struct ioreq *bp) {

 zzSetReg(dp, ZZ_R_ADDR, bp->buffer_start);

 zzSetReg(dp, ZZ_R_LEN, bp->buffer_length);

 zzSetReg(dp, ZZ_R_CMD, bp->write ? ZZ_C_WRITE : ZZ_C_READ);

 zzSetReg(dp, ZZ_R_CTRL, ZZ_INTR + ZZ_GO);

}

No guarantee
that hardware
is ready when

this routine
returns.

Lecture 8
Page 34

CS 111
Fall 2016

Yield and Spin

•  Check if your event occurred
•  Maybe check a few more times
•  But then yield
•  Sooner or later you get rescheduled
•  And then you check again
•  Repeat checking and yielding until your event

is ready

Lecture 8
Page 35

CS 111
Fall 2016

Problems With Yield and Spin

•  Extra context switches
– Which are expensive

•  Still wastes cycles if you spin each time you’re
scheduled

•  You might not get scheduled to check until
long after event occurs

•  Works very poorly with multiple waiters

Lecture 8
Page 36

CS 111
Fall 2016

Another Approach: Condition
Variables

•  Create a synchronization object associated
with a resource or request
– Requester blocks awaiting event on that object
– Upon completion, the event is “posted”
– Posting event to object unblocks the waiter

blocked ready

running exit

post

create

wait

Lecture 8
Page 37

CS 111
Fall 2016

Condition Variables and the OS

•  Generally the OS provides condition variables
– Or library code that implements threads does

•  It blocks a process or thread when condition
variable is used
– Moving it out of the ready queue

•  It observes when the desired event occurs
•  It then unblocks the blocked process or thread

– Putting it back in the ready queue
– Possibly preempting the running process

Lecture 8
Page 38

CS 111
Fall 2016

Waiting Lists
•  Likely to have threads waiting on several

different things
•  Pointless to wake up everyone on every event

– Each should wake up when his event happens
•  Suggests all events need a waiting list

– When posting an event, look up who to awaken
•  Wake up everyone on the list?
•  One-at-a-time in FIFO order?
•  One-at-a-time in priority order (possible starvation)?

– Choice depends on event and application

Lecture 8
Page 39

CS 111
Fall 2016

Who To Wake Up?

•  Who wakes up when a condition variable is
signaled?
– pthread_cond_wait … at least one blocked thread
– pthread_cond_broadcast … all blocked threads

•  The broadcast approach may be wasteful
–  If the event can only be consumed once
– Potentially unbounded waiting times

•  A waiting queue would solve these problems
– Each post wakes up the first client on the queue

Lecture 8
Page 40

CS 111
Fall 2016

Evaluating Waiting List Options

•  Effectiveness/Correctness
– Should be very good

•  Progress
– There is a trade-off involving cutting in line

•  Fairness
– Should be very good

•  Performance
– Should be very efficient
– Depends on frequency of spurious wakeups

Lecture 8
Page 41

CS 111
Fall 2016

Locking and Waiting Lists

•  Spinning for a lock is usually a bad thing
– Locks should probably have waiting lists

•  A waiting list is a (shared) data structure
–  Implementation will likely have critical sections
– Which may need to be protected by a lock

•  This seems to be a circular dependency
– Locks have waiting lists
– Which must be protected by locks
– What if we must wait for the waiting list lock?

Lecture 8
Page 42

CS 111
Fall 2016

A Possible Problem

•  The sleep/wakeup race condition

void sleep(eventp *e) {
while(e->posted == FALSE) {

add_to_queue(&e->queue,
myproc);
myproc->runstate |= BLOCKED;
yield();

}
}

void wakeup(eventp *e) {
 struct proce *p;

 e->posted = TRUE;
 p = get_from_queue(&e->
queue);
 if (p) {

 p->runstate &= ~BLOCKED;
 resched();

 } /* if !p, nobody’s
waiting */
}

Consider this sleep code: And this wakeup code:

What’s the problem with this?

Lecture 8
Page 43

CS 111
Fall 2016

A Sleep/Wakeup Race

•  Let’s say thread B is using a resource and
thread A needs to get it

•  So thread A will call sleep()
•  Meanwhile, thread B finishes using the

resource
– So thread B will call wakeup()

•  No other threads are waiting for the resource

Lecture 8
Page 44

CS 111
Fall 2016

The Race At Work
void sleep(eventp *e) {

while(e->posted == FALSE) {

void wakeup(eventp *e) {
struct proce *p;

e->posted = TRUE;
p = get_from_queue(&e-> queue);

if (p) {

 } /* if !p, nobody’s waiting */
}

Nope, nobody’s in the queue!

add_to_queue(&e->queue, myproc);

myproc->runsate |= BLOCKED;
yield();

 }
 }

Yep, somebody’s locked it!

Thread A Thread B

The effect?
Thread A is sleeping But there’s no one to

wake him up

CONTEXT SWITCH!

CONTEXT SWITCH!

Lecture 8
Page 45

CS 111
Fall 2016

Solving the Problem

•  There is clearly a critical section in sleep()
– Starting before we test the posted flag
– Ending after we put ourselves on the notify list

•  During this section, we need to prevent
– Wakeups of the event
– Other people waiting on the event

•  This is a mutual-exclusion problem
– Fortunately, we already know how to solve those

Lecture 8
Page 46

CS 111
Fall 2016

Progress vs. Fairness
•  Consider …

–  P1: lock(), park()
–  P2: unlock(), unpark()
–  P3: lock()

•  Progress says:
–  It is available, so P3 gets it
–  Spurious wakeup of P1

•  Fairness says:
–  FIFO, P3 gets in line
–  And a convoy forms

void	unlock(lock_t	*m)	{	

	while	(TestAndSet(&m->guard,	1)	==	1);	
 m->locked = 0;	
	if	(!queue_empty(m->q))	
 unpark(queue_remove(m->q);
 m->guard = 0;

}	

void	lock(lock_t	*m)	{	
	while(true)	{	
	 	while	(TestAndSet(&m->guard,	1)	==	1);	
	 	if	(!m->locked)	{	
	 	 	m->locked	=	1;	
	 	 	m->guard	=	0;	
	 	 	return;	
	 	}		
	 	queue_add(m->q,	me);	
	 	m->guard	=	0;	
	 	park();	
	}	

}	

Lecture 8
Page 47

CS 111
Fall 2016

Spin-Waits Revisited

•  Spin-waits await asynchronous completions
– But they do so by busy-waiting
 while (event_not_ready) ;

•  Sleep/wake-up is almost always better
–  Fewer wasted cycles and faster response
– But these are software completion mechanisms

•  There are hardware-related situations where they don't work
(or don't make sense)

•  There are cases where it makes sense to spin
– Very briefly for events originating outside our CPU

Lecture 8
Page 48

CS 111
Fall 2016

Spin-waits: when to use them
•  When the event does not come from our CPU

–  So spinning will not delay the completion
•  And waiting time guaranteed to be very brief

–  Fewer cycles than would be required to go to sleep
•  Examples:

– Waiting a few µ-seconds for hardware to come ready
•  IF it is guaranteed to be come back promptly

– Waiting for another CPU to release a lock
•  IF critical section is very short (e.g. 1 digit # of instructions)
•  IF interrupts are disabled so preemption is impossible

•  Almost never appropriate in user-mode code

