

Synchronization and Deadlock

CS 111

Operating Systems

Peter Reiher

Outline

- Deadlocks:
 - What are they and why are they important?
 - Deadlock avoidance, prevention, detection and recovery
- Related synchronization problems

Deadlock

- What is a deadlock?
- A situation where two entities have each locked some resource
- Each needs the other's locked resource to continue
- Neither will unlock till they lock both resources
- Hence, neither can ever make progress

Why Are Deadlocks Important?

- A major peril in cooperating parallel processes
 - They are relatively common in complex applications
 - They result in catastrophic system failures
- Finding them through debugging is very difficult
 - They happen intermittently and are hard to diagnose
 - They are much easier to prevent at design time
- Once you understand them, you can avoid them
 - Most deadlocks result from careless/ignorant design
 - An ounce of prevention is worth a pound of cure

Deadlocks and Different Resource Types

- Commodity Resources
 - Clients need an amount of it (e.g. memory)
 - Deadlocks result from over-commitment
 - Avoidance can be done in resource manager
- General Resources
 - Clients need a specific instance of something
 - A particular file or semaphore
 - A particular message or request completion
 - Deadlocks result from specific dependency relationships
 - Prevention is usually done at design time

Types of Deadlocks

- Commodity resource deadlocks
 - E.g., memory, queue space
- General resource deadlocks
 - E.g., files, critical sections
- Heterogeneous multi-resource deadlocks
 - E.g., P1 needs a file P2 holds, P2 needs memory which P1 is using
- Producer-consumer deadlocks
 - E.g., P1 needs a file P2 is creating, P2 needs a message from P1 to properly create the file

Four Basic Conditions For Deadlocks

- For a deadlock to occur, these conditions must hold:
 1. Mutual exclusion
 2. Incremental allocation
 3. No pre-emption
 4. Circular waiting

Deadlock Conditions: 1. Mutual Exclusion

- The resources in question can each only be used by one entity at a time
- If multiple entities can use a resource, then just give it to all of them
- If only one can use it, once you've given it to one, no one else gets it
 - Until the resource holder releases it

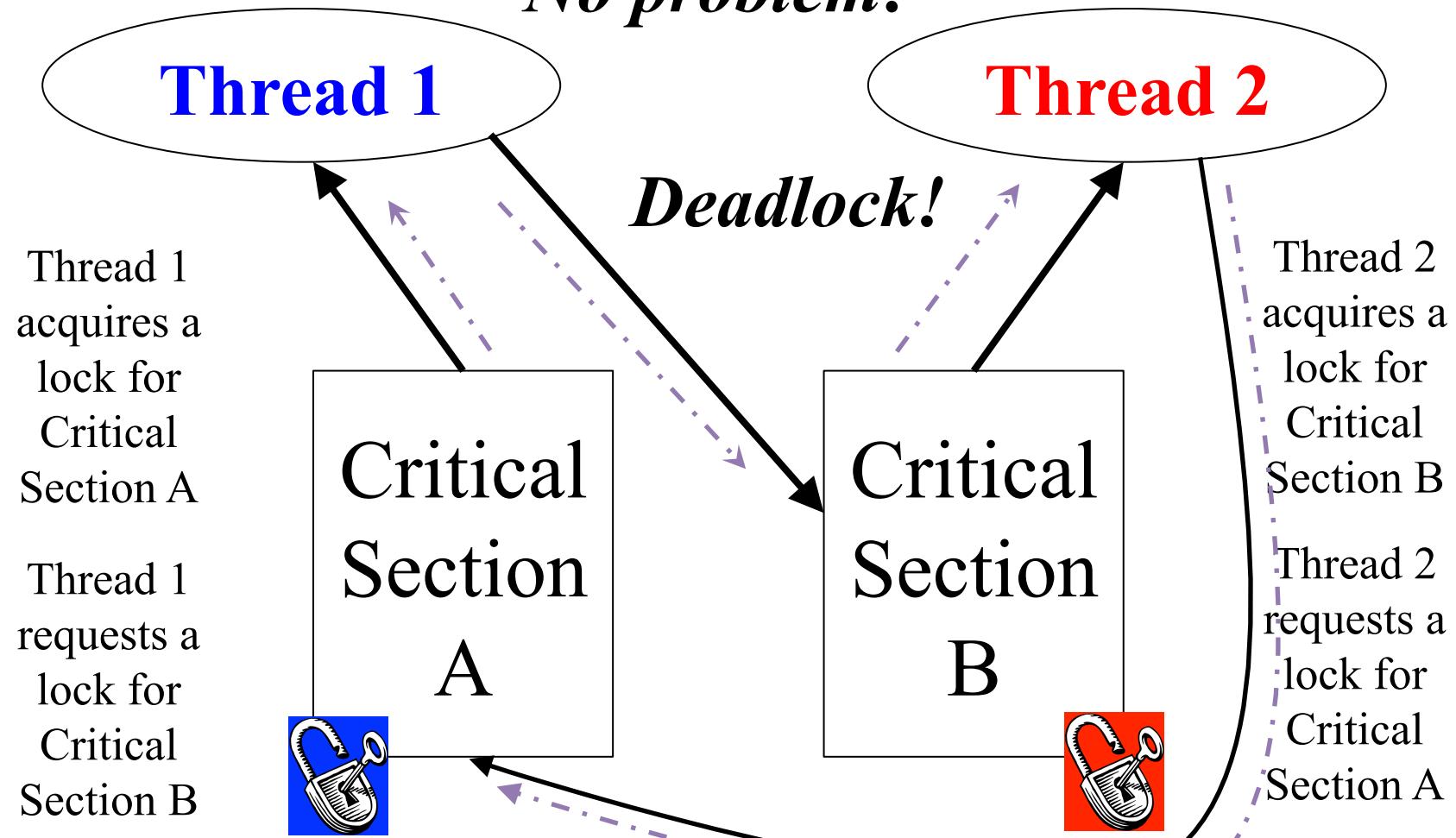
Deadlock Condition 2: Incremental Allocation

- Processes/threads are allowed to ask for resources whenever they want
 - As opposed to getting everything they need before they start
- If they must pre-allocate all resources, either:
 - They get all they need and run to completion
 - They don't get all they need and abort
- In either case, no deadlock

Deadlock Condition 3: No Pre-emption

- When an entity has reserved a resource, you can't take it away from him
 - Not even temporarily
- If you can, deadlocks are simply resolved by taking someone's resource away
 - To give to someone else
- But if you can't take it away from anyone, you're stuck

Deadlock Condition 4: Circular Waiting


- A waits on B which waits on A
- In graph terms, there's a cycle in a graph of resource requests
- Could involve a lot more than two entities
- But if there is no such cycle, someone can complete without anyone releasing a resource
 - Allowing even a long chain of dependencies to eventually unwind
 - Maybe not very fast, though . . .

We can't give him
the lock right now,
but . . .

A Wait-For Graph

Hmmmm . . .

No problem!

Deadlock Avoidance

- Use methods that guarantee that no deadlock can occur, by their nature
- Advance reservations
 - The problems of under/over-booking
 - The Bankers' Algorithm
- Practical commodity resource management
- Dealing with rejection
- Reserving critical resources

Avoiding Deadlock Using Reservations

- Advance reservations for commodity resources
 - Resource manager tracks outstanding reservations
 - Only grants reservations if resources are available
- Over-subscriptions are detected early
 - Before processes ever get the resources
- Client must be prepared to deal with failures
 - But these do not result in deadlocks
- Dilemma: over-booking vs. under-utilization

Overbooking Vs. Under Utilization

- Processes generally cannot perfectly predict their resource needs
- To ensure they have enough, they tend to ask for more than they will ever need
- Either the OS:
 - Grants requests till everything's reserved
 - In which case most of it won't be used
 - Or grants requests beyond the available amount
 - In which case sometimes someone won't get a resource he reserved

Handling Reservation Problems

- Clients seldom need all resources all the time
- All clients won't need max allocation at the same time
- Question: can one safely over-book resources?
 - For example, seats on an airplane
- What is a “safe” resource allocation?
 - One where everyone will be able to complete
 - Some people may have to wait for others to complete
 - We must be sure there are no deadlocks

The Banker's Algorithm

- One algorithm for resource reservations
- Assumptions:
 1. All critical resources are known and quantifiable
 - E.g., money or memory
 - No other resources can cause deadlocks
 2. All clients reserve for their maximum requirement
 - They will never need more than this amount
 3. If a client gets his maximum, he will complete
 - Upon completion, he frees all his resources
 - Those resources then become available for others

The Rules of the Banker's Algorithm

- Given a resource “state” characterized by:
 - Total size of each pool of resources
 - Reservations granted to each client for each resource
 - Current allocations of each resource to each client
- A state is “safe” if . . .
 - Enough resources are allocated to at least one client to allow him to finish
 - After any client frees its resources, resulting state is safe
 - And so on, until all clients have completed
- A proposed allocation can be granted if the resulting state would still be “safe”

Why Isn't the Banker's Algorithm Used?

- Quantified resources assumption
 - Not all resources are measurable in units
 - Other resource types can introduce circular dependencies
- Eventual completion assumption
 - All resources are released when client completes
 - In modern systems many tasks run for months
- Likelihood of resource “convoy” formation
 - Reduced parallelism, reduced throughput
- Many systems choose simpler “don't overbook” policy

Commodity Resource Management in Real Systems

- Advanced reservation mechanisms are common
 - Memory reservations
 - Disk quotas, Quality of Service contracts
- Once granted, system must guarantee reservations
 - Allocation failures only happen at reservation time
 - Hopefully before the new computation has begun
 - Failures will not happen at request time
 - System behavior more predictable, easier to handle
- But clients must deal with reservation failures

Dealing With Reservation Failures

- Resource reservation eliminates deadlock
- Apps must still deal with reservation failures
 - Application design should handle failures gracefully
 - E.g., refuse to perform new request, but continue running
 - App must have a way of reporting failure to requester
 - E.g., error messages or return codes
 - App must be able to continue running
 - All critical resources must be reserved at start-up time

Isn't Rejecting App Requests Bad?

- It's not great, but it's better than failing later
- With advance notice, app may be able to adjust service not to need the unavailable resource
- If app is in the middle of servicing a request, we may have other resources allocated
 - And the request half-performed
 - If we fail then, all of this will have to be unwound
 - Could be complex, or even impossible

Why Not Just Wait?

- If reservation fails, why not hold on to what I've got and ask again later?
- What would happen in our deadlock example?
 - Nobody would ever make progress
 - That's what would generally happen in deadlock if you just wait
- Making your clients wait indefinitely is a bad idea

System Services and Reservations

- System services must never deadlock for memory
- Potential deadlock: swap manager
 - Invoked to swap out processes to free up memory
 - May need to allocate memory to build I/O request
 - If no memory available, unable to swap out processes
 - So it can't free up memory, and system wedges
- Solution:
 - Pre-allocate and hoard a few request buffers
 - Keep reusing the same ones over and over again
 - Little bit of hoarded memory is a small price to pay to avoid deadlock
- That's just one example system service, of course

Deadlock Prevention

- Deadlock avoidance tries to ensure no lock ever causes deadlock
- Deadlock prevention tries to assure that a particular lock doesn't cause deadlock
- By attacking one of the four necessary conditions for deadlock
- If any one of these conditions doesn't hold, no deadlock

Four Basic Conditions For Deadlocks

- For a deadlock to occur, these conditions must hold:
 1. Mutual exclusion
 2. Incremental allocation
 3. No pre-emption
 4. Circular waiting

1. Mutual Exclusion

- Deadlock requires mutual exclusion
 - P1 having the resource precludes P2 from getting it
- You can't deadlock over a shareable resource
 - Perhaps maintained with atomic instructions
 - Even reader/writer locking can help
 - Readers can share, writers may be handled other ways
- You can't deadlock on your private resources
 - Can we give each process its own private resource?

2. Incremental Allocation

- Deadlock requires you to block holding resources while you ask for others

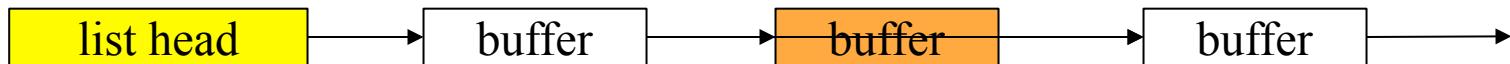
1. Allocate all of your resources in a single operation
 - If you can't get everything, system returns failure and locks nothing
 - When you return, you have all or nothing
2. Non-blocking requests
 - A request that can't be satisfied immediately will fail
3. Disallow blocking while holding resources
 - You must release all held locks prior to blocking
 - Reacquire them again after you return

Releasing Locks Before Blocking

- Could be blocking for a reason not related to resource locking
- How can releasing locks before you block help?
- Won't the deadlock just occur when you attempt to reacquire them?
 - When you reacquire them, you will be required to do so in a single all-or-none transaction
 - Such a transaction does not involve hold-and-block, and so cannot result in a deadlock

3. No Pre-emption

- Deadlock can be broken by resource confiscation
 - Resource “leases” with time-outs and “lock breaking”
 - Resource can be seized & reallocated to new client
- Revocation must be enforced
 - Invalidate previous owner's resource handle
 - If revocation is not possible, kill previous owner
- Some resources may be damaged by lock breaking
 - Previous owner was in the middle of critical section
 - May need mechanisms to audit/repair resource
- Resources must be designed with revocation in mind


When Can The OS “Seize” a Resource?

- When it can revoke access by invalidating a process' resource handle
 - If process has to use a system service to access the resource, that service can no longer honor requests
- When is it not possible to revoke a process' access to a resource?
 - If the process has direct access to the object
 - E.g., the object is part of the process' address space
 - Revoking access requires destroying the address space
 - Usually killing the process.

4. Circular Dependencies

- Use *total resource ordering*
 - All requesters allocate resources in same order
 - First allocate R1 and then R2 afterwards
 - Someone else may have R2 but he doesn't need R1
- Assumes we know how to order the resources
 - Order by resource type (e.g. groups before members)
 - Order by relationship (e.g. parents before children)
- May require a *lock dance*
 - Release R2, allocate R1, reacquire R2

Lock Dances

list head must be locked for searching, adding & deleting

individual buffers must be locked to perform I/O & other operations

To avoid deadlock, we must always lock the list head before we lock an individual buffer.

To find a desired buffer:

read lock list head

search for desired buffer

lock desired buffer

unlock list head

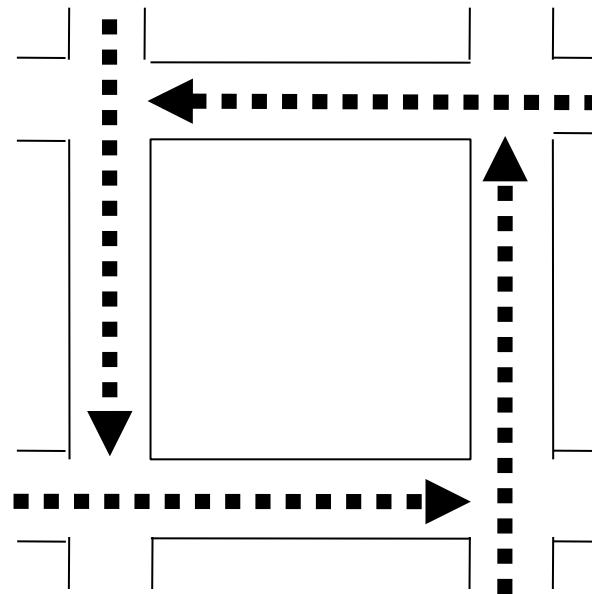
return (locked) buffer

To delete a (locked) buffer from list

unlock buffer

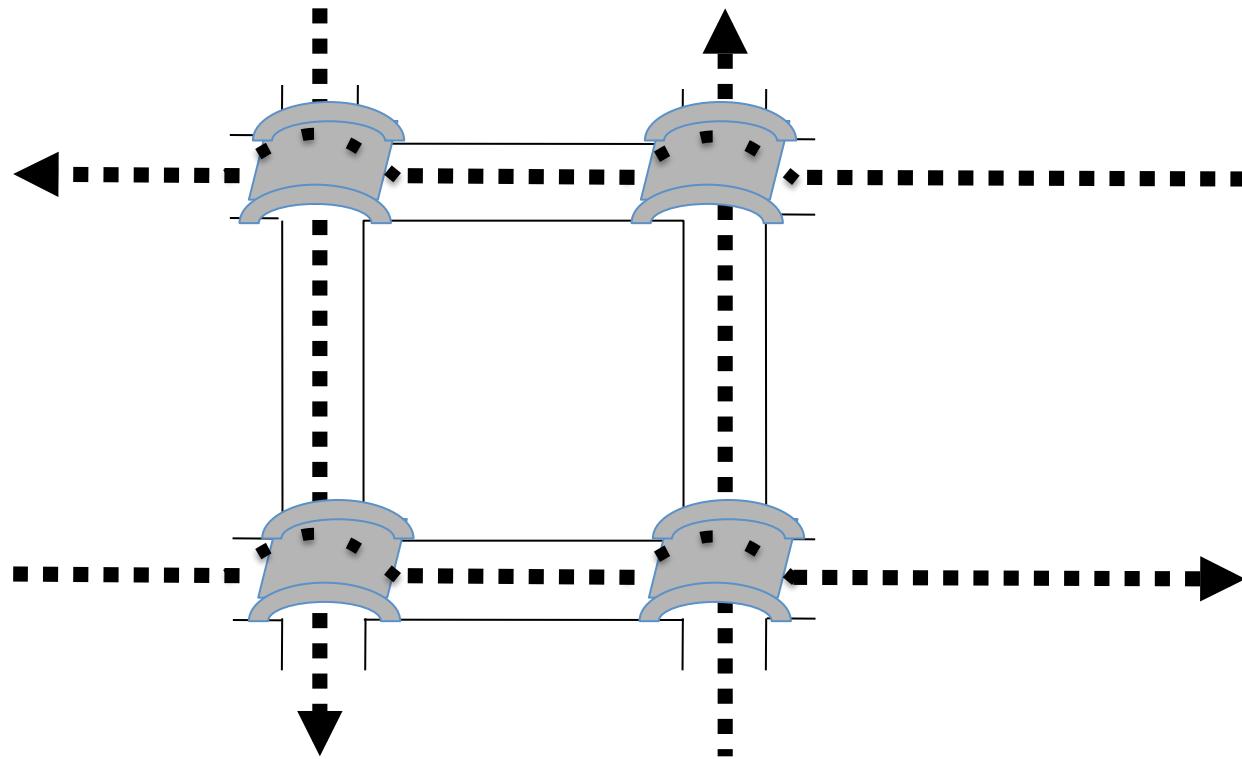
write lock list head

search for desired buffer

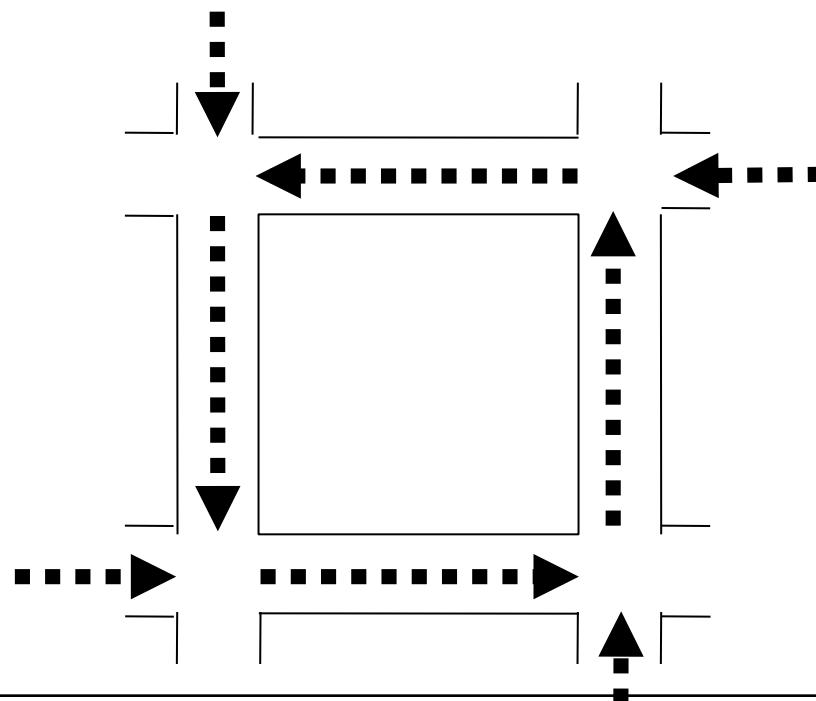

lock desired buffer

remove from list

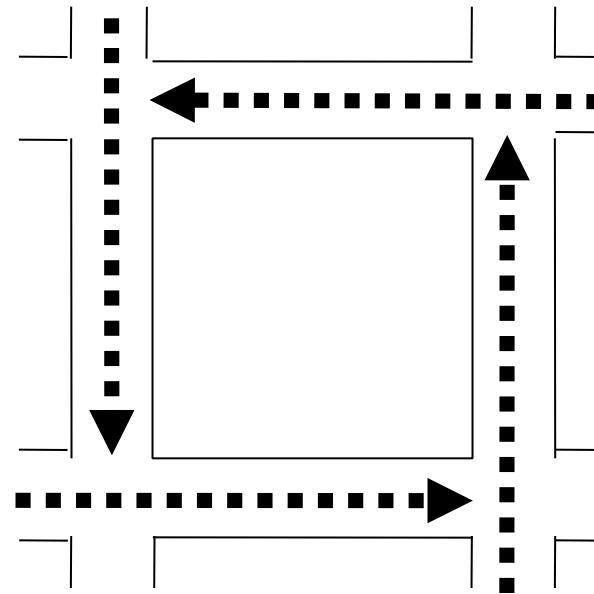
unlock list head


An Example of Breaking Deadlocks

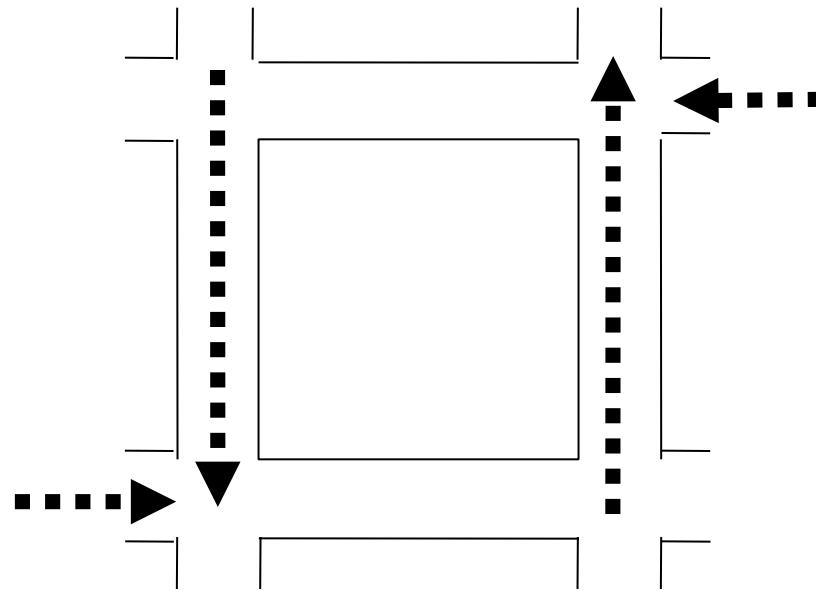
- The problem – urban traffic gridlock
 - “Resource” is the ability to pass through intersection
 - Deadlock happens when nobody can get through


Using Attack Approach 1 To Prevent Deadlock

- Avoid mutual exclusion
- Build overpass bridges for east/west traffic


Using Attack Approach 2 To Prevent Deadlock

- Make it illegal to enter the intersection if you can't exit it
 - Thus, preventing “holding” of the intersection


Using Attack Approach 3 To Prevent Deadlock

- Allow preemption
 - Force some car to pull over to the side

Using Attack Approach 4 To Prevent Deadlock

- Avoid circular dependencies by decreeing a totally ordered right of way
 - E.g., North beats West beats South beats East

Which Approach Should You Use?

- There is no one universal solution to all deadlocks
 - Fortunately, we don't need one solution for all resources
 - We only need a solution for each resource
- Solve each individual problem any way you can
 - Make resources sharable wherever possible
 - Use reservations for commodity resources
 - Ordered locking or no hold-and-block where possible
 - As a last resort, leases and lock breaking
- OS must prevent deadlocks in all system services
 - Applications are responsible for their own behavior

One More Deadlock “Solution”

- Ignore the problem
- In many cases, deadlocks are very improbable
- Doing anything to avoid or prevent them might be very expensive
- So just forget about them and hope for the best
- But what if the best doesn’t happen?

Deadlock Detection and Recovery

- Allow deadlocks to occur
- Detect them once they have happened
 - Preferably as soon as possible after they occur
- Do something to break the deadlock and allow someone to make progress
- Is this a good approach?
 - Either in general or when you don't want to avoid or prevent deadlocks?

Implementing Deadlock Detection

- Need to identify all resources that can be locked
- Need to maintain wait-for graph or equivalent structure
- When lock requested, structure is updated and checked for deadlock
 - In which case, might it not be better just to reject the lock request?
 - And not let the requester block?

Deadlock Detection and Health Monitoring

- Deadlock detection seldom makes sense
 - It is extremely complex to implement
 - Only detects true deadlocks for a known resource
 - Not always clear cut what you should do if you detect one
- Service/application *health monitoring* is better
 - Monitor application progress/submit test transactions
 - If response takes too long, declare service “hung”
- Health monitoring is easy to implement
- It can detect a wide range of problems
 - Deadlocks, live-locks, infinite loops & waits, crashes

Related Problems Health Monitoring Can Handle

- Live-lock
 - Process is running, but won't free R1 until it gets message
 - Process that will send the message is blocked for R1
- Sleeping Beauty, waiting for “Prince Charming”
 - A process is blocked, awaiting some completion
 - But, for some reason, it will never happen
- Neither of these is a true deadlock
 - Wouldn't be found by deadlock detection algorithm
 - Both leave the system just as hung as a deadlock
- Health monitoring handles them

How To Monitor Process Health

- Look for obvious failures
 - Process exits or core dumps
- Passive observation to detect hangs
 - Is process consuming CPU time, or is it blocked?
 - Is process doing network and/or disk I/O?
- External health monitoring
 - “Pings”, null requests, standard test requests
- Internal instrumentation
 - White box audits, exercisers, and monitoring

What To Do With “Unhealthy” Processes?

- Kill and restart “all of the affected software”
- How many and which processes to kill?
 - As many as necessary, but as few as possible
 - The hung processes may not be the ones that are broken
- How will kills and restarts affect current clients?
 - That depends on the service APIs and/or protocols
 - Apps must be designed for cold/warm/partial restarts
- Highly available systems define restart groups
 - Groups of processes to be started/killed as a group
 - Define inter-group dependencies (restart B after A)

Failure Recovery Methodology

- Retry if possible ... but not forever
 - Client should not be kept waiting indefinitely
 - Resources are being held while waiting to retry
- Roll-back failed operations and return an error
- Continue with reduced capacity or functionality
 - Accept requests you can handle, reject those you can't
- Automatic restarts (cold, warm, partial)
- Escalation mechanisms for failed recoveries
 - Restart more groups, reboot more machines

Priority Inversion and Deadlock

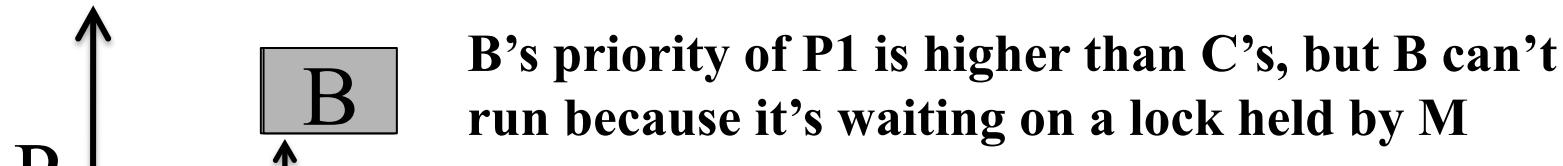
- Priority inversion isn't necessarily deadlock, but it's related
 - A low priority process P1 has mutex M1 and is preempted
 - A high priority process P2 blocks for mutex M1
 - Process P2 is effectively reduced to priority of P1
- Solution: mutex priority inheritance
 - Check for problem when blocking for mutex
 - Compare priority of current mutex owner with blocker
 - Temporarily promote holder to blocker's priority
 - Return to normal priority after mutex is released

Priority Inversion on Mars

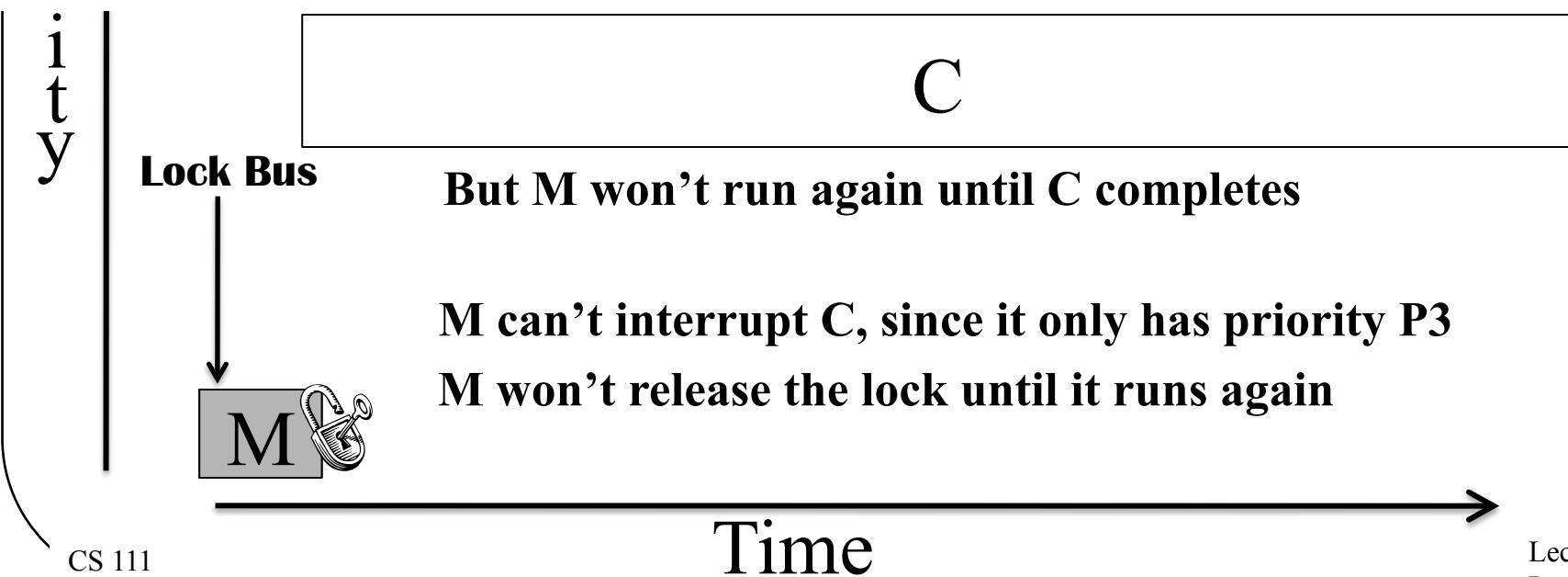
- A real priority inversion problem occurred on the Mars Pathfinder rover
- Caused serious problems with system resets
- Difficult to find

The Pathfinder Priority Inversion

- Special purpose hardware running VxWorks real time OS
- Used preemptive priority scheduling
 - So a high priority task should get the processor
- Multiple components shared an “information bus”
 - Used to communicate between components
 - Essentially a shared memory region
 - Protected by a mutex


A Tale of Three Tasks

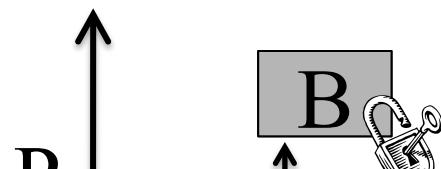
- A high priority bus management task (at P1) needed to run frequently
 - For brief periods, during which it locked the bus
- A low priority meteorological task (at P3) ran occasionally
 - Also for brief periods, during which it locked the bus
- A medium priority communications task (at P2) ran rarely
 - But for a long time when it ran
 - But it didn't use the bus, so it didn't need the lock
- P1>P2>P3


What Went Wrong?

- Rarely, the following happened:
 - The meteorological task ran and acquired the lock
 - And then the bus management task would run
 - It would block waiting for the lock
 - Don't pre-empt low priority if you're blocked anyway
- Since meteorological task was short, usually not a problem
- But if the long communications task woke up in that short interval, what would happen?

The Priority Inversion at Work

*A HIGH PRIORITY TASK DOESN'T RUN
AND A LOW PRIORITY TASK DOES*


The Ultimate Effect

- A watchdog timer would go off every so often
 - At a high priority
 - It didn't need the bus
 - A health monitoring mechanism
- If the bus management task hadn't run for a long time, something was wrong
- So the watchdog code reset the system
- Every so often, the system would reboot

Solving the Problem

- This was a priority inversion
 - The lower priority communications task ran before the higher priority bus management task
- That needed to be changed
- How?
- Temporarily increase the priority of the meteorological task
 - While the high priority bus management task was blocked by it
 - So the communications task wouldn't preempt it
 - *Priority inheritance*: a general solution to this kind of problem

The Fix in Action

When M releases the
lock it loses high

*Tasks run in proper priority order and
Pathfinder can keep looking around!*

ity

C

B now gets the lock
and unblocks

Time