
Lecture 10
Page 1

CS 111
Fall 2016

Operating System Principles:
Deadlocks – Problems and

Solutions
CS 111

Operating Systems
Peter Reiher

Lecture 10
Page 2

CS 111
Fall 2016

Outline

•  The deadlock problem
– Approaches to handling the problem

•  Handling general synchronization bugs
•  Simplifying synchronization

Lecture 10
Page 3

CS 111
Fall 2016

Deadlock

•  What is a deadlock?
•  A situation where two entities have each

locked some resource
•  Each needs the other’s locked resource to

continue
•  Neither will unlock till they lock both

resources
•  Hence, neither can ever make progress

Lecture 10
Page 4

CS 111
Fall 2016

The Dining Philosophers Problem

Philosophers eat
whenever they
choose to

A philosopher needs
two forks to eat
pasta, but must pick
them up one at a time

The problem
demands an
absolute solution

Five philosophers
five plates of pasta
five forks

Philosophers will not
negotiate with
one-another

Lecture 10
Page 5

CS 111
Fall 2016

Dining Philosophers and Deadlock

•  This problem is the classical illustration of
deadlocking

•  It was created to illustrate deadlock problems
•  It is a very artificial problem

–  It was carefully designed to cause deadlocks
– Changing the rules eliminate deadlocks
– But then it couldn't be used to illustrate deadlocks
– Actually, one point of it is to see how changing the

rules solves the problem

Lecture 10
Page 6

CS 111
Fall 2016

Why Are Deadlocks Important?
•  A major peril in cooperating parallel processes

–  They are relatively common in complex applications
–  They result in catastrophic system failures

•  Finding them through debugging is very difficult
–  They happen intermittently and are hard to diagnose
–  They are much easier to prevent at design time

•  Once you understand them, you can avoid them
–  Most deadlocks result from careless/ignorant design
–  An ounce of prevention is worth a pound of cure

Lecture 10
Page 7

CS 111
Fall 2016

Deadlocks May Not Be Obvious
•  Process resource needs are ever-changing

– Depending on what data they are operating on
– Depending on where in computation they are
– Depending on what errors have happened

•  Modern software depends on many services
– Most of which are ignorant of one-another
– Each of which requires numerous resources

•  Services encapsulate much complexity
– We do not know what resources they require
– We do not know when/how they are serialized

Lecture 10
Page 8

CS 111
Fall 2016

Deadlocks and Different
Resource Types

•  Commodity Resources
–  Clients need an amount of it (e.g. memory)
–  Deadlocks result from over-commitment
–  Avoidance can be done in resource manager

•  General Resources
–  Clients need a specific instance of something

•  A particular file or semaphore
•  A particular message or request completion

–  Deadlocks result from specific dependency relationships
–  Prevention is usually done at design time

Lecture 10
Page 9

CS 111
Fall 2016

Four Basic Conditions
For Deadlocks

•  For a deadlock to occur, these conditions must
hold:

1.  Mutual exclusion
2.  Incremental allocation
3.  No pre-emption
4.  Circular waiting

Lecture 10
Page 10

CS 111
Fall 2016

Deadlock Conditions: 1. Mutual
Exclusion

•  The resources in question can each only be
used by one entity at a time

•  If multiple entities can use a resource, then just
give it to all of them

•  If only one can use it, once you’ve given it to
one, no one else gets it
– Until the resource holder releases it

Lecture 10
Page 11

CS 111
Fall 2016

Deadlock Condition 2:
Incremental Allocation

•  Processes/threads are allowed to ask for
resources whenever they want
– As opposed to getting everything they need before

they start
•  If they must pre-allocate all resources, either:

– They get all they need and run to completion
– They don’t get all they need and abort

•  In either case, no deadlock

Lecture 10
Page 12

CS 111
Fall 2016

Deadlock Condition 3: No
Pre-emption

•  When an entity has reserved a resource, you
can’t take it away from him
– Not even temporarily

•  If you can, deadlocks are simply resolved by
taking someone’s resource away
– To give to someone else

•  But if you can’t take it away from anyone,
you’re stuck

Lecture 10
Page 13

CS 111
Fall 2016

Deadlock Condition 4: Circular
Waiting

•  A waits on B which waits on A
•  In graph terms, there’s a cycle in a graph of

resource requests
•  Could involve a lot more than two entities
•  But if there is no such cycle, someone can

complete without anyone releasing a resource
– Allowing even a long chain of dependencies to

eventually unwind
– Maybe not very fast, though . . .

Lecture 10
Page 14

CS 111
Fall 2016

A Wait-For Graph

Thread 1 Thread 2

Critical
Section

A

Critical
Section

B

Thread 1
acquires a
lock for
Critical

Section A

Thread 2
acquires a
lock for
Critical

Section B

Thread 1
requests a
lock for
Critical

Section B

Thread 2
requests a
lock for
Critical

Section A

No problem!

Deadlock!

We can’t give him
the lock right now,

but . . .

Hmmmm . . .

Lecture 10
Page 15

CS 111
Fall 2016

Deadlock Avoidance

•  Use methods that guarantee that no deadlock
can occur, by their nature

•  Advance reservations
– The problems of under/over-booking
– The Bankers’ Algorithm

•  Practical commodity resource management
•  Dealing with rejection
•  Reserving critical resources

Lecture 10
Page 16

CS 111
Fall 2016

Avoiding Deadlock Using
Reservations

•  Advance reservations for commodity resources
– Resource manager tracks outstanding reservations
– Only grants reservations if resources are available

•  Over-subscriptions are detected early
– Before processes ever get the resources

•  Client must be prepared to deal with failures
–  But these do not result in deadlocks

•  Dilemma: over-booking vs. under-utilization

Lecture 10
Page 17

CS 111
Fall 2016

Overbooking Vs. Under Utilization
•  Processes generally cannot perfectly predict

their resource needs
•  To ensure they have enough, they tend to ask

for more than they will ever need
•  Either the OS:

– Grants requests till everything’s reserved
•  In which case most of it won’t be used

– Or grants requests beyond the available amount
•  In which case sometimes someone won’t get a resource

he reserved

Lecture 10
Page 18

CS 111
Fall 2016

Handling Reservation Problems

•  Clients seldom need all resources all the time
•  All clients won't need max allocation at the

same time
•  Question: can one safely over-book resources?

–  For example, seats on an airplane

•  What is a “safe” resource allocation?
–  One where everyone will be able to complete
–  Some people may have to wait for others to complete
–  We must be sure there are no deadlocks

Lecture 10
Page 19

CS 111
Fall 2016

Commodity Resource
Management in Real Systems

•  Advanced reservation mechanisms are common
–  Memory reservations
–  Disk quotas, Quality of Service contracts

•  Once granted, system must guarantee reservations
–  Allocation failures only happen at reservation time
–  Hopefully before the new computation has begun
–  Failures will not happen at request time
–  System behavior more predictable, easier to handle

•  But clients must deal with reservation failures

Lecture 10
Page 20

CS 111
Fall 2016

Dealing With Reservation Failures
•  Resource reservation eliminates deadlock
•  Apps must still deal with reservation failures

– Application design should handle failures
gracefully
•  E.g., refuse to perform new request, but continue

running

– App must have a way of reporting failure to
requester
•  E.g., error messages or return codes

– App must be able to continue running
•  All critical resources must be reserved at start-up time

Lecture 10
Page 21

CS 111
Fall 2016

Isn’t Rejecting App Requests Bad?

•  It’s not great, but it’s better than failing later
•  With advance notice, app may be able to adjust

service not to need the unavailable resource
•  If app is in the middle of servicing a request,

we may have other resources allocated
– And the request half-performed
–  If we fail then, all of this will have to be unwound
– Could be complex, or even impossible

Lecture 10
Page 22

CS 111
Fall 2016

System Services and Reservations
•  System services must never deadlock for memory
•  Potential deadlock: swap manager

–  Invoked to swap out processes to free up memory
–  May need to allocate memory to build I/O request
–  If no memory available, unable to swap out processes
–  So it can’t free up memory, and system wedges

•  Solution:
–  Pre-allocate and hoard a few request buffers
–  Keep reusing the same ones over and over again
–  Little bit of hoarded memory is a small price to pay to

avoid deadlock

•  That’s just one example system service, of course

Lecture 10
Page 23

CS 111
Fall 2016

Deadlock Prevention

•  Deadlock avoidance tries to ensure no lock
ever causes deadlock

•  Deadlock prevention tries to assure that a
particular lock doesn’t cause deadlock

•  By attacking one of the four necessary
conditions for deadlock

•  If any one of these conditions doesn’t hold, no
deadlock

Lecture 10
Page 24

CS 111
Fall 2016

Four Basic Conditions
For Deadlocks

•  For a deadlock to occur, these conditions must
hold:

1.  Mutual exclusion
2.  Incremental allocation
3.  No pre-emption
4.  Circular waiting

Lecture 10
Page 25

CS 111
Fall 2016

1. Mutual Exclusion

•  Deadlock requires mutual exclusion
– P1 having the resource precludes P2 from getting it

•  You can't deadlock over a shareable resource
– Perhaps maintained with atomic instructions
– Even reader/writer locking can help

•  Readers can share, writers may be handled other ways

•  You can't deadlock on your private resources
– Can we give each process its own private

resource?

Lecture 10
Page 26

CS 111
Fall 2016

2. Incremental Allocation
•  Deadlock requires you to block holding resources

while you ask for others
1.  Allocate all of your resources in a single operation

–  If you can’t get everything, system returns failure and
locks nothing

–  When you return, you have all or nothing
2.  Non-blocking requests

–  A request that can't be satisfied immediately will fail
3.  Disallow blocking while holding resources

–  You must release all held locks prior to blocking
–  Reacquire them again after you return

Lecture 10
Page 27

CS 111
Fall 2016

Releasing Locks Before Blocking
•  Could be blocking for a reason not related to

resource locking
•  How can releasing locks before you block

help?
•  Won’t the deadlock just occur when you

attempt to reacquire them?
– When you reacquire them, you will be required to

do so in a single all-or-none transaction
–  Such a transaction does not involve hold-and-

block, and so cannot result in a deadlock

Lecture 10
Page 28

CS 111
Fall 2016

3. No Pre-emption

•  Deadlock can be broken by resource confiscation
–  Resource “leases” with time-outs and “lock breaking”
–  Resource can be seized & reallocated to new client

•  Revocation must be enforced
–  Invalidate previous owner's resource handle
–  If revocation is not possible, kill previous owner

•  Some resources may be damaged by lock breaking
–  Previous owner was in the middle of critical section
–  May need mechanisms to audit/repair resource

•  Resources must be designed with revocation in mind

Lecture 10
Page 29

CS 111
Fall 2016

When Can The OS “Seize” a
Resource?

•  When it can revoke access by invalidating a
process’ resource handle
–  If process has to use a system service to access the

resource, that service can no longer honor requests
•  When is it not possible to revoke a process’

access to a resource?
–  If the process has direct access to the object

•  E.g., the object is part of the process’ address space
•  Revoking access requires destroying the address space
•  Usually killing the process.

Lecture 10
Page 30

CS 111
Fall 2016

4. Circular Dependencies
•  Use total resource ordering

– All requesters allocate resources in same order
– First allocate R1 and then R2 afterwards
– Someone else may have R2 but he doesn't need R1

•  Assumes we know how to order the resources
– Order by resource type (e.g. groups before

members)
– Order by relationship (e.g. parents before children)

•  May require a lock dance
–  Release R2, allocate R1, reacquire R2

Lecture 10
Page 31

CS 111
Fall 2016

Lock Dances
buffer list head

To find a desired buffer:

 read lock list head
 search for desired buffer
 lock desired buffer
 unlock list head
 return (locked) buffer

To delete a (locked) buffer from list

 unlock buffer
 write lock list head
 search for desired buffer
 lock desired buffer
 remove from list
 unlock list head

buffer buffer

list head must be locked for
searching, adding & deleting

individual buffers must be locked to
perform I/O & other operations

To avoid deadlock, we must always lock the list head
before we lock an individual buffer.

Lecture 10
Page 32

CS 111
Fall 2016

An Example of Breaking
Deadlocks

•  The problem – urban traffic gridlock
– “Resource” is the ability to pass through

intersection
– Deadlock happens when nobody can get through

Lecture 10
Page 33

CS 111
Fall 2016

Using Attack Approach 1 To
Prevent Deadlock

•  Avoid mutual exclusion
•  Build overpass bridges for east/west traffic

Lecture 10
Page 34

CS 111
Fall 2016

Using Attack Approach 2 To
Prevent Deadlock

•  Make it illegal to enter the intersection if you
can’t exit it
– Thus, preventing “holding” of the intersection

Lecture 10
Page 35

CS 111
Fall 2016

Using Attack Approach 3 To
Prevent Deadlock

•  Allow preemption
– Force some car to pull over to the side

Lecture 10
Page 36

CS 111
Fall 2016

Using Attack Approach 4 To
Prevent Deadlock

•  Avoid circular dependencies by decreeing a
totally ordered right of way
– E.g., North beats West beats South beats East

Lecture 10
Page 37

CS 111
Fall 2016

Which Approach Should You Use?

•  There is no one universal solution to all deadlocks
–  Fortunately, we don't need one solution for all resources
–  We only need a solution for each resource

•  Solve each individual problem any way you can
–  Make resources sharable wherever possible
–  Use reservations for commodity resources
–  Ordered locking or no hold-and-block where possible
–  As a last resort, leases and lock breaking

•  OS must prevent deadlocks in all system services
–  Applications are responsible for their own behavior

Lecture 10
Page 38

CS 111
Fall 2016

One More Deadlock “Solution”

•  Ignore the problem
•  In many cases, deadlocks are very improbable
•  Doing anything to avoid or prevent them might

be very expensive
•  So just forget about them and hope for the best
•  But what if the best doesn’t happen?

Lecture 10
Page 39

CS 111
Fall 2016

Deadlock Detection and Recovery

•  Allow deadlocks to occur
•  Detect them once they have happened

– Preferably as soon as possible after they occur

•  Do something to break the deadlock and allow
someone to make progress

•  Is this a good approach?
– Either in general or when you don’t want to avoid

or prevent deadlocks?

Lecture 10
Page 40

CS 111
Fall 2016

Implementing Deadlock Detection

•  Need to identify all resources that can be
locked

•  Need to maintain wait-for graph or equivalent
structure

•  When lock requested, structure is updated and
checked for deadlock
–  In which case, might it not be better just to reject

the lock request?
– And not let the requester block?

Lecture 10
Page 41

CS 111
Fall 2016

Dealing With General
Synchronization Bugs

•  Deadlock detection seldom makes sense
–  It is extremely complex to implement
–  Only detects true deadlocks for a known resource
–  Not always clear cut what you should do if you detect one

•  Service/application health monitoring is better
–  Monitor application progress/submit test transactions
–  If response takes too long, declare service “hung”

•  Health monitoring is easy to implement
•  It can detect a wide range of problems

–  Deadlocks, live-locks, infinite loops & waits, crashes

Lecture 10
Page 42

CS 111
Fall 2016

Related Problems Health
Monitoring Can Handle

•  Live-lock
–  Process is running, but won't free R1 until it gets message
–  Process that will send the message is blocked for R1

•  Sleeping Beauty, waiting for “Prince Charming”
–  A process is blocked, awaiting some completion that will never happen

•  Priority inversion hangs
–  Which we talked about before

•  None of these is a true deadlock
–  Wouldn't be found by deadlock detection algorithm
–  All leave the system just as hung as a deadlock

•  Health monitoring handles them

Lecture 10
Page 43

CS 111
Fall 2016

How To Monitor Process Health
•  Look for obvious failures

– Process exits or core dumps

•  Passive observation to detect hangs
–  Is process consuming CPU time, or is it blocked?
–  Is process doing network and/or disk I/O?

•  External health monitoring
– “Pings”, null requests, standard test requests

•  Internal instrumentation
– White box audits, exercisers, and monitoring

Lecture 10
Page 44

CS 111
Fall 2016

What To Do With “Unhealthy”
Processes?

•  Kill and restart “all of the affected software”
•  How many and which processes to kill?

–  As many as necessary, but as few as possible
–  The hung processes may not be the ones that are broken

•  How will kills and restarts affect current clients?
–  That depends on the service APIs and/or protocols
–  Apps must be designed for cold/warm/partial restarts

•  Highly available systems define restart groups
–  Groups of processes to be started/killed as a group
–  Define inter-group dependencies (restart B after A)

Lecture 10
Page 45

CS 111
Fall 2016

Failure Recovery Methodology

•  Retry if possible ... but not forever
–  Client should not be kept waiting indefinitely
–  Resources are being held while waiting to retry

•  Roll-back failed operations and return an error
•  Continue with reduced capacity or functionality

–  Accept requests you can handle, reject those you can't

•  Automatic restarts (cold, warm, partial)
•  Escalation mechanisms for failed recoveries

–  Restart more groups, reboot more machines

Lecture 10
Page 46

CS 111
Fall 2016

Making Synchronization Easier

•  Locks, semaphores, mutexes are hard to use
correctly
– Might not be used when needed
– Might be used incorrectly
– Might lead to deadlock, livelock, etc.

•  We need to make synchronization easier for
programmers
– But how?

Lecture 10
Page 47

CS 111
Fall 2016

One Approach

•  We identify shared resources
– Objects whose methods may require serialization

•  We write code to operate on those objects
– Just write the code
– Assume all critical sections will be serialized

•  Complier generates the serialization
– Automatically generated locks and releases
– Using appropriate mechanisms
– Correct code in all required places

Lecture 10
Page 48

CS 111
Fall 2016

Monitors – Protected Classes

•  Each monitor class has a semaphore
– Automatically acquired on method invocation
– Automatically released on method return
– Automatically released/acquired around CV waits

•  Good encapsulation
– Developers need not identify critical sections
– Clients need not be concerned with locking
– Protection is completely automatic

•  High confidence of adequate protection

Lecture 10
Page 49

CS 111
Fall 2016

monitor CheckBook {

 // class is locked when any method is invoked

 private int balance;

 public int balance() {

 return(balance);

 }

 public int debit(int amount) {

 balance -= amount;

 return(balance)

 }

}

Monitors: Use

Lecture 10
Page 50

CS 111
Fall 2016

Monitors: Simplicity vs. Performance

•  Monitor locking is very conservative
– Lock the entire class (not merely a specific object)
– Lock for entire duration of any method invocations

•  This can create performance problems
– They eliminate conflicts by eliminating parallelism
–  If a thread blocks in a monitor a convoy can form

•  TANSTAAFL
– Fine-grained locking is difficult and error prone
– Coarse-grained locking creates bottle-necks

Lecture 10
Page 51

CS 111
Fall 2016

Evaluating Monitors

•  Correctness
– Complete mutual exclusion is assured

•  Fairness
– Semaphore queue prevents starvation

•  Progress
–  Inter-class dependencies can cause deadlocks

•  Performance
– Coarse grained locking is not scalable

Lecture 10
Page 52

CS 111
Fall 2016

Java Synchronized Methods

•  Each object has an associated mutex
– Acquired before calling a synchronized method
– Nested calls (by same thread) do not reacquire
– Automatically released upon final return

•  Static synchronized methods lock class mutex
•  Advantages

– Finer lock granularity, reduced deadlock risk
•  Costs

– Developer must identify serialized methods

Lecture 10
Page 53

CS 111
Fall 2016

class CheckBook {

 private int balance;

 public int balance() {

 return(balance);

 }

 // object is locked when this method is invoked

 public synchronized int debit(int amount) {

 balance -= amount;

 return(balance)

 }

}

Using Java Synchronized
Methods

Lecture 10
Page 54

CS 111
Fall 2016

Evaluating Java Synchronized
Methods

•  Correctness
– Correct if developer chose the right methods

•  Fairness
– Priority thread scheduling (potential starvation)

•  Progress
– Safe from single thread deadlocks

•  Performance
– Fine grained (per object) locking
– Selecting which methods to synchronize

