
Security for Operating Systems

Introduction

Security of computing systems is a vital topic whose importance only keeps increasing.
Much money has been lost and many people’s lives have been harmed when computer
security has failed. Attacks on computer systems are so common as to be inevitable in
almost any scenario where you perform computing. Generally, all elements of a
computer system can be subject to attack, and flaws in any of them can give an attacker
an opportunity to do something you want to prevent. But operating systems are
particularly important from a security perspective. Why?

To begin with, pretty much everything runs on top of an operating system. As a rule, if
the software you are running on top of, whether it be an operating system, a piece of
middleware, or something else, is insecure, what’s above it is going to also be insecure.
It’s like building a house on sand. You may build a nice solid structure, but a flood can
still wash away the base underneath your home, totally destroying it despite the care you
took in its construction. Similarly, your application might perhaps have no security flaws
of its own, but if the attacker can misuse the software underneath you to steal your
information, crash your program, or otherwise cause you harm, your own efforts to
secure your code might be for naught.

This point is especially important for operating systems. You might not care about the
security of a particular web server or database system if you don’t run that software, and
you might not care about the security of some middleware platform that you don’t use,
but everyone runs an operating system. Thus, security flaws in an operating system,
especially a widely used one, have an immense impact on many users and many pieces of
software.

Another reason that operating system security is so important is that ultimately all of our
software relies on proper behavior of the underlying hardware: the processor, the
memory, and the peripheral devices. What has ultimate control of those hardware
resources? The operating system. It can make your memory readable or writeable by
another process, it can starve you of cycles, it can corrupt the messages you send via your
network card, it can wipe data off your disk, or do pretty much anything else with the
hardware you rely on. You trust the operating system not to do any of those things, but
your trust relies on the assumption that the OS contains no flaws that will allow an
attacker to make it misbehave.

Thinking about what you have already studied concerning memory management,
scheduling, file systems, synchronization, and so forth, what would happen with each of
these components of your operating system if an opponent could force it to behave in
some arbitrarily bad way? If you understand what you’ve learned so far, you should find
this prospect deeply disturbing. Our computing lives depend on our operating systems
behaving as they have been defined to behave, and particularly on them not behaving in
ways that benefit our opponents, rather than us.

The task of securing an operating system is not an easy one, since modern operating
systems are large and complex. Your experience in writing code should have already
pointed out to you that the more code you’ve got, and the more complex the algorithms
are, the more likely your code is to contain flaws. Failures in software security generally
arise from these kinds of flaws. So large, complex programs are likely to be harder to
secure than small, simple programs. Not many other programs are as large and complex
as a modern operating system.

Another challenge in securing operating systems is that they are, for the most part, meant
to support multiple processes simultaneously. As you’ve learned, there are many
mechanisms in an operating system meant to segregate processes from each other, and to
protect shared pieces of hardware from being used in ways that interfere with other
processes. If we fully trusted every process running on our machine to do anything it
wants with any hardware resource and any piece of data on the machine, securing the
system would be a lot easier. However, we typically don’t trust everything equally.
When you download and run a script from a web site you haven’t visited before, do you
really want it to be able to wipe every file from your disk, kill all your other processes,
and start using your network interface to send spam email to other machines? Probably
not, but if you are the owner of your computer, you have the right to do all those things, if
that’s what you want to do. And unless the operating system is careful, any process it
runs, including the one running that script you downloaded, can do anything you can do.

Consider the issue of operating system security from a different perspective. One role of
an operating system is to provide useful abstractions for application programs to build on.
These applications must rely on the OS implementations of the abstractions to work as
they are defined. Often, one part of the definition of such abstractions is their security
behavior. For example, we expect that the operating system’s file system will enforce the
access restrictions it is supposed to enforce. Applications can then build on this
expectation to achieve the security goals they require, such as counting on the file system
access guarantees to ensure that a file they have specified as unwritable does not get
altered. If the applications cannot rely on proper implementation of OS abstraction
security guarantees, then they cannot use these abstractions to achieve their own security
goals. At the minimum, that implies a great deal more work on the part of the application
developers, since they will need to take extra measures to achieve their desired security
goals. Taking into account our earlier discussion, they will often be unable to achieve
these goals if the abstractions they must rely on (such as virtual memory and a well-
defined scheduling policy) cannot be trusted.

THE CRUX OF THE PROBLEM
HOW CAN WE SECURE OS RESOURCES?

In the face of multiple possibly concurrent and interacting processes running on the
same machine, how can we ensure that the resources each process is permitted to
access are exactly those it should access, in exactly the ways we desire? What
primitives are needed from the OS? What mechanisms should be provided by the
hardware? How can we use them to solve the problems of security?

Obviously operating system security is vital, yet hard to achieve. So what do we do to
secure our operating system? Addressing that question has been a challenge for
generations of computer scientists, and there is as yet no complete answer. But there are
some important principles and tools we can use to secure operating systems. These are
generally built into any general-purpose operating system you are likely to work with,
and they alter what can be done with that system and how you go about doing it. So even
if you don’t personally care at all about security, understanding what your OS does to
secure itself is necessary to understand how to get the system to do what you want.

What Are We Protecting?

We aren’t likely to achieve good protection unless we have a fairly comprehensive view
of what we’re trying to protect when we say our operating system should be secure.
Fortunately, that question is easy to answer for an operating system, at least at the high
level: everything. That answer isn’t very comforting, but it is best to have a realistic
understanding of the broad implications of operating system security.

A typical commodity operating system has complete control of all hardware on the
machine and is able to do literally anything the hardware permits. That means it can
control the processor, read and write all registers, examine any main memory location,
and perform any operation one of its peripherals supports. As a result, among the things
the OS can do are:

• examine or alter any process’ memory
• read, write, delete or corrupt any file on any writeable persistent

storage medium, including hard disks and flash drives
• change the scheduling or even halt execution of any process
• send any message to anywhere, including altered versions of those

a process wished to send
• enable or disable any peripheral device
• give any process access to any other process’ resources
• arbitrarily take away any resource a process controls
• respond to any system call with a maximally harmful lie

In essence, processes are at the mercy of the operating system. It is nearly impossible for
a process to “protect” any part of itself from a malicious operating system. We typically
assume our operating system is not actually malicious1, but a flaw that allows a malicious
process to cause the operating system to misbehave is nearly as bad, since it could
potentially allow that process to gain any of the powers of the operating system itself.

This point should make you think very seriously about the importance of designing
secure operating systems and, more commonly, applying security patches to any
operating system you are running. Security flaws in your operating system can

1 If you suspect your operating system is malicious, it’s time to get a new operating
system.

completely compromise everything about the machine the system runs on, so preventing
them and patching any that are found is vitally important.

Security Goals and Policies

What do we mean when we say we want an operating system, or any system, to be
secure? That’s a rather vague statement. What we really mean is that there are things
we would like to happen in the system and things we don’t want to happen, and we’d like
a high degree of assurance that we get what we want. As in most other aspects of life, we
usually end up paying for what we get, so it’s worthwhile to think about exactly what
security properties and effects we actually need and then pay only for those, not for other
things we don’t need. What this boils down to is that we want to specify the goals we
have for the security-relevant behavior of our system and choose defense approaches
likely to achieve those goals at a reasonable cost.

Researchers in security have thought about this issue in broad terms for a long time. At a
high conceptual level, they have defined three big security-related goals that are common
to many systems, including operating systems. They are:

• Confidentiality – Keep your secrets. If some piece of information
is supposed to be hidden from others, don’t allow them to find it
out. For example, you don’t want someone to learn what your
credit card number is – you want that number kept confidential.

• Integrity – If some piece of information or component of a system
is supposed to be in a particular state, don’t allow an opponent to
change it. For example, if you’ve placed an online order for
delivery of one pepperoni pizza, you don’t want a malicious
prankster to change your order to 1000 anchovy pizzas.

• Availability – If some information or service is supposed to be
available for your own or others’ use, make sure an attacker cannot
prevent its use. For example, if your business is having a big sale,
you don’t want your competitors to be able to block off the streets
around your store, preventing your customers from reaching you.

These are big, general goals. For a real system, you need to drill down to more detailed,
specific goals. In a typical operating system, for example, we might have a
confidentiality goal stating that a process’ memory space cannot be arbitrarily read by
another process. We might have an integrity goal stating that if a user writes a record to a
particular file, another user who should not be able to write that file can’t change the
record. We might have an availability goal stating that one process running on the
system cannot hog the CPU and prevent other processes from getting their share of the
CPU. If you think back on what you’ve learned about the process abstraction, memory
management, scheduling, file systems, IPC, and other topics from this class, you should
be able to think of some other obvious confidentiality, integrity, and availability goals we
are likely to want in our operating systems.

For any particular system, even goals at this level are not sufficiently specific. The
integrity goal alluded to above, where a user’s file should not be overwritten by another

user not permitted to do so, gives you a hint about the extra specificity we need in our
security goals for a particular system. Maybe there is some user who should be able to
overwrite the file, as might be the case when two people are collaborating on writing a
report. But that doesn’t mean an unrelated third user should be able to write that file, if
he is not collaborating on the report stored there. We need to be able to specify such
detail in our security goals. Operating systems are written to be used by many different
people with many different needs, and operating system security should reflect that
generality. What we want in security mechanisms for operating systems is flexibility in
describing our detailed security goals.

Ultimately, of course, the operating system software must do its best to enforce those
flexible security goals, which implies we’ll need to encode those goals in forms that
software can understand. We typically must convert our vague understandings of our
security goals into very specific security policies. For example, in the case of the file
described above, we might want to specify a policy like “users A and B may write to file
X, but no other user can write it.” With that degree of specificity, backed by carefully
designed and implemented mechanisms, we can hope to achieve our security goals2.

Note an important implication for operating system security: in many cases, an operating
system will have the mechanisms necessary to implement a desired security policy with a
high degree of assurance in its proper application, but only if someone tells the operating

2 Yet another example of the operating system using general mechanisms to implement
flexible policies.

ASIDE: SECURITY VS. FAULT TOLERANCE

When discussing the process abstraction, we talked about how virtualization protected
a process from actions of other processes. For instance, we did not want our process’
memory to be accidentally overwritten by another process, so our virtualization
mechanisms had to prevent such behavior. Then we were talking primarily about
flaws or mistakes in processes. Is this actually any different than worrying about
malicious behavior, which is more commonly the context in which we discuss
security? Have we already solved all our problems by virtualizing our resources?

Yes and no. (Isn’t that a helpful phrase?) Yes, if we perfectly virtualized everything
and allowed no interactions between anything, we very likely would have solved most
problems of malice. However, most virtualization mechanisms are not totally
bulletproof. They work well when no one tries to subvert them, but may not be
perfect against all possible forms of misbehavior. Second, and perhaps more
important, we don’t totally isolate processes from each other. Processes share some
OS resources by default (such as file systems) and can optionally choose to share
others. These intentional relaxations of virtualization are not problematic when used
properly, but they are also potential channels for malicious attacks. Finally, the OS
does not always have complete control of the hardware . . .

system precisely what that policy is. With some important exceptions (like maintaining a
process’ address space private unless specifically directed otherwise), the operating
system merely supplies general mechanisms that can implement many specific policies.
Without intelligent design of policies and careful application of the mechanisms,
however, what the operating system can do may not be what your operating system will
do.

Designing Secure Systems

Few of you will ever build your own operating system, nor even make serious changes to
any existing operating system, but we expect many of you will build large software
systems of some kind. Experience of many computer scientists with system design has
shown that there are certain design principles that are helpful in building systems with
security requirements. These principles were originally laid out by Jerome Saltzer and
Michael Schroeder in an influential paper [SS75], though some of them come from
earlier observations by others. While neither the original authors nor later commentators
would claim that following them will guarantee that your system is secure, paying
attention to them has proven to lead to more secure systems, while you ignore them at
your own peril. We’ll discuss them briefly here. If you are actually building a large
software system, it would be worth your while to look up this paper (or more detailed
commentaries on it) and study the concepts more carefully.

1. Economy of mechanism – This basically means keep your system as small and
simple as possible. Simple systems have fewer bugs and it’s easier to understand
their behavior. If you don’t understand your system’s behavior, you’re not likely
to know if it achieves security goals.

2. Fail safe defaults – Default to security, not insecurity. If policies can be set to
determine the behavior of a system, have the default for those policies be more
secure, not less.

3. Complete mediation – This is a security term meaning that you should check if an
action to be performed meets security policies every single time the action is
taken3.

4. Open design – Assume your opponent knows every detail of your design. If the
system can achieve its security goals anyway, you’re in good shape. This
principle does not necessarily mean that you actually tell everyone all the details,
but base your security on the assumption that the attacker has learned everything.
He often has, in practice.

5. Separation of privilege – Require separate parties or credentials to perform critical
actions. For example, two-factor authentication, where you use both a password
and possession of a piece of hardware to determine identity, is more secure than
using either one of those methods alone.

3 This particular principle is often ignored in many systems, in favor of lower overhead or
usability. An overriding characteristic of all engineering design is that you often must
balance conflicting goals, as we saw earlier in the course, such as in the scheduling
chapters. We’ll say more about that in the context of security later.

6. Least privilege – Give a user or a process the minimum privileges required to
perform the actions you wish to allow. The more privileges you give to a party,
the greater the danger that they will abuse those privileges. Even if you are
confident that the party is not malicious, if they make a mistake, an adversary can
leverage their error to use their superfluous privileges in harmful ways.

7. Least common mechanism – For different users or processes, use separate data
structures or mechanisms to handle them. For example, each process gets its own
page table in a virtual memory system, ensuring that one process cannot access
another’s pages.

8. Acceptability – A critical property not dear to the hearts of many programmers. If
your users won’t use it, your system is worthless. Far too many promising secure
systems have been abandoned because they asked too much of their users.

These are not the only useful pieces of advice on designing secure systems out there.
There is also lots of good material on taking the next step, converting a good design into
code that achieves the security you intended, and other material on how to evaluate
whether the system you have built does indeed meet those goals. These issues are
beyond the scope of this course, but are extremely important when the time comes for
you to build large, complex systems. For discussion of approaches to secure
programming, you might start with [SE13], if you are working in C. If you are working
in another language, you should seek out a similar text specific to that language, since
many secure coding problem are related to specifics of the language. For a
comprehensive treatment on how to evaluate if your system is secure, start with [D+07]

The Basics of OS Security

In a typical operating system, then, we have some set of security goals, centered around
various aspects of confidentiality, integrity, and availability. Some of these goals tend to
be built in to the operating system model, while others are controlled by the owners or
users of the system. The built-in goals are those that are extremely common, or must be
ensured to make the more specific goals achievable. Most of these built-in goals relate to
controlling process access to pieces of the hardware. That’s because the hardware is
shared by all the processes on a system, and unless the sharing is carefully controlled, one
process can interfere with the security goals of another process. Other built-in goals
relate to services that the operating system offers, such as file systems, memory
management, and interprocess communications. If these services are not carefully
controlled, processes can subvert the system’s security goals.

Clearly, a lot of system security is going to be related to process handling. If the
operating system can maintain a clean separation of processes that can only be broken
with the operating system’s help, then neither shared hardware nor operating system
services can be used to subvert our security goals. That requirement implies that the
operating system needs to be careful about allowing use of hardware and of its services.
In many cases, the operating system has good opportunities to apply such caution. For
example, the operating system controls virtual memory, which in turn completely
controls which main memory addresses each process can access. Hardware support

prevents a process from even naming a physical memory address that is not mapped into
its virtual memory space.

System calls offer the operating system another opportunity to provide protection. In
most operating systems, processes access system services by making an explicit system
call, as was discussed in earlier chapters. As you have learned, system calls switch the
execution mode from the processor’s user mode to its supervisor mode, invoking an
appropriate piece of operating system code as they do so. That code can determine which
process made the system call and what service the process requested. Earlier, we only
talked about how this could allow the operating system to call the proper piece of system
code to perform the service, and to keep track of who to return control to when the
service had been completed. But the same mechanism gives the operating system the
opportunity to check if the requested service should be allowed under the system’s
security policy. Since access to peripheral devices is through device drivers, which are
usually also accessed via system call, the same mechanism can ensure proper application
of security policies for hardware access.

When a process performs a system call, then, the operating system will use the process
identifier in the process control block or similar structure to determine the identity of the
process. The OS can then use access control mechanisms to decide if the identified
process is authorized to perform the requested action. If so, the OS either performs the
action itself on behalf of the process or arranges for the process to perform it without
further system intervention. If the process is not authorized, the OS can simply generate
an error code for the system call and return control to the process, if the scheduling
algorithm permits.

TIP: THE WEAKEST LINK

It’s worthwhile to remember that the people attacking your systems share many
characteristics with you. In particular, they’re probably pretty smart and they probably
are kind of lazy, in the positive sense that they don’t do work that they don’t need to do.
That implies that attackers tend to go for the easiest possible way to overcome your
system’s security. They’re not going to search for a zero-day buffer overflow if you’ve
chosen “password” as your password to access the system.

The practical implication for you is that you should spend most of the time you devote
to securing your system to identifying and strengthening your weakest link. Your
weakest link is the least protected part of your system, the one that’s easiest to attack,
the one you can’t hide away or augment with some external security system. Often, a
running system’s weakest link is actually its human users, not its software. You will
have a hard time changing the behavior of people, but you can design the software
bearing in mind that attackers may try to fool the legitimate users into misusing it.
Remember that principle of least privilege? If an attacker can fool a user who has
complete privileges into misusing the system, it will be a lot worse than fooling a user
who can only damage his own assets.

Summary

The security of the operating system is vital for both its own and its applications’ sakes.
Security failures in this software allow essentially limitless bad consequences. While
achieving system security is challenging, there are known design principles that can help.
These principles are useful not only in designing operating systems, but in designing any
large software system.

Achieving security in operating systems depends on the security goals one has. These
goals will typically include goals related to confidentiality, integrity, and availability. In
any given system, the more detailed particulars of these security goals vary, which
implies that different systems will have different security policies intended to help them
meet their specific security goals. As in other areas of operating system design, we
handle these varying needs by separating the specific policies used by any particular
system from the general mechanisms used to implement the policies by all systems.

The next question to address is, what mechanisms should our operating system contain to
help us support general security policies? The virtualization of processes and memory is
one helpful mechanism, since it allows us to control the behavior of processes to a large
extent. We will describe several other useful operating system security mechanisms in
the upcoming chapters.

References

[D+07] “The Art of Software Security Assessment”
Mark Dowd, John McDonald, and Justin Schuh
Addison-Wesley, 2007.
A long, comprehensive treatment of how to determine if your software system meets its
security goals. It also contains useful advice on avoiding security problems in coding.

[SE13] “Secure Coding in C and C++”
Robert Seacord
Addison-Wesley, 2013.
A well regarded book on how to avoid major security mistakes in coding in C.

[SS75] “The Protection of Information in Computer Systems”
Jerome Saltzer and Michael Schroeder
Proceedings of the IEEE, Vol. 63, No. 9, September 1975.
A highly influential paper, particularly their codification of principles for secure system
design.

