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Outline 
•  Deadlocks: 
– What are they and why are they important? 
– Deadlock avoidance, prevention, detection and 

recovery 
•  Related synchronization problems 
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Deadlock 

•  What is a deadlock? 
•  A situation where two entities have each 

locked some resource 
•  Each needs the other’s locked resource to 

continue 
•  Neither will unlock till they lock both 

resources 
•  Hence, neither can ever make progress 
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Why Are Deadlocks Important? 
•  A major peril in cooperating parallel processes 
–  They are relatively common in complex applications 
–  They result in catastrophic system failures 

•  Finding them through debugging is very difficult 
–  They happen intermittently and are hard to diagnose 
–  They are much easier to prevent at design time 

•  Once you understand them, you can avoid them 
–  Most deadlocks result from careless/ignorant design 
–  An ounce of prevention is worth a pound of cure 
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Deadlocks and Different  
Resource Types 

•  Commodity Resources 
–  Clients need an amount of it (e.g. memory) 
–  Deadlocks result from over-commitment 
–  Avoidance can be done in resource manager 

•  General Resources 
–  Clients need a specific instance of something 

•  A particular file or semaphore 
•  A particular message or request completion 

–  Deadlocks result from specific dependency relationships 
–  Prevention is usually done at design time 
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Types of Deadlocks 
•  Commodity resource deadlocks 
– E.g., memory, queue space 

•  General resource deadlocks 
– E.g., files, critical sections 

•  Heterogeneous multi-resource deadlocks 
– E.g., P1 needs a file P2 holds, P2 needs memory 

which P1 is using 
•  Producer-consumer deadlocks 
– E.g., P1 needs a file P2 is creating, P2 needs a 

message from P1 to properly create the file 
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Four Basic Conditions  
For Deadlocks 

•  For a deadlock to occur, these conditions must 
hold: 

1.  Mutual exclusion 
2.  Incremental allocation 
3.  No pre-emption 
4.  Circular waiting 
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Deadlock Conditions: 1.  Mutual 
Exclusion 

•  The resources in question can each only be 
used by one entity at a time 

•  If multiple entities can use a resource, then just 
give it to all of them 

•  If only one can use it, once you’ve given it to 
one, no one else gets it 
– Until the resource holder releases it 
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Deadlock Condition 2:  
Incremental Allocation 

•  Processes/threads are allowed to ask for 
resources whenever they want 
– As opposed to getting everything they need before 

they start 
•  If they must pre-allocate all resources, either: 
– They get all they need and run to completion 
– They don’t get all they need and abort 

•  In either case, no deadlock 
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Deadlock Condition 3:  No  
Pre-emption 

•  When an entity has reserved a resource, you 
can’t take it away from him 
– Not even temporarily 

•  If you can, deadlocks are simply resolved by 
taking someone’s resource away 
– To give to someone else 

•  But if you can’t take it away from anyone, 
you’re stuck 



Lecture 9 
Page 11 

CS 111 
Fall 2015  

Deadlock Condition 4: Circular 
Waiting 

•  A waits on B which waits on A 
•  In graph terms, there’s a cycle in a graph of 

resource requests 
•  Could involve a lot more than two entities 
•  But if there is no such cycle, someone can 

complete without anyone releasing a resource 
– Allowing even a long chain of dependencies to 

eventually unwind 
– Maybe not very fast, though . . . 
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A Wait-For Graph 

Thread 1 Thread 2 

Critical  
Section 

A 

Critical  
Section 

B 

Thread 1 
acquires a 
lock for 
Critical 

Section A 

Thread 2 
acquires a 
lock for 
Critical 

Section B 

Thread 1 
requests a 
lock for 
Critical 

Section B 

Thread 2 
requests a 
lock for 
Critical 

Section A 

No problem! 

Deadlock! 

We can’t give him 
the lock right now, 

but . . . 

Hmmmm . . .  
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Deadlock Avoidance 

•  Use methods that guarantee that no deadlock 
can occur, by their nature 

•  Advance reservations 
– The problems of under/over-booking 
– The Bankers’ Algorithm 

•  Practical commodity resource management 
•  Dealing with rejection 
•  Reserving critical resources 



Lecture 9 
Page 14 

CS 111 
Fall 2015  

Avoiding Deadlock Using 
Reservations 

•  Advance reservations for commodity resources 
– Resource manager tracks outstanding reservations 
– Only grants reservations if resources are available 

•  Over-subscriptions are detected early 
– Before processes ever get the resources 

•  Client must be prepared to deal with failures 
–   But these do not result in deadlocks 

•  Dilemma: over-booking vs. under-utilization 
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Overbooking Vs. Under Utilization  
•  Processes generally cannot perfectly predict 

their resource needs 
•  To ensure they have enough, they tend to ask 

for more than they will ever need 
•  Either the OS: 
– Grants requests till everything’s reserved 

•  In which case most of it won’t be used 
– Or grants requests beyond the available amount 

•  In which case sometimes someone won’t get a resource 
he reserved 



Lecture 9 
Page 16 

CS 111 
Fall 2015  

Handling Reservation Problems 

•  Clients seldom need all resources all the time 
•  All clients won't need max allocation at the 

same time 
•  Question: can one safely over-book resources? 
–  For example, seats on an airplane  

•  What is a “safe” resource allocation? 
–  One where everyone will be able to complete 
–  Some people may have to wait for others to complete 
–  We must be sure there are no deadlocks 
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The Banker’s Algorithm 

•  One algorithm for resource reservations 
•  Assumptions:   
1.  All critical resources are known and quantifiable 
–  E.g., money or memory 
–  No other resources can cause deadlocks 

2.  All clients reserve for their maximum requirement 
–  They will never need more than this amount 

3.  If a client gets his maximum, he will complete 
–  Upon completion, he frees all his resources 
–  Those resources then become available for others 
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The Rules of the Banker’s 
Algorithm 

•  Given a resource “state” characterized by: 
–  Total size of each pool of resources 
–  Reservations granted to each client for each resource 
–  Current allocations of each resource to each client 

•  A state is “safe” if . . . 
–  Enough resources are allocated to at least one client to 

allow him to finish 
–  After any client frees its resources, resulting state is safe 
–  And so on, until all clients have completed 

•  A proposed allocation can be granted if the resulting 
state would still be “safe” 
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Why Isn’t the Banker’s  
Algorithm Used? 

•  Quantified resources assumption 
–  Not all resources are measurable in units 
–  Other resource types can introduce circular dependencies 

•  Eventual completion assumption 
–  All resources are released when client completes 
–  In modern systems many tasks run for months 

•  Likelihood of resource “convoy” formation 
–  Reduced parallelism, reduced throughput 

•  Many systems choose simpler “don't overbook” 
policy 
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Commodity Resource  
Management in Real Systems 

•  Advanced reservation mechanisms are common 
–  Memory reservations 
–  Disk quotas, Quality of Service contracts 

•  Once granted, system must guarantee reservations 
–  Allocation failures only happen at reservation time  
–  Hopefully before the new computation has begun 
–  Failures will not happen at request time 
–  System behavior more predictable, easier to handle 

•  But clients must deal with reservation failures 
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Dealing With Reservation Failures 
•  Resource reservation eliminates deadlock 
•  Apps must still deal with reservation failures 
– Application design should handle failures 

gracefully 
•  E.g., refuse to perform new request, but continue 

running 

– App must have a way of reporting failure to 
requester 
•  E.g., error messages or return codes 

– App must be able to continue running 
•  All critical resources must be reserved at start-up time 
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Isn’t Rejecting App Requests Bad? 

•  It’s not great, but it’s better than failing later 
•  With advance notice, app may be able to adjust 

service not to need the unavailable resource 
•  If app is in the middle of servicing a request, 

we may have other resources allocated  
– And the request half-performed 
–  If we fail then, all of this will have to be unwound 
– Could be complex, or even impossible 
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Why Not Just Wait? 

•  If reservation fails, why not hold on to what 
I’ve got and ask again later? 

•  What would happen in our deadlock example? 
– Nobody would ever make progress 
– That’s what would generally happen in deadlock if 

you just wait 
•  Making your clients wait indefinitely is a bad 

idea 
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System Services and Reservations 
•  System services must never deadlock for memory 
•  Potential deadlock: swap manager 
–  Invoked to swap out processes to free up memory 
–  May need to allocate memory to build I/O request 
–  If no memory available, unable to swap out processes 
–  So it can’t free up memory, and system wedges 

•  Solution: 
–  Pre-allocate and hoard a few request buffers 
–  Keep reusing the same ones over and over again 
–  Little bit of hoarded memory is a small price to pay to 

avoid deadlock 

•  That’s just one example system service, of course 
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Deadlock Prevention 

•  Deadlock avoidance tries to ensure no lock 
ever causes deadlock 

•  Deadlock prevention tries to assure that a 
particular lock doesn’t cause deadlock  

•  By attacking one of the four necessary 
conditions for deadlock 

•  If any one of these conditions doesn’t hold, no 
deadlock 
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Four Basic Conditions  
For Deadlocks 

•  For a deadlock to occur, these conditions must 
hold: 

1.  Mutual exclusion 
2.  Incremental allocation 
3.  No pre-emption 
4.  Circular waiting 
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1. Mutual Exclusion 

•  Deadlock requires mutual exclusion 
– P1 having the resource precludes P2 from getting it 

•  You can't deadlock over a shareable resource 
– Perhaps maintained with atomic instructions 
– Even reader/writer locking can help 

•  Readers can share, writers may be handled other ways 

•  You can't deadlock on your private resources 
– Can we give each process its own private 

resource? 



Lecture 9 
Page 28 

CS 111 
Fall 2015  

2. Incremental Allocation   
•  Deadlock requires you to block holding resources 

while you ask for others 
1.  Allocate all of your resources in a single operation 
–  If you can’t get everything, system returns failure and 

locks nothing 
–  When you return, you have all or nothing 

2.  Non-blocking requests 
–  A request that can't be satisfied immediately will fail 

3.  Disallow blocking while holding resources 
–  You must release all held locks prior to blocking 
–  Reacquire them again after you return 
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Releasing Locks Before Blocking 
•  Could be blocking for a reason not related to 

resource locking 
•  How can releasing locks before you block 

help?   
•  Won’t the deadlock just occur when you 

attempt to reacquire them? 
– When you reacquire them, you will be required to 

do so in a single all-or-none transaction 
–   Such a transaction does not involve hold-and-

block, and so cannot result in a deadlock 
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3. No Pre-emption   

•  Deadlock can be broken by resource confiscation 
–  Resource “leases” with time-outs and “lock breaking” 
–  Resource can be seized & reallocated to new client 

•  Revocation must be enforced 
–  Invalidate previous owner's resource handle 
–  If revocation is not possible, kill previous owner 

•  Some resources may be damaged by lock breaking 
–  Previous owner was in the middle of critical section 
–  May need mechanisms to audit/repair resource 

•  Resources must be designed with revocation in mind 
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When Can The OS “Seize” a 
Resource? 

•  When it can revoke access by invalidating a 
process’ resource handle 
–  If process has to use a system service to access the 

resource, that service can no longer honor requests 
•  When is it not possible to revoke a process’ 

access to a resource? 
–  If the process has direct access to the object 

•  E.g., the object is part of the process’ address space  
•  Revoking access requires destroying  the address space  
•  Usually killing the process. 
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4.  Circular Dependencies 
•  Use total resource ordering 
– All requesters allocate resources in same order 
– First allocate R1 and then R2 afterwards 
– Someone else may have R2 but he doesn't need R1 

•  Assumes we know how to order the resources 
– Order by resource type (e.g. groups before 

members) 
– Order by relationship (e.g. parents before children) 

•  May require a lock dance 
–   Release R2, allocate R1, reacquire  R2 
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Lock Dances 
buffer list head 

To find a desired buffer: 

 read lock list head 
 search for desired buffer 
 lock desired buffer 
 unlock list head 
 return (locked) buffer 

To delete a (locked) buffer from list 

  unlock buffer 
  write lock list head 
  search for desired buffer 
  lock desired buffer 
  remove from list 
  unlock list head 

buffer buffer 

list head must be locked for 
searching, adding & deleting 

individual buffers must be locked to 
perform I/O & other operations 

To avoid deadlock, we must always lock the list head 
before we lock an individual buffer. 
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An Example of Breaking 
Deadlocks 

•  The problem – urban traffic gridlock 
– “Resource” is the ability to pass through 

intersection 
– Deadlock happens when nobody can get through 
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Using Attack Approach 1 To 
Prevent Deadlock 

•  Avoid mutual exclusion 
•  Build overpass bridges for east/west traffic 
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Using Attack Approach 2 To 
Prevent Deadlock 

•  Make it illegal to enter the intersection if you 
can’t exit it 
– Thus, preventing “holding” of the intersection 
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Using Attack Approach 3 To 
Prevent Deadlock 

•  Allow preemption  
– Force some car to pull over to the side 
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Using Attack Approach 4 To 
Prevent Deadlock 

•   Avoid circular dependencies by decreeing a 
totally ordered right of way 
– E.g., North beats West beats South beats East  
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Which Approach Should You Use? 

•  There is no one universal solution to all deadlocks 
–  Fortunately, we don't need one solution for all resources 
–  We only need a solution for each resource 

•  Solve each individual problem any way you can 
–  Make resources sharable wherever possible 
–  Use reservations for commodity resources 
–  Ordered locking or no hold-and-block where possible 
–  As a last resort, leases and lock breaking 

•  OS must prevent deadlocks in all system services 
–   Applications are responsible for their own behavior 
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One More Deadlock “Solution” 

•  Ignore the problem 
•  In many cases, deadlocks are very improbable 
•  Doing anything to avoid or prevent them might 

be very expensive 
•  So just forget about them and hope for the best 
•  But what if the best doesn’t happen? 
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Deadlock Detection and Recovery 

•  Allow deadlocks to occur 
•  Detect them once they have happened 
– Preferably as soon as possible after they occur 

•  Do something to break the deadlock and allow 
someone to make progress 

•  Is this a good approach? 
– Either in general or when you don’t want to avoid 

or prevent deadlocks? 
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Implementing Deadlock Detection 

•  Need to identify all resources that can be 
locked 

•  Need to maintain wait-for graph or equivalent 
structure 

•  When lock requested, structure is updated and 
checked for deadlock 
–  In which case, might it not be better just to reject 

the lock request? 
– And not let the requester block? 
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Deadlock Detection and Health 
Monitoring 

•  Deadlock detection seldom makes sense 
–  It is extremely complex to implement 
–  Only detects true deadlocks for a known resource 
–  Not always clear cut what you should do if you detect one 

•  Service/application health monitoring is better 
–  Monitor application progress/submit test transactions 
–  If response takes too long, declare service “hung” 

•  Health monitoring is easy to implement 
•  It can detect a wide range of problems 
–  Deadlocks, live-locks, infinite loops & waits, crashes 
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Related Problems Health 
Monitoring Can Handle 

•  Live-lock 
–  Process is running, but won't free R1 until it gets message 
–  Process that will send the message is blocked for R1 

•  Sleeping Beauty, waiting for “Prince Charming” 
–  A process is blocked, awaiting some completion 
–  But, for some reason, it will never happen 

•  Neither of these is a true deadlock 
–  Wouldn't be found by deadlock detection algorithm 
–  Both leave the system just as hung as a deadlock 

•  Health monitoring handles them 
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How To Monitor Process Health 
•  Look for obvious failures 
– Process exits or core dumps 

•  Passive observation to detect hangs 
–  Is process consuming CPU time, or is it blocked? 
–  Is process doing network and/or disk I/O? 

•  External health monitoring 
– “Pings”, null requests, standard test requests 

•  Internal instrumentation 
– White box audits, exercisers, and monitoring 
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What To Do With “Unhealthy” 
Processes? 

•  Kill and restart “all of the affected software” 
•  How many and which processes to kill? 
–  As many as necessary, but as few as possible 
–  The hung processes may not be the ones that are broken 

•  How will kills and restarts affect current clients? 
–  That depends on the service APIs and/or protocols 
–  Apps must be designed for cold/warm/partial restarts 

•  Highly available systems define restart groups 
–  Groups of processes to be started/killed as a group 
–  Define inter-group dependencies (restart B after A) 
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Failure Recovery Methodology 

•  Retry if possible ... but not forever 
–  Client should not be kept waiting indefinitely 
–  Resources are being held while waiting to retry 

•  Roll-back failed operations and return an error 
•  Continue with reduced capacity or functionality 
–  Accept requests you can handle, reject those you can't 

•  Automatic restarts (cold, warm, partial) 
•  Escalation mechanisms for failed recoveries 
–  Restart more groups, reboot more machines 
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Priority Inversion and Deadlock 

•  Priority inversion isn’t necessarily deadlock, but it’s 
related 
–  A low priority process P1 has mutex M1 and is preempted 
–  A high priority process P2 blocks for mutex M1  
–  Process P2 is effectively reduced to priority of P1  

•  Solution: mutex priority inheritance 
–  Check for problem when blocking for mutex 
–  Compare priority of current mutex owner with blocker 
–  Temporarily promote holder to blocker's priority 
–  Return to normal priority after mutex is released 
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Priority Inversion on Mars 

•  A real priority inversion problem occurred on 
the Mars Pathfinder rover 

•  Caused serious problems with system resets 
•  Difficult to find 
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The Pathfinder Priority Inversion 

•  Special purpose hardware running VxWorks 
real time OS 

•  Used preemptive priority scheduling  
– So a high priority task should get the processor  

•  Multiple components shared an “information 
bus” 
– Used to communicate between components 
– Essentially a shared memory region 
– Protected by a mutex 
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A Tale of Three Tasks 
•  A high priority bus management task (at P1) needed 

to run frequently 
–  For brief periods, during which it locked the bus 

•  A low priority meteorological task (at P3) ran 
occasionally 
–  Also for brief periods, during which it locked the bus 

•  A medium priority communications task (at P2) ran 
rarely 
–  But for a long time when it ran 
–  But it didn’t use the bus, so it didn’t need the lock 

•  P1>P2>P3 



Lecture 9 
Page 52 

CS 111 
Fall 2015  

What Went Wrong? 
•  Rarely, the following happened: 
– The meteorological task ran and acquired the lock 
– And then the bus management task would run 
–  It would block waiting for the lock 

•  Don’t pre-empt low priority if you’re blocked anyway 

•  Since meteorological task was short, usually 
not a problem 

•  But if the long communications task woke up 
in that short interval, what would happen? 
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The Priority Inversion at Work 

M 

B 

C 

Pr
ior
i
ty 

Time 

Lock Bus 

Lock Bus 

B 

M 

C is running, at P2 

M can’t interrupt C, since it only has priority P3 

B’s priority of P1 is higher than C’s, but B can’t 
run because it’s waiting on a lock held by M 

M won’t release the lock until it runs again 

But M won’t run again until C completes 

RESULT? A HIGH PRIORITY TASK DOESN’T RUN 
AND A LOW PRIORITY TASK DOES 
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The Ultimate Effect 

•  A watchdog timer would go off every so often 
– At a high priority 
–  It didn’t need the bus 
– A health monitoring mechanism 

•  If the bus management task hadn’t run for a 
long time, something was wrong 

•  So the watchdog code reset the system 
•  Every so often, the system would reboot 
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Solving the Problem 
•  This was a priority inversion 
–  The lower priority communications task ran before the 

higher priority bus management task 

•  That needed to be changed 
•  How? 
•  Temporarily increase the priority of the 

meteorological task 
–  While the high priority bus management task was blocked 

by it 
–  So the communications task wouldn’t preempt it 
–  Priority inheritance: a general solution to this kind of 

problem 
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B 

The Fix in Action 

Pr
ior
i
ty 

Time 

B 

Lock Bus 

M 

C C 

When M releases the 
lock it loses high 

priority 

B now gets the lock 
and unblocks 

Tasks run in proper priority order and 
Pathfinder can keep looking around! 


