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Outline 

•  Goals and vision of distributed computing 
•  Basic architectures 

– Symmetric multiprocessors 
– Single system image distributed systems 
– Cloud computing systems 
– User-level distributed computing 

•  Distributed file systems 
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Important Characteristics of 
Distributed Systems 

•  Performance 
–  Overhead, scalability, availability 

•  Functionality 
–  Adequacy and abstraction for target applications 

•  Transparency 
–  Compatibility with previous platforms 
–  Scope and degree of location independence 

•  Degree of coupling 
–  How many things do distinct systems agree on? 
–  How is that agreement achieved? 
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Types of Transparency 

•  Network transparency 
–  Is the user aware he’s going across a network? 

•  Name transparency 
– Does remote use require a different name/kind of 

name for a file than a local user? 
•  Location transparency 

– Does the name change if the file location changes? 
•  Performance transparency 

–  Is remote access as quick as local access? 
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Loosely and Tightly Coupled 
Systems 

•  Tightly coupled systems 
–  Share a global pool of resources 
–  Agree on their state, coordinate their actions 

•  Loosely coupled systems 
–  Have independent resources 
–  Only coordinate actions in special circumstances 

•  Degree of coupling 
–  Tight coupling: global coherent view, seamless fail-over 

•  But very difficult to do right 

–  Loose coupling: simple and highly scalable 
•  But a less pleasant system model 
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Globally Coherent Views 
•  Everyone sees the same thing 
•  Usually the case on single machines 
•  Harder to achieve in distributed systems 
•  How to achieve it? 

– Have only one copy of things that need single view 
•  Limits the benefits of the distributed system 
•  And exaggerates some of their costs 

– Ensure multiple copies are consistent 
•  Requiring complex and expensive consensus protocols 

•  Not much of a choice 
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Major Classes of Distributed 
Systems 

•  Symmetric Multi-Processors (SMP) 
–  Multiple CPUs, sharing memory and I/O devices 

•  Single-System Image (SSI) & Cluster Computing 
–  A group of computers, acting like a single computer 

•  Loosely coupled, horizontally scalable systems 
–  Coordinated, but relatively independent systems 
–  Cloud computing is the most widely used version 

•  Application level distributed computing 
–  Application level protocols 
–  Distributed middle-ware platforms 
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Symmetric Multiprocessors (SMP) 

•  What are they and what are their goals?  
•  OS design for SMP systems 
•  SMP parallelism 

– The memory bandwidth problem 
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SMP Systems 
•  Computers composed of multiple identical compute 

engines 
–  Each computer in SMP system usually called a node 

•  Sharing memories and devices 
•  Could run same or different code on all nodes 

–  Each node runs at its own pace 
–  Though resource contention can cause nodes to block 

•  Examples: 
–  BBN Butterfly parallel processor 
–  More recently, multi-way Intel servers 
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SMP Goals 
•  Price performance  

– Lower price per MIP than single machine 
– Since much of machine is shared 

•  Scalability  
– Economical way to build huge systems 
– Possibility of increasing machine’s power just by 

adding more nodes 
•  Perfect application transparency 

– Runs the same on 16 nodes as on one 
– Except faster 
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A Typical SMP Architecture 
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SMP Operating Systems 
•  One processor boots with power on 

–  It controls the starting of all other processors 

•  Same OS code runs in all processors 
– One physical copy in memory, shared by all CPUs 

•  Each CPU has its own registers, cache, MMU 
– They cooperatively share memory and devices 

•  ALL kernel operations must be Multi-Thread-
Safe 
– Protected by appropriate locks/semaphores 
– Very fine grained locking to avoid contention 
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SMP Parallelism 
•  Scheduling and load sharing 

–  Each CPU can be running a different process 
–  Just take the next ready process off the run-queue 
–  Processes run in parallel 
–  Most processes don't interact (other than inside kernel) 

•  If they do, poor performance caused by excessive synchronization 

•  Serialization 
–  Mutual exclusion achieved by locks in shared memory 
–  Locks can be maintained with atomic instructions 
–  Spin locks acceptable for VERY short critical sections 
–  If a process blocks, that CPU finds next ready process 
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The Challenge of SMP 
Performance 

•  Scalability depends on memory contention 
–  Memory bandwidth is limited, can't handle all CPUs 
–  Most references better be satisfied from per-CPU cache 
–  If too many requests go to memory, CPUs slow down 

•  Scalability depends on lock contention 
–  Waiting for spin-locks wastes time 
–  Context switches waiting for kernel locks waste time 

•  This contention wastes cycles, reduces throughput 
–  2 CPUs might deliver only 1.9x performance 
–  3 CPUs might deliver only 2.7x performance  
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Managing Memory Contention 

•  Each processor has its own cache 
–  Cache reads don’t cause memory contention 
–  Writes are more problematic 

•  Locality of reference often solves the problems 
–  Different processes write to different places 

•  Keeping everything coherent still requires a smart 
memory controller  

•  Fast n-way memory controllers are very expensive 
–  Without them, memory contention taxes performance 
–  Cost/complexity limits how many CPUs we can add 
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Single System Image Approaches 
•  Built a distributed system out of many more-

or-less traditional computers 
– Each with typical independent resources 
– Each running its own copy of the same OS 
– Usually a fixed, known pool of machines 

•  Connect them with a good local area network 
•  Use software techniques to allow them to work 

cooperatively 
– Often while still offering many benefits of 

independent machines to the local users  
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Motivations for Single System 
Image Computing 

•  High availability, service survives node/link failures 
•  Scalable capacity (overcome SMP contention 

problems) 
–  You’re connecting with a LAN, not a special hardware 

switch 
–  LANs can host hundreds of nodes 

•  Good application transparency 
•  Examples: 

–  Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI 
–  Enterprise database servers 
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The SSI Vision 
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OS Design for SSI Clusters 

•  All nodes agree on the state of all OS resources 
–  File systems, processes, devices, locks, IPC ports 
–  Any process can operate on any object, transparently 

•  They achieve this by exchanging messages 
–  Advising one another of all changes to resources 

•  Each OS’s internal state mirrors the global state 

–  To execute node-specific requests 
•  Node-specific requests automatically forwarded to right node 

•  The implementation is large, complex, and difficult 
•  The exchange of messages can be very expensive 
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SSI Performance 
•  Clever implementation can reduce overhead 

–  But 10-20% overhead is common, can be much worse 
•  Complete transparency 

–  Even very complex applications “just work” 
–  They do not have to be made “network aware” 

•  Good robustness 
–  When one node fails, others notice and take-over 
–  Often, applications won't even notice the failure 
–  Each node hardware-independent 

•  Failures of one node don’t affect others, unlike some SMP failures 

•  Very nice for application developers and customers 
–  But they are complex, and not particularly scalable 
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An Example of SSI Complexity 
•  Keeping track of which nodes are up 
•  Done in the Locus Operating System through 

“topology change” 
•  Need to ensure that all nodes know of the identity of 

all nodes that are up 
•  By running a process to figure it out 
•  Complications: 

–  Who runs the process?  What if he’s down himself? 
–  Who do they tell the results to? 
–  What happens if things change while you’re running it? 
–  What if the system is partitioned? 
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Is It Really That Bad? 

•  Nodes fail and recovery rarely 
•  So something like topology change doesn’t run that 

often 
•  But consider a more common situation 
•  Two processes have the same file open 

–  What if they’re on different machines? 
–  What if they are parent and child, and share a file pointer? 

•  Basic read operations require distributed agreement 
–  Or, alternately, we compromise the single image 
–  Which was the whole point of the architecture 
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Scaling and SSI 

•  Scaling limits proved not to be hardware 
driven 
– Unlike SMP machines 

•  Instead, driven by algorithm complexity 
– Consensus algorithms, for example 

•  Design philosophy essentially requires 
distributed cooperation 
–   So this factor limits scalability 



Lecture 16 
Page 24 

CS 111 
Fall 2015  

Lessons Learned From SSI 

•  Consensus protocols are expensive 
–  They converge slowly and scale poorly 

•  Systems have a great many resources 
–  Resource change notifications are expensive 

•  Location transparency encouraged non-locality 
–  Remote resource use is much more expensive 

•  A very complicated operating system design 
–  Distributed objects are much more complex to manage 
–  Complex optimizations to reduce the added overheads 
–  New modes of failure with complex recovery procedures 
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Loosely Coupled Systems 
•  Characterization: 

– A parallel group of independent computers  
– Serving similar but independent requests 
– Minimal coordination and cooperation required 

•  Motivation: 
– Scalability and price performance 
– Availability – if protocol permits stateless servers 
– Ease of management, reconfigurable capacity 

•  Examples: 
– Web servers, app servers, cloud computing 
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Horizontal Scalability 

•  Each node largely independent 
•  So you can add capacity just by adding a node 

“on the side” 
•  Scalability can be limited by network, instead 

of hardware or algorithms 
– Or, perhaps, by a load balancer 

•  Reliability is high 
– Failure of one of N nodes just reduces capacity 
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Horizontal Scalability Architecture 
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Elements of Loosely Coupled 
Architecture  

•  Farm of independent servers 
–  Servers run same software, serve different requests 
–  May share a common back-end database 

•  Front-end switch 
–  Distributes incoming requests among available servers 
–  Can do both load balancing and fail-over 

•  Service protocol 
–  Stateless servers and idempotent operations 
–  Successive requests may be sent to different servers 
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Horizontally Scaled Performance 
•  Individual servers are very inexpensive 

–  Blade servers may be only $100-$200 each 
•  Scalability is excellent 

–  100 servers deliver approximately 100x performance 

•  Service availability is excellent 
–  Front-end automatically bypasses failed servers 
–  Stateless servers and client retries fail-over easily 

•  The challenge is managing thousands of servers 
–  Automated installation, global configuration services 
–  Self monitoring, self-healing systems 
–  Scaling limited by management, not HW or algorithms 
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What About the Centralized 
Resources? 

•  The load balancer appears to be centralized 
•  And what about the back-end databases? 
•  Are these single points of failure for this 

architecture? 
•  And also limits on performance? 
•  Yes, but . . . 
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Handling the Limiting Factors 

•  The centralized pieces can be special hardware 
– There are very few of them 
– So they can use aggressive hardware redundancy 

•  Expensive, but only for a limited set of machines 

– They can also be high performance machines 
•  Some of them have very simple functionality 

– Like the load balancer 
•  With proper design, their roles can be 

minimized, decreasing performance problems 
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Cloud Computing 
•  The most recent twist on distributed computing 
•  Set up a large number of machines all 

identically configured 
•  Connect them to a high speed LAN 

– And to the Internet 
•  Accept arbitrary jobs from remote users 
•  Run each job on one or more nodes 
•  Entire facility probably running mix of single 

machine and distributed jobs, simultaneously 
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Distributed Computing and  
Cloud Computing 

•  In one sense, these are orthogonal 
•  Each job submitted to a cloud might or might 

not be distributed 
•  Many of the hard problems of the distributed 

jobs are the user’s problem, not the system’s 
– E.g., proper synchronization and locking 

•  But the cloud facility must make 
communications easy 
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What Runs in a Cloud? 
•  In principle, anything 
•  But general distributed computing is hard 
•  So much of the work is run using special tools 
•  These tools support particular kinds of parallel/

distributed processing 
•  Either embarrassingly parallel jobs 
•  Or those using a method like map-reduce 
•  Things where the user need not be a distributed 

systems expert 
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Embarrassingly Parallel Jobs 
•  Problems where it’s really, really easy to 

parallelize them 
•  Probably because the data sets are easily 

divisible 
•  And exactly the same things are done on each 

piece 
•  So you just parcel them out among the nodes 

and let each go independently 
•  Everyone finishes at more or less same time 
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The Most Embarrassing of 
Embarrassingly Parallel Jobs 

•  Say you have a large computation 
•  You need to perform it N times, with slightly 

different inputs each time 
•  Each iteration is expected to take the same 

time 
•  If you have N cloud machines, write a script to 

send one of the N jobs to each 
•  You get something like N times speedup  
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MapReduce 

•  Perhaps the most common cloud computing 
software tool/technique 

•  A method of dividing large problems into 
compartmentalized pieces 

•  Each of which can be performed on a 
separate node 

•  With an eventual combined set of results 
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The Idea Behind MapReduce 
•  There is a single function you want to 

perform on a lot of data 
– Such as searching it for a string 

•  Divide the data into disjoint pieces 
•  Perform the function on each piece on a 

separate node (map) 
•  Combine the results to obtain output 

(reduce) 
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An Example 

•  We have 64 megabytes of text data 
•  We want to count how many times each word 

occurs in the text 
•  Divide it into 4 chunks of 16 Mbytes 
•  Assign each chunk to one processor 
•  Perform the map function of “count words” on 

each  
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The Example Continued 

1 2 3 4

Foo  
1 
Bar 4 
Baz 3 

Zoo  
6 

Yes 
12 
Too 5 

Foo  
7 
Bar 3 
Baz 9 

Zoo  
1 
Yes 
17 
Too 8 

Foo  
2 
Bar 6 
Baz 2 

Zoo  
2 
Yes 
10 
Too 4 

Foo  
4 
Bar 7 
Baz 5 

Zoo  
9 
Yes 3 
Too 7 

That’s the map stage 
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On To Reduce 

•   We might have two more nodes assigned to 
doing the reduce operation 

•  They will each receive a share of data from a 
map node 

•  The reduce node performs a reduce operation 
to “combine” the shares 

•  Outputting its own result 
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Continuing the Example 

Foo  
1 
Bar 4 
Baz 3 

Zoo  
6 
Yes 
12 
Too 5 

Foo  
7 
Bar 3 
Baz 9 

Zoo  
1 
Yes 
17 
Too 8 

Foo  
2 
Bar 6 
Baz 2 

Zoo  
2 
Yes 
10 
Too 4 

Foo  
4 
Bar 7 
Baz 5 

Zoo  
9 
Yes 3 
Too 7 
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The Reduce Nodes Do Their Job 

Foo  
14 
Bar  20 
Baz  
19 

Zoo  
16 
Yes  
42 
Too  24 

And MapReduce is done! 
Write out the results to files 
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But I Wanted A Combined List 

•  No problem 
•  Run another (slightly different) MapReduce on 

the outputs 
•  Have one reduce node that combines 

everything 
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Synchronization in MapReduce 

•  Each map node produces an output file for 
each reduce node 

•  It is produced atomically 
•  The reduce node can’t work on this data 

until the whole file is written 
•  Forcing a synchronization point between the 

map and reduce phases 
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Distributed File Systems:  
Goals and Challenges 

•  Sometimes the files we want aren’t on our 
machine 

•  We’d like to be able to access them anyway 
•  How do we provide access to remote files? 
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Key Characteristics of Network 
File System Solutions 

•  APIs and transparency 
– How do users and processes access remote files? 
– How closely do remote files mimic local files? 

•  Performance and robustness 
– Are remote files as fast and reliable as local ones? 

•  Architecture 
– How is solution integrated into clients and servers? 

•  Protocol and work partitioning 
– How do client and server cooperate? 
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Remote File Access Protocols 
•  Goal: complete transparency 

– Normal file system calls work on remote files 
– Support file sharing by multiple clients 
– High performance, availability, reliability, 

scalability 
•  Typical Architecture 

– Uses plug-in file system architecture 
– Client-side file system is merely a local proxy 
– Translates file operations into network requests 
– Server-side daemon receives/process requests 
– Translates them into real file system operations 
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Remote File Access Architecture 
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The Client Side 
•  On Unix/Linux, makes use of VFS interface 
•  Allows plug-in of file system implementations 

– Each implements a set of basic methods  
•  create, delete, open, close, link, unlink, etc. 

– Translates logical operations into disk operations 

•  Remote file systems can also be implemented 
– Translate each standard method into messages 
– Forward those requests to a remote file server 
– RFS client only knows the RFS protocol 

•  Need not know the underlying on-disk implementation 



Lecture 16 
Page 51 

CS 111 
Fall 2015  

Server Side Implementation 
•  Remote file system server daemon 

– Receives and decodes messages 
– Does requested operations on local file system 

•  Can be implemented in user- or kernel-mode 
– Kernel daemon may offer better performance 
– User-mode is much easier to implement 

•  One daemon may serve all incoming requests 
– Higher performance, fewer context switches 

•  Or could be many per-user-session daemons 
– Simpler, and probably more secure 
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Remote File Access:  
Problems and Solutions 

•  Authentication and authorization 
•  Synchronization 
•  Performance 
•  Robustness 
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Performance Issues 

•  Performance of the remote file system now 
dependent on many more factors 
– Not just the local CPU, bus, memory, and disk 

•  Also on the same hardware on the server that 
stores the files 
– Which often is servicing many clients 

•  And on the network in between 
– Which can have wide or narrow bandwidth 
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Some Performance Solutions 
•  Appropriate transport and session protocols 

– Minimize messages, maximize throughput 

•  Partition the work 
– Minimize number of remote requests 
– Spread load over more processors and disks 

•  Client-side pre-fetching and caching 
– Fetching whole file at a once is more efficient 
– Block caching for read-ahead and deferred writes 
– Reduces disk and network I/O (vs. server cache) 
– Cache consistency can be a problem 
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Robustness Issues 

•  Three major components in remote file system 
operations 
– The client machine 
– The server machine 
– The network in between 

•  All can fail 
– Leading to potential problems for the remote file 

system’s data and users 
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Robustness Solution Approaches 
•  Network errors – support client retries 

– Have file system protocol uses idempotent requests 
– Have protocol support all-or-none transactions 

•  Client failures – support server-side recovery 
– Automatic back-out of uncommitted transactions 
– Automatic expiration of timed out lock leases 

•  Server failures – support server fail-over 
– Replicated (parallel or back-up) servers 
– Stateless remote file system protocols 
– Automatic client-server rebinding 
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The Network File System (NFS) 
•  Transparent, heterogeneous file system sharing 

– Local and remote files are indistinguishable 

•  Peer-to-peer and client-server sharing 
– Disk-full clients can export file systems to others 
– Able to support diskless (or dataless) clients 
– Minimal client-side administration 

•  High efficiency and high availability 
– Read performance competitive with local disks 
– Scalable to huge numbers of clients 
– Seamless fail-over for all readers and some writers 
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The NFS Protocol 
•  Relies on idempotent operations and stateless server 

–  Built on top of a remote procedure call protocol 
–  With eXternal Data Representation, server binding 
–  Versions of RPC over both TCP or UDP 
–  Optional encryption (may be provided at lower level) 

•  Scope – basic file operations only 
–  Lookup (open), read, write, read-directory, stat 
–  Supports client or server-side authentication 
–  Supports client-side caching of file contents 
–  Locking and auto-mounting done with another protocol 
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NFS and Updates 
•  An NFS server does not prevent conflicting updates 

–  As with local file systems, this is the applications’ job 
•  Auxiliary server/protocol for file and record locking 

–  All leases are maintained on the lock server 
–  All lock/unlock operations handed by lock server 

•  Client/network failure handling 
–  Server can break locks if client dies or times out 
–  “Stale-handle” errors inform client of broken lock 
–  Client response to these errors are application specific 

•  Lock server failure handling is very complex 
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Distributed Systems - Summary 

•  Different distributed system models support: 
–  Different degrees of transparency 

•  Do applications see a network or single system image? 

–  Different degrees of coupling 
•  Making multiple computers cooperate is difficult 
•  Doing it without shared memory is even worse 

•  Distributed systems always face a trade-off between 
performance, independence, and robustness 
–  Cooperating redundant nodes offer higher availability 
–  Communication and coordination are expensive 
–  Mutual dependency creates more modes of failure 


