-

Synchronization and Deadlock
CS 111
Operating Systems
Peter Rether

\

eeeeee

/ [Outline} \

* Deadlocks:
— What are they and why are they important?

— Deadlock avoidance, prevention, detection and
recovery

* Related synchronization problems

CS 111 Lecture 9
Fall 2015 Page 2

/ [Deadlock}

e What 1s a deadlock?

e A situation where two entities have each
locked some resource

 Each needs the other’s locked resource to
continue

* Neither will unlock till they lock both
resources

* Hence, neither can ever make progress

CS 111

Fall 2015

/ Why Are Deadlocks Important?\

* A major peril in cooperating parallel processes
— They are relatively common in complex applications
— They result in catastrophic system failures

* Finding them through debugging 1s very difficult
— They happen intermittently and are hard to diagnose
— They are much easier to prevent at design time

* Once you understand them, you can avoid them
— Most deadlocks result from careless/ignorant design

— An ounce of prevention 1s worth a pound of cure

CS 111 Lecture 9
Fall 2015 Page 4

/" Deadlocks and Different ™\
Resource Types

* Commodity Resources
— Clients need an amount of it (e.g. memory)
— Deadlocks result from over-commitment

— Avoidance can be done in resource manager

* (General Resources

— Clients need a specific instance of something
* A particular file or semaphore
* A particular message or request completion

— Deadlocks result from specific dependency relationships

— Prevention 1s usually done at design time /

CS 111 Lecture 9
Fall 2015 Page 5

/ Types of Deadlocks \

* Commodity resource deadlocks

— E.g., memory, queue space
e (General resource deadlocks
— E.g., files, critical sections

* Heterogeneous multi-resource deadlocks

— E.g., P1 needs a file P2 holds, P2 needs memory
which P1 1s using

 Producer-consumer deadlocks

— E.g., P1 needs a file P2 1s creating, P2 needs a
.. message from P1 to properly create the file

Fall 2015 Page 6

/ Four Basic Conditions \

* For a deadlock to occur, these conditions must
hold:

1. Mutual exclusion
2. Incremental allocation
3. No pre-emption

4. Circular waiting

CS 111 Lecture 9
Fall 2015 Page 7

ﬁ)eadlock Conditions: 1. Mutual\

Exclusion

* The resources 1n question can each only be
used by one entity at a time

* If multiple entities can use a resource, then just
give 1t to all of them

* If only one can use 1t, once you’ve given it to
one, no one else gets it

— Until the resource holder releases it

CS 111 Lecture 9
Fall 2015 Page 8

/ Deadlock Condition 2:

CS 111
Fall 2015

Incremental Allocation

 Processes/threads are allowed to ask for
resources whenever they want

ney start

T'hey get all they need and run to completion

I'hey don’t get all they need and abort
* In either case, no deadlock

\

— As opposed to getting everything they need before
t]

* If they must pre-allocate all resources, either:

/ Deadlock Condition 3: No \
Pre-emption

* When an entity has reserved a resource, you
can’t take 1t away from him
— Not even temporarily

* If you can, deadlocks are simply resolved by
taking someone’s resource away

— To give to someone else

* But if you can’t take 1t away from anyone,
you’re stuck

CS 111 Lecture 9
Fall 2015 Page 10

/ Deadlock Condition 4: Circular\
Waiting
* A waits on B which waits on A

* In graph terms, there’s a cycle 1n a graph of
resource requests

e Could involve a lot more than two entities

* But if there 1s no such cycle, someone can
complete without anyone releasing a resource

— Allowing even a long chain of dependencies to
eventually unwind

— Maybe not very fast, though . . . /

CS 111 Lecture 9
Fall 2015 Page 11

/@an’t give him
the lock right now,

but. ..

Thread 1
acquires a
lock for
Critical
Section A

Thread 1
requests a
lock for

Critical
Section B

CS 111

Critical
Section

m/!

\

Critical
Section

-\
\ .
-acquires a

A Wait-For Graph Hmmmm\
No proble

Thread 2

\-‘ lock for
| Critical
Section B

!ll"hread 2
rlequests a

;Section A /

‘lock for
; Critical

Lecture 9

Fall 2015

Page 12

/ [Deadlock AVOidaIlCCJ \

* Use methods that guarantee that no deadlock
can occur, by their nature

 Advance reservations

— The problems of under/over-booking

— The Bankers’ Algorithm
* Practical commodity resource management

* Dealing with rejection

* Reserving critical resources y

CS 111 Lecture 9
Fall 2015 Page 13

/ Avoiding Deadlock Using \

Reservations
* Advance reservations for commodity resources
— Resource manager tracks outstanding reservations

— Only grants reservations 1f resources are available
* Over-subscriptions are detected early

— Before processes ever get the resources

* Client must be prepared to deal with failures

— But these do not result in deadlocks

* Dilemma: over-booking vs. under-utilization

/

CS 111 Lecture 9
Fall 2015 Page 14

@erbooking Vs. Under Utilization\

* Processes generally cannot perfectly predict
their resource needs

* To ensure they have enough, they tend to ask
for more than they will ever need

e Either the OS:

— Grants requests till everything’s reserved

* In which case most of it won’t be used

— Or grants requests beyond the available amount

he reserved
CS 111

Fall 2015

* In which case sometimes someone won’t get a resource /

Lecture 9
Page 15

/ Handling Reservation Problems\

e Clients seldom need all resources all the time

* All clients won't need max allocation at the
same time

* Question: can one safely over-book resources?
— For example, seats on an airplane

* What 1s a “safe’ resource allocation?
— One where everyone will be able to complete

— Some people may have to wait for others to complete

— We must be sure there are no deadlocks /

CS 111 Lecture 9
Fall 2015 Page 16

/ The Banker’s Algorithm \

* One algorithm for resource reservations
* Assumptions:

1. All critical resources are known and quantifiable
— E.g., money or memory
— No other resources can cause deadlocks

2. All clients reserve for their maximum requirement

— They will never need more than this amount

3. If a client gets his maximum, he will complete

— Upon completion, he frees all his resources

— Those resources then become available for others /
CS 111 Lecture 9

Fall 2015 Page 17

/ The Rules of the Banker’s \
Algorithm

* Given a resource “state” characterized by:
— Total size of each pool of resources
— Reservations granted to each client for each resource

— Current allocations of each resource to each client
e A statei1s “safe”1f. ..

— Enough resources are allocated to at least one client to
allow him to finish

— After any client frees its resources, resulting state 1s safe
— And so on, until all clients have completed

* A proposed allocation can be granted 1f the resulting)
\ ~State would still be “safe” Lecture

Fall 2015 Page 18

/ Why Isn’t the Banker’s \
Algorithm Used?

* Quantified resources assumption

— Not all resources are measurable 1n units

— Other resource types can introduce circular dependencies
* Eventual completion assumption

— All resources are released when client completes

— In modern systems many tasks run for months

Likelihood of resource “convoy” formation
— Reduced parallelism, reduced throughput

* Many systems choose simpler “don't overbook™
\ policy /

CS 111 Lecture 9
Fall 2015 Page 19

/ Commodity Resource \
Management 1n Real Systems

* Advanced reservation mechanisms are common

— Memory reservations
— Disk quotas, Quality of Service contracts

* Once granted, system must guarantee reservations
— Allocation failures only happen at reservation time
— Hopefully before the new computation has begun
— Failures will not happen at request time
— System behavior more predictable, easier to handle

 But clients must deal with reservation failures

CS 111 Lecture 9
Fall 2015 Page 20

/Dealing With Reservation Failures\

* Resource reservation eliminates deadlock

* Apps must still deal with reservation failures

— Application design should handle failures
gracefully
* E.g., refuse to perform new request, but continue
running
— App must have a way of reporting failure to
requester

* E.g., error messages or return codes

— App must be able to continue running)

. ¢ Allcritical resources must be reserved at start-up time, .
Fall 2015 Page 21

ﬁsn’t Rejecting App Requests Bad?\

* It’s not great, but 1t’s better than failing later

* With advance notice, app may be able to adjust
service not to need the unavailable resource

* If app 1s in the middle of servicing a request,
we may have other resources allocated
— And the request half-performed
— If we fail then, all of this will have to be unwound

— Could be complex, or even impossible

CS 111 Lecture 9
Fall 2015 Page 22

/ Why Not Just Wait? \

* If reservation fails, why not hold on to what
[’ve got and ask again later?

* What would happen 1n our deadlock example?

— Nobody would ever make progress

— That’s what would generally happen in deadlock 1f
you just wait

* Making your clients wait indefinitely 1s a bad
1dea

CS 111 Lecture 9
Fall 2015 Page 23

/"System Services and Reservations \

* System services must never deadlock for memory

* Potential deadlock: swap manager
— Invoked to swap out processes to free up memory
— May need to allocate memory to build I/O request

— If no memory available, unable to swap out processes

So 1t can’t free up memory, and system wedges

* Solution:
— Pre-allocate and hoard a few request buffers
— Keep reusing the same ones over and over again

— Little bit of hoarded memory 1s a small price to pay to

avold deadlock

o Csrglhat’s just one example system service, of course

Fall 2015

Lecture 9
Page 24

/ [Deadlock Prevention} \

 Deadlock avoidance tries to ensure no lock
ever causes deadlock

* Deadlock prevention tries to assure that a
particular lock doesn’t cause deadlock

* By attacking one of the four necessary
conditions for deadlock

* If any one of these conditions doesn’t hold, no
deadlock

CS 111 Lecture 9
Fall 2015 Page 25

/ Four Basic Conditions \
For Deadlocks

* For a deadlock to occur, these conditions must
hold:

1. Mutual exclusion
2. Incremental allocation
3. No pre-emption

4. Circular waiting

CS 111 Lecture 9
Fall 2015 Page 26

/ 1. Mutual Exclusion \

* Deadlock requires mutual exclusion
— P1 having the resource precludes P2 from getting it

* You can't deadlock over a shareable resource
— Perhaps maintained with atomic instructions

— Even reader/writer locking can help
* Readers can share, writers may be handled other ways

* You can't deadlock on your private resources

— Can we give each process its own private
resource? Y,

CS 111 Lecture 9
Fall 2015 Page 27

/ 2. Incremental Allocation \

* Deadlock requires you to block holding resources
while you ask for others

1. Allocate all of your resources 1n a single operation

— If you can’t get everything, system returns failure and
locks nothing

— When you return, you have all or nothing

2. Non-blocking requests

— Arequest that can't be satisfied immediately will fail

3. Daisallow blocking while holding resources

— You must release all held locks prior to blocking

— Reacquire them again after you return /

CS 111 Lecture 9
Fall 2015 Page 28

/Releasing Locks Before Blocking\

* Could be blocking for a reason not related to
resource locking

* How can releasing locks before you block
help?

* Won’t the deadlock just occur when you
attempt to reacquire them?

— When you reacquire them, you will be required to
do so in a single all-or-none transaction

— Such a transaction does not involve hold-and-
block, and so cannot result in a deadlock /

Lecture 9
Page 29

CS 111
Fall 2015

/ 3. No Pre-emption \

* Deadlock can be broken by resource confiscation
— Resource “leases” with time-outs and “lock breaking”

— Resource can be seized & reallocated to new client

* Revocation must be enforced
— Invalidate previous owner's resource handle

— If revocation 1s not possible, kill previous owner

* Some resources may be damaged by lock breaking

— Previous owner was in the middle of critical section

— May need mechanisms to audit/repair resource

\° Resources must be designed with revocation in mind /

CS 111 Lecture 9
Fall 2015 Page 30

/ When Can The OS ““Seize” a \

Resource?
* When it can revoke access by invalidating a
process’ resource handle

— If process has to use a system service to access the
resource, that service can no longer honor requests
* When 1s 1t not possible to revoke a process’
access to a resource?

— If the process has direct access to the object
* E.g., the object 1s part of the process’ address space

* Revoking access requires destroying the address space /

osii * Usually killing the process. Lecture 9
Fall 2015 Page 31

/ 4. Circular Dependencies \

* Use total resource ordering
— All requesters allocate resources in same order
— First allocate R1 and then R2 afterwards
— Someone else may have R2 but he doesn't need R1

e Assumes we know how to order the resources

— Order by resource type (e.g. groups before
members)

— Order by relationship (e.g. parents before children)

* May require a lock dance
— Release R2, allocate R1, reacquire R2 s

CS 111
Fall 2015 Page 32

/ [.ock Dances

buffer

A 4

list head

y

list head must be locked for
searching, adding & deleting

To find a desired buffer:

read lock list head
search for desired buffer
lock desired buffer
unlock list head

return (locked) buffer

CS 111

buffer buffer ——

A\ 4

individual buffers must be locked to

perform I/O & other operations

To avoid deadlock, we must always lock the list head
before we lock an individual buffer.

To delete a (locked) buffer from list

unlock buffer

write lock list head
search for desired buffer
lock desired buffer
remove from list

unlock list head

\

Lecture 9

Fall 2015

Page 33

/" An Example of Breaking

Deadlocks
* The problem — urban traffic gridlock

— “Resource” 1s the ability to pass through
Intersection

A

CS 111

— Deadlock happens when nobody can get through

\

Lecture 9

Fall 2015

Page 34

/~ Using Attack Approach 1 To ™
Prevent Deadlock

 Avoid mutual exclusion

* Build overpass bridges for east/west traffic
. A

CS 111 = Lecture 9
Fall 2015 Page 35

/~ Using Attack Approach 2 To ™\

can’t exit 1t

CS 111

Prevent Deadlock

* Make it illegal to enter the intersection if you

— Thus, preventing “holding” of the intersection

‘lll

Fall 2015

Lecture 9
Page 36

/ Using Attack Approach 3 To \
Prevent Deadlock

* Allow preemption
— Force some car to pull over to the side

| |
CS 111 [| Lecture 9
Fall 2015 Page 37

/~ Using Attack Approach 4 To ™\

Prevent Deadlock

* Avoid circular dependencies by decreeing a
totally ordered right of way

— E.g., North beats West beats South beats East

_:| A ...

'V |
<IIIIIIIII

CS 111

Fall 2015

Lecture 9
Page 38

KV hich Approach Should You Use?\

 There 1s no one universal solution to all deadlocks

— Fortunately, we don't need one solution for all resources
— We only need a solution for each resource

* Solve each individual problem any way you can
— Make resources sharable wherever possible
— Use reservations for commodity resources
— Ordered locking or no hold-and-block where possible
— As a last resort, leases and lock breaking

* OS must prevent deadlocks in all system services

— Applications are responsible for their own behavior /

CS 111 Lecture 9
Fall 2015 Page 39

/ One More Deadlock “Solution”

* Ignore the problem
* In many cases, deadlocks are very improbable

* Doing anything to avoid or prevent them might
be very expensive

* So just forget about them and hope for the best
* But what 1f the best doesn’t happen?

CS 111 Lecture 9
Fall 2015 Page 40

/[Deadlock Detection and Recoverﬁ

e Allow deadlocks to occur
* Detect them once they have happened

— Preferably as soon as possible after they occur

* Do something to break the deadlock and allow
someone to make progress
* Is this a good approach?

— Either 1n general or when you don’t want to avoid
or prevent deadlocks?

CS 111 Lecture 9
Fall 2015 Page 41

/Implementing Deadlock Detection\

* Need to 1dentify all resources that can be
locked

* Need to maintain wait-for graph or equivalent
structure

* When lock requested, structure 1s updated and
checked for deadlock

— In which case, might it not be better just to reject
the lock request?

— And not let the requester block? /

CS 111 Lecture 9
Fall 2015 Page 42

/ Deadlock Detection and Health \

Monitoring

Deadlock detection seldom makes sense

— It is extremely complex to implement

— Only detects true deadlocks for a known resource

* Service/application health monitoring 1s better

— Monitor application progress/submit test transactions
— If response takes too long, declare service “hung”

Health monitoring is easy to implement

It can detect a wide range of problems
— Deadlocks, live-locks, infinite loops & waits, crashes

CS 111

— Not always clear cut what you should do 1f you detect one

Fall 2015

Lecture 9
Page 43

/ Related Problems Health \
Monitoring Can Handle

* Live-lock
— Process is running, but won't free R1 until it gets message
— Process that will send the message 1s blocked for R1

* Sleeping Beauty, waiting for “Prince Charming”
— A process 1s blocked, awaiting some completion

— But, for some reason, it will never happen

* Neither of these 1s a true deadlock
— Wouldn't be found by deadlock detection algorithm

— Both leave the system just as hung as a deadlock

\° Health monitoring handles them /

CS 111 Lecture 9
Fall 2015 Page 44

/ How To Monitor Process Health\

e ook for obvious failures

— Process exits or core dumps

* Passive observation to detect hangs
— Is process consuming CPU time, or 1s it blocked?
— Is process doing network and/or disk 1/0?

* External health monitoring

— “Pings”, null requests, standard test requests

e Internal instrumentation

— White box audits, exercisers, and monitoring /

CS 111 Lecture 9
Fall 2015 Page 45

/~ What To Do With “Unhealthy” ™
Processes?

* Kill and restart “all of the affected software”
* How many and which processes to kill?
— As many as necessary, but as few as possible
— The hung processes may not be the ones that are broken
 How will kills and restarts affect current clients?
— That depends on the service APIs and/or protocols
— Apps must be designed for cold/warm/partial restarts
* Highly available systems define restart groups
— Groups of processes to be started/killed as a group

— Define inter-group dependencies (restart B after A) /

CS 111 Lecture 9
Fall 2015 Page 46

/ Failure Recovery Methodology\

Retry 1f possible ... but not forever

— Client should not be kept waiting indefinitely
— Resources are being held while waiting to retry

Roll-back failed operations and return an error

* Continue with reduced capacity or functionality
— Accept requests you can handle, reject those you can't

Automatic restarts (cold, warm, partial)

 Escalation mechanisms for failed recoveries

— Restart more groups, reboot more machines

CS 111 Lecture 9
Fall 2015 Page 47

/[Priority Inversion and Deadlock}\

* Priority inversion isn’t necessarily deadlock, but it’s
related
— A low priority process P1 has mutex M1 and 1s preempted
— A high priority process P2 blocks for mutex M1
— Process P2 is effectively reduced to priority of P1

* Solution: mutex priority inheritance
— Check for problem when blocking for mutex
— Compare priority of current mutex owner with blocker

— Temporarily promote holder to blocker's priority

— Return to normal priority after mutex 1s released /

CS 111 Lecture 9
Fall 2015 Page 48

/ Priority Inversion on Mars \
-y - = '

* A real priority inversion problem occurred on
the Mars Pathfinder rover

* Caused serious problems with system resets
\e Difficult to find /

CS 111 Lecture 9
Fall 2015 Page 49

ﬁl’ he Pathfinder Priority Inversion\

* Special purpose hardware running VxWorks
real time OS

* Used preemptive priority scheduling
— So a high priority task should get the processor

* Multiple components shared an “information
bus”

— Used to communicate between components

— Essentially a shared memory region

— Protected by a mutex /

CS 111 Lecture 9
Fall 2015 Page 50

/ A Tale of Three Tasks \

* A high priority bus management task (at P1) needed
to run frequently
— For brief periods, during which it locked the bus

* A low priority meteorological task (at P3) ran
occasionally

— Also for brief periods, during which it locked the bus

* A medium priority communications task (at P2) ran
rarely
— But for a long time when it ran
— But 1t didn’t use the bus, so 1t didn’t need the lock

* P1>P2>P3 /

CS 111 Lecture 9
Fall 2015 Page 51

/ What Went Wrong? \
* Rarely, the following happened:

— The meteorological task ran and acquired the lock
— And then the bus management task would run
— It would block waiting for the lock
* Don’t pre-empt low priority if you’re blocked anyway
* Since meteorological task was short, usually
not a problem

* But if the long communications task woke up
in that short interval, what would happen?

Lecture 9

CS 111
Page 52

Fall 2015

/ The Priority Inversion at Work \

N

B

B’s priority of P1 is higher than C’s, but B can’t
run because it’s waiting on a lock held by M

A HI GH PRIORITY TASK DOESN’T RUN
AND A LOW PRIORITY TASK DOES

C

Lock Bus

But M won’t run again until C completes

M can’t interrupt C, since it only has priority P3
M won’t release the lock until it runs again

CS 111

Fall 2015

Time

Lecture 9
Page 53

/ The Ultimate Effect \

* A watchdog timer would go off every so often
— At a high priority
— It didn’t need the bus

— A health monitoring mechanism

* If the bus management task hadn’t run for a
long time, something was wrong

* So the watchdog code reset the system

* Every so often, the system would reboot

CS 111 Lecture 9
Fall 2015 Page 54

/ Solving the Problem \

* This was a priority inversion

— The lower priority communications task ran before the
higher priority bus management task

* That needed to be changed
* How?
* Temporarily increase the priority of the
meteorological task
— While the high priority bus management task was blocked
by 1t
— So the communications task wouldn’t preempt it

— Priority inheritance: a general solution to this kind of Y,

CS 111 problem Lecture 9
Fall 2015 Page 55

/ The Fix in Action \

When M releases the
T lock 1t loses high

A

Tasks run m proper priority order and
Pathfinder can keep looking around!

t C

B now gets the lock
and unblocks

CS 111 Tlme Lecture 9

Fall 2015 Page 56

