
Security for Operating Systems 

Introduction 

Security of computing systems is a vital topic whose importance only keeps increasing.  
Much money has been lost and many people’s lives have been harmed when computer 
security has failed.  Attacks on computer systems are so common as to be inevitable in 
almost any scenario where you perform computing.  Generally, all elements of a 
computer system can be subject to attack, and flaws in any of them can give an attacker 
an opportunity to do something you want to prevent.  But operating systems are 
particularly important from a security perspective.  Why?  

To begin with, pretty much everything runs on top of an operating system. As a rule, if 
the software you are running on top of, whether it be an operating system, a piece of 
middleware, or something else, is insecure, what’s above it is going to also be insecure.  
It’s like building a house on sand.  You may build a nice solid structure, but a flood can 
still wash away the base underneath your home, totally destroying it despite the care you 
took in its construction. Similarly, your application might perhaps have no security flaws 
of its own, but if the attacker can misuse the software underneath you to steal your 
information, crash your program, or otherwise cause you harm, your own efforts to 
secure your code might be for naught. 

This point is especially important for operating systems.  You might not care about the 
security of a particular web server or database system if you don’t run that software, and 
you might not care about the security of some middleware platform that you don’t use, 
but everyone runs an operating system.  Thus, security flaws in an operating system, 
especially a widely used one, have an immense impact on many users and many pieces of 
software.   

Another reason that operating system security is so important is that ultimately all of our 
software relies on proper behavior of the underlying hardware: the processor, the 
memory, and the peripheral devices.  What has ultimate control of those hardware 
resources?  The operating system.  It can make your memory readable or writeable by 
another process, it can starve you of cycles, it can corrupt the messages you send via your 
network card, it can wipe data off your disk, or do pretty much anything else with the 
hardware you rely on.  You trust the operating system not to do any of those things, but 
your trust relies on the assumption that the OS contains no flaws that will allow an 
attacker to make it misbehave. 

Thinking about what you have already studied concerning memory management, 
scheduling, file systems, synchronization, and so forth, what would happen with each of 
these components of your operating system if an opponent could force it to behave in 
some arbitrarily bad way?  If you understand what you’ve learned so far, you should find 
this prospect deeply disturbing.  Our computing lives depend on our operating systems 
behaving as they have been defined to behave, and particularly on them not behaving in 
ways that benefit our opponents, rather than us. 



The task of securing an operating system is not an easy one, since modern operating 
systems are large and complex.  Your experience in writing code should have already 
pointed out to you that the more code you’ve got, and the more complex the algorithms 
are, the more likely your code is to contain flaws.  Failures in software security generally 
arise from these kinds of flaws.  So large, complex programs are likely to be harder to 
secure than small, simple programs.  Not many other programs are as large and complex 
as a modern operating system. 

Another challenge in securing operating systems is that they are, for the most part, meant 
to support multiple processes simultaneously.  As you’ve learned, there are many 
mechanisms in an operating system meant to segregate processes from each other, and to 
protect shared pieces of hardware from being used in ways that interfere with other 
processes.  If we fully trusted every process running on our machine to do anything it 
wants with any hardware resource and any piece of data on the machine, securing the 
system would be a lot easier.  However, we typically don’t trust everything equally.  
When you download and run a script from a web site you haven’t visited before, do you 
really want it to be able to wipe every file from your disk, kill all your other processes, 
and start using your network interface to send spam email to other machines?  Probably 
not, but if you are the owner of your computer, you have the right to do all those things, if 
that’s what you want to do.  And unless the operating system is careful, any process it 
runs, including the one running that script you downloaded, can do anything you can do. 

Consider the issue of operating system security from a different perspective.  One role of 
an operating system is to provide useful abstractions for application programs to build on.  
These applications must rely on the OS implementations of the abstractions to work as 
they are defined.  Often, one part of the definition of such abstractions is their security 
behavior.  For example, we expect that the operating system’s file system will enforce the 
access restrictions it is supposed to enforce.  Applications can then build on this 
expectation to achieve the security goals they require, such as counting on the file system 
access guarantees to ensure that a file they have specified as unwritable does not get 
altered.  If the applications cannot rely on proper implementation of OS abstraction 
security guarantees, then they cannot use these abstractions to achieve their own security 
goals.  At the minimum, that implies a great deal more work on the part of the application 
developers, since they will need to take extra measures to achieve their desired security 
goals.   Taking into account our earlier discussion, they will often be unable to achieve 
these goals if the abstractions they must rely on (such as virtual memory and a well-
defined scheduling policy) cannot be trusted. 

THE CRUX OF THE PROBLEM 
HOW CAN WE SECURE OS RESOURCES? 

In the face of multiple possibly concurrent and interacting processes running on the 
same machine, how can we ensure that the resources each process is permitted to 
access are exactly those it should access, in exactly the ways we desire?  What 
primitives are needed from the OS?  What mechanisms should be provided by the 
hardware?  How can we use them to solve the problems of security?  



Obviously operating system security is vital, yet hard to achieve.  So what do we do to 
secure our operating system?  Addressing that question has been a challenge for 
generations of computer scientists, and there is as yet no complete answer.  But there are 
some important principles and tools we can use to secure operating systems.  These are 
generally built into any general-purpose operating system you are likely to work with, 
and they alter what can be done with that system and how you go about doing it.  So even 
if you don’t personally care at all about security, understanding what your OS does to 
secure itself is necessary to understand how to get the system to do what you want.   

What Are We Protecting? 

We aren’t likely to achieve good protection unless we have a fairly comprehensive view 
of what we’re trying to protect when we say our operating system should be secure.  
Fortunately, that question is easy to answer for an operating system, at least at the high 
level:  everything.  That answer isn’t very comforting, but it is best to have a realistic 
understanding of the broad implications of operating system security. 

A typical commodity operating system has complete control of all hardware on the 
machine and is able to do literally anything the hardware permits.  That means it can 
control the processor, read and write all registers, examine any main memory location, 
and perform any operation one of its peripherals supports.  As a result, among the things 
the OS can do are: 

• examine or alter any process’ memory 
• read, write, delete or corrupt any file on any writeable persistent 

storage medium, including hard disks and flash drives 
• change the scheduling or even halt execution of any process 
• send any message to anywhere, including altered versions of those 

a process wished to send 
• enable or disable any peripheral device 
• give any process access to any other process’ resources 
• arbitrarily take away any resource a process controls 
• respond to any system call with a maximally harmful lie 

In essence, processes are at the mercy of the operating system.  It is nearly impossible for 
a process to “protect” any part of itself from a malicious operating system.  We typically 
assume our operating system is not actually malicious1, but a flaw that allows a malicious 
process to cause the operating system to misbehave is nearly as bad, since it could 
potentially allow that process to gain any of the powers of the operating system itself.   

This point should make you think very seriously about the importance of designing 
secure operating systems and, more commonly, applying security patches to any 
operating system you are running.  Security flaws in your operating system can 

                                                 
1 If you suspect your operating system is malicious, it’s time to get a new operating 
system. 



completely compromise everything about the machine the system runs on, so preventing 
them and patching any that are found is vitally important. 

Security Goals and Policies 

What do we mean when we say we want an operating system, or any system, to be 
secure?  That’s a rather vague statement.   What we really mean is that there are things 
we would like to happen in the system and things we don’t want to happen, and we’d like 
a high degree of assurance that we get what we want.  As in most other aspects of life, we 
usually end up paying for what we get, so it’s worthwhile to think about exactly what 
security properties and effects we actually need and then pay only for those, not for other 
things we don’t need.  What this boils down to is that we want to specify the goals we 
have for the security-relevant behavior of our system and choose defense approaches 
likely to achieve those goals at a reasonable cost. 

Researchers in security have thought about this issue in broad terms for a long time.  At a 
high conceptual level, they have defined three big security-related goals that are common 
to many systems, including operating systems.  They are: 

• Confidentiality – Keep your secrets.  If some piece of information 
is supposed to be hidden from others, don’t allow them to find it 
out.  For example, you don’t want someone to learn what your 
credit card number is – you want that number kept confidential. 

• Integrity – If some piece of information or component of a system 
is supposed to be in a particular state, don’t allow an opponent to 
change it.  For example, if you’ve placed an online order for 
delivery of one pepperoni pizza, you don’t want a malicious 
prankster to change your order to 1000 anchovy pizzas. 

• Availability – If some information or service is supposed to be 
available for your own or others’ use, make sure an attacker cannot 
prevent its use.  For example, if your business is having a big sale, 
you don’t want your competitors to be able to block off the streets 
around your store, preventing your customers from reaching you. 

These are big, general goals.  For a real system, you need to drill down to more detailed, 
specific goals.  In a typical operating system, for example, we might have a 
confidentiality goal stating that a process’ memory space cannot be arbitrarily read by 
another process.  We might have an integrity goal stating that if a user writes a record to a 
particular file, another user who should not be able to write that file can’t change the 
record.  We might have an availability goal stating that one process running on the 
system cannot hog the CPU and prevent other processes from getting their share of the 
CPU.  If you think back on what you’ve learned about the process abstraction, memory 
management, scheduling, file systems, IPC, and other topics from this class, you should 
be able to think of some other obvious confidentiality, integrity, and availability goals we 
are likely to want in our operating systems. 

For any particular system, even goals at this level are not sufficiently specific.  The 
integrity goal alluded to above, where a user’s file should not be overwritten by another 



user not permitted to do so, gives you a hint about the extra specificity we need in our 
security goals for a particular system.  Maybe there is some user who should be able to 
overwrite the file, as might be the case when two people are collaborating on writing a 
report.  But that doesn’t mean an unrelated third user should be able to write that file, if 
he is not collaborating on the report stored there.  We need to be able to specify such 
detail in our security goals.  Operating systems are written to be used by many different 
people with many different needs, and operating system security should reflect that 
generality.  What we want in security mechanisms for operating systems is flexibility in 
describing our detailed security goals. 

 

Ultimately, of course, the operating system software must do its best to enforce those 
flexible security goals, which implies we’ll need to encode those goals in forms that 
software can understand.  We typically must convert our vague understandings of our 
security goals into very specific security policies.  For example, in the case of the file 
described above, we might want to specify a policy like “users A and B may write to file 
X, but no other user can write it.”  With that degree of specificity, backed by carefully 
designed and implemented mechanisms, we can hope to achieve our security goals2. 

Note an important implication for operating system security: in many cases, an operating 
system will have the mechanisms necessary to implement a desired security policy with a 
high degree of assurance in its proper application, but only if someone tells the operating 
                                                 
2 Yet another example of the operating system using general mechanisms to implement 
flexible policies. 

ASIDE: SECURITY VS. FAULT TOLERANCE 

When discussing the process abstraction, we talked about how virtualization protected 
a process from actions of other processes.  For instance, we did not want our process’ 
memory to be accidentally overwritten by another process, so our virtualization 
mechanisms had to prevent such behavior.  Then we were talking primarily about 
flaws or mistakes in processes.  Is this actually any different than worrying about 
malicious behavior, which is more commonly the context in which we discuss 
security?  Have we already solved all our problems by virtualizing our resources? 

Yes and no.  (Isn’t that a helpful phrase?)  Yes, if we perfectly virtualized everything 
and allowed no interactions between anything, we very likely would have solved most 
problems of malice.  However, most virtualization mechanisms are not totally 
bulletproof.  They work well when no one tries to subvert them, but may not be 
perfect against all possible forms of misbehavior.  Second, and perhaps more 
important, we don’t totally isolate processes from each other.  Processes share some 
OS resources by default (such as file systems) and can optionally choose to share 
others.  These intentional relaxations of virtualization are not problematic when used 
properly, but they are also potential channels for malicious attacks.  Finally, the OS 
does not always have complete control of the hardware . . . 



system precisely what that policy is.  With some important exceptions (like maintaining a 
process’ address space private unless specifically directed otherwise), the operating 
system merely supplies general mechanisms that can implement many specific policies.  
Without intelligent design of policies and careful application of the mechanisms, 
however, what the operating system can do may not be what your operating system will 
do. 

Designing Secure Systems 

Few of you will ever build your own operating system, nor even make serious changes to 
any existing operating system, but we expect many of you will build large software 
systems of some kind.  Experience of many computer scientists with system design has 
shown that there are certain design principles that are helpful in building systems with 
security requirements.  These principles were originally laid out by Jerome Saltzer and 
Michael Schroeder in an influential paper [SS75], though some of them come from 
earlier observations by others.  While neither the original authors nor later commentators 
would claim that following them will guarantee that your system is secure, paying 
attention to them has proven to lead to more secure systems, while you ignore them at 
your own peril.  We’ll discuss them briefly here.  If you are actually building a large 
software system, it would be worth your while to look up this paper (or more detailed 
commentaries on it) and study the concepts more carefully. 

1. Economy of mechanism – This basically means keep your system as small and 
simple as possible.  Simple systems have fewer bugs and it’s easier to understand 
their behavior.  If you don’t understand your system’s behavior, you’re not likely 
to know if it achieves security goals. 

2. Fail safe defaults – Default to security, not insecurity. If policies can be set to 
determine the behavior of a system, have the default for those policies be more 
secure, not less. 

3. Complete mediation – This is a security term meaning that you should check if an 
action to be performed meets security policies every single time the action is 
taken3. 

4. Open design – Assume your opponent knows every detail of your design.  If the 
system can achieve its security goals anyway, you’re in good shape.  This 
principle does not necessarily mean that you actually tell everyone all the details, 
but base your security on the assumption that the attacker has learned everything.  
He often has, in practice. 

5. Separation of privilege – Require separate parties or credentials to perform critical 
actions.  For example, two-factor authentication, where you use both a password 
and possession of a piece of hardware to determine identity, is more secure than 
using either one of those methods alone. 

                                                 
3 This particular principle is often ignored in many systems, in favor of lower overhead or 
usability.  An overriding characteristic of all engineering design is that you often must 
balance conflicting goals, as we saw earlier in the course, such as in the scheduling 
chapters.  We’ll say more about that in the context of security later. 



6. Least privilege – Give a user or a process the minimum privileges required to 
perform the actions you wish to allow.  The more privileges you give to a party, 
the greater the danger that they will abuse those privileges.  Even if you are 
confident that the party is not malicious, if they make a mistake, an adversary can 
leverage their error to use their superfluous privileges in harmful ways. 

7. Least common mechanism – For different users or processes, use separate data 
structures or mechanisms to handle them.  For example, each process gets its own 
page table in a virtual memory system, ensuring that one process cannot access 
another’s pages. 

8. Acceptability – A critical property not dear to the hearts of many programmers.  If 
your users won’t use it, your system is worthless.  Far too many promising secure 
systems have been abandoned because they asked too much of their users. 

These are not the only useful pieces of advice on designing secure systems out there.  
There is also lots of good material on taking the next step, converting a good design into 
code that achieves the security you intended, and other material on how to evaluate 
whether the system you have built does indeed meet those goals.  These issues are 
beyond the scope of this course, but are extremely important when the time comes for 
you to build large, complex systems.  For discussion of approaches to secure 
programming, you might start with [SE13], if you are working in C.  If you are working 
in another language, you should seek out a similar text specific to that language, since 
many secure coding problem are related to specifics of the language.  For a 
comprehensive treatment on how to evaluate if your system is secure, start with [D+07] 

The Basics of OS Security 

In a typical operating system, then, we have some set of security goals, centered around 
various aspects of confidentiality, integrity, and availability.  Some of these goals tend to 
be built in to the operating system model, while others are controlled by the owners or 
users of the system.  The built-in goals are those that are extremely common, or must be 
ensured to make the more specific goals achievable.  Most of these built-in goals relate to 
controlling process access to pieces of the hardware.  That’s because the hardware is 
shared by all the processes on a system, and unless the sharing is carefully controlled, one 
process can interfere with the security goals of another process.  Other built-in goals 
relate to services that the operating system offers, such as file systems, memory 
management, and interprocess communications.  If these services are not carefully 
controlled, processes can subvert the system’s security goals. 

Clearly, a lot of system security is going to be related to process handling.  If the 
operating system can maintain a clean separation of processes that can only be broken 
with the operating system’s help, then neither shared hardware nor operating system 
services can be used to subvert our security goals.  That requirement implies that the 
operating system needs to be careful about allowing use of hardware and of its services.  
In many cases, the operating system has good opportunities to apply such caution.  For 
example, the operating system controls virtual memory, which in turn completely 
controls which main memory addresses each process can access.  Hardware support 



prevents a process from even naming a physical memory address that is not mapped into 
its virtual memory space.   

System calls offer the operating system another opportunity to provide protection.  In 
most operating systems, processes access system services by making an explicit system 
call, as was discussed in earlier chapters.  As you have learned, system calls switch the 
execution mode from the processor’s user mode to its supervisor mode, invoking an 
appropriate piece of operating system code as they do so.  That code can determine which 
process made the system call and what service the process requested.  Earlier, we only 
talked about how this could allow the operating system to call the proper piece of system 
code to perform the service, and to keep track of who to return control to when the 
service had been completed.  But the same mechanism gives the operating system the 
opportunity to check if the requested service should be allowed under the system’s 
security policy.  Since access to peripheral devices is through device drivers, which are 
usually also accessed via system call, the same mechanism can ensure proper application 
of security policies for hardware access. 

When a process performs a system call, then, the operating system will use the process 
identifier in the process control block or similar structure to determine the identity of the 
process.  The OS can then use access control mechanisms to decide if the identified 
process is authorized to perform the requested action.  If so, the OS either performs the 
action itself on behalf of the process or arranges for the process to perform it without 
further system intervention.   If the process is not authorized, the OS can simply generate 
an error code for the system call and return control to the process, if the scheduling 
algorithm permits.   

 

TIP: THE WEAKEST LINK 

It’s worthwhile to remember that the people attacking your systems share many 
characteristics with you.  In particular, they’re probably pretty smart and they probably 
are kind of lazy, in the positive sense that they don’t do work that they don’t need to do.  
That implies that attackers tend to go for the easiest possible way to overcome your 
system’s security.  They’re not going to search for a zero-day buffer overflow if you’ve 
chosen “password” as your password to access the system. 

The practical implication for you is that you should spend most of the time you devote 
to securing your system to identifying and strengthening your weakest link.  Your 
weakest link is the least protected part of your system, the one that’s easiest to attack, 
the one you can’t hide away or augment with some external security system.  Often, a 
running system’s weakest link is actually its human users, not its software.  You will 
have a hard time changing the behavior of people, but you can design the software 
bearing in mind that attackers may try to fool the legitimate users into misusing it.  
Remember that principle of least privilege?  If an attacker can fool a user who has 
complete privileges into misusing the system, it will be a lot worse than fooling a user 
who can only damage his own assets. 



Summary 

The security of the operating system is vital for both its own and its applications’ sakes.  
Security failures in this software allow essentially limitless bad consequences. While 
achieving system security is challenging, there are known design principles that can help.  
These principles are useful not only in designing operating systems, but in designing any 
large software system.  

Achieving security in operating systems depends on the security goals one has.  These 
goals will typically include goals related to confidentiality, integrity, and availability.  In 
any given system, the more detailed particulars of these security goals vary, which 
implies that different systems will have different security policies intended to help them 
meet their specific security goals.  As in other areas of operating system design, we 
handle these varying needs by separating the specific policies used by any particular 
system from the general mechanisms used to implement the policies by all systems.   

The next question to address is, what mechanisms should our operating system contain to 
help us support general security policies?  The virtualization of processes and memory is 
one helpful mechanism, since it allows us to control the behavior of processes to a large 
extent.  We will describe several other useful operating system security mechanisms in 
the upcoming chapters. 
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