
Lecture 16
Page 1

CS 111
Fall 2015

Distributed Systems
CS 111

Operating Systems
Peter Reiher

Lecture 16
Page 2

CS 111
Fall 2015

Outline

•  Goals and vision of distributed computing
•  Basic architectures

– Symmetric multiprocessors
– Single system image distributed systems
– Cloud computing systems
– User-level distributed computing

•  Distributed file systems

Lecture 16
Page 3

CS 111
Fall 2015

Important Characteristics of
Distributed Systems

•  Performance
–  Overhead, scalability, availability

•  Functionality
–  Adequacy and abstraction for target applications

•  Transparency
–  Compatibility with previous platforms
–  Scope and degree of location independence

•  Degree of coupling
–  How many things do distinct systems agree on?
–  How is that agreement achieved?

Lecture 16
Page 4

CS 111
Fall 2015

Types of Transparency

•  Network transparency
–  Is the user aware he’s going across a network?

•  Name transparency
– Does remote use require a different name/kind of

name for a file than a local user?
•  Location transparency

– Does the name change if the file location changes?
•  Performance transparency

–  Is remote access as quick as local access?

Lecture 16
Page 5

CS 111
Fall 2015

Loosely and Tightly Coupled
Systems

•  Tightly coupled systems
–  Share a global pool of resources
–  Agree on their state, coordinate their actions

•  Loosely coupled systems
–  Have independent resources
–  Only coordinate actions in special circumstances

•  Degree of coupling
–  Tight coupling: global coherent view, seamless fail-over

•  But very difficult to do right

–  Loose coupling: simple and highly scalable
•  But a less pleasant system model

Lecture 16
Page 6

CS 111
Fall 2015

Globally Coherent Views
•  Everyone sees the same thing
•  Usually the case on single machines
•  Harder to achieve in distributed systems
•  How to achieve it?

– Have only one copy of things that need single view
•  Limits the benefits of the distributed system
•  And exaggerates some of their costs

– Ensure multiple copies are consistent
•  Requiring complex and expensive consensus protocols

•  Not much of a choice

Lecture 16
Page 7

CS 111
Fall 2015

Major Classes of Distributed
Systems

•  Symmetric Multi-Processors (SMP)
–  Multiple CPUs, sharing memory and I/O devices

•  Single-System Image (SSI) & Cluster Computing
–  A group of computers, acting like a single computer

•  Loosely coupled, horizontally scalable systems
–  Coordinated, but relatively independent systems
–  Cloud computing is the most widely used version

•  Application level distributed computing
–  Application level protocols
–  Distributed middle-ware platforms

Lecture 16
Page 8

CS 111
Fall 2015

Symmetric Multiprocessors (SMP)

•  What are they and what are their goals?
•  OS design for SMP systems
•  SMP parallelism

– The memory bandwidth problem

Lecture 16
Page 9

CS 111
Fall 2015

SMP Systems
•  Computers composed of multiple identical compute

engines
–  Each computer in SMP system usually called a node

•  Sharing memories and devices
•  Could run same or different code on all nodes

–  Each node runs at its own pace
–  Though resource contention can cause nodes to block

•  Examples:
–  BBN Butterfly parallel processor
–  More recently, multi-way Intel servers

Lecture 16
Page 10

CS 111
Fall 2015

SMP Goals
•  Price performance

– Lower price per MIP than single machine
– Since much of machine is shared

•  Scalability
– Economical way to build huge systems
– Possibility of increasing machine’s power just by

adding more nodes
•  Perfect application transparency

– Runs the same on 16 nodes as on one
– Except faster

Lecture 16
Page 11

CS 111
Fall 2015

A Typical SMP Architecture

shared memory & device busses

memory

device
controller

device
controller

device
controller

CPU 1

cache

CPU 2

cache

CPU 3

cache

CPU 4

cache

interrupt
controller

Lecture 16
Page 12

CS 111
Fall 2015

SMP Operating Systems
•  One processor boots with power on

–  It controls the starting of all other processors

•  Same OS code runs in all processors
– One physical copy in memory, shared by all CPUs

•  Each CPU has its own registers, cache, MMU
– They cooperatively share memory and devices

•  ALL kernel operations must be Multi-Thread-
Safe
– Protected by appropriate locks/semaphores
– Very fine grained locking to avoid contention

Lecture 16
Page 13

CS 111
Fall 2015

SMP Parallelism
•  Scheduling and load sharing

–  Each CPU can be running a different process
–  Just take the next ready process off the run-queue
–  Processes run in parallel
–  Most processes don't interact (other than inside kernel)

•  If they do, poor performance caused by excessive synchronization

•  Serialization
–  Mutual exclusion achieved by locks in shared memory
–  Locks can be maintained with atomic instructions
–  Spin locks acceptable for VERY short critical sections
–  If a process blocks, that CPU finds next ready process

Lecture 16
Page 14

CS 111
Fall 2015

The Challenge of SMP
Performance

•  Scalability depends on memory contention
–  Memory bandwidth is limited, can't handle all CPUs
–  Most references better be satisfied from per-CPU cache
–  If too many requests go to memory, CPUs slow down

•  Scalability depends on lock contention
–  Waiting for spin-locks wastes time
–  Context switches waiting for kernel locks waste time

•  This contention wastes cycles, reduces throughput
–  2 CPUs might deliver only 1.9x performance
–  3 CPUs might deliver only 2.7x performance

Lecture 16
Page 15

CS 111
Fall 2015

Managing Memory Contention

•  Each processor has its own cache
–  Cache reads don’t cause memory contention
–  Writes are more problematic

•  Locality of reference often solves the problems
–  Different processes write to different places

•  Keeping everything coherent still requires a smart
memory controller

•  Fast n-way memory controllers are very expensive
–  Without them, memory contention taxes performance
–  Cost/complexity limits how many CPUs we can add

Lecture 16
Page 16

CS 111
Fall 2015

Single System Image Approaches
•  Built a distributed system out of many more-

or-less traditional computers
– Each with typical independent resources
– Each running its own copy of the same OS
– Usually a fixed, known pool of machines

•  Connect them with a good local area network
•  Use software techniques to allow them to work

cooperatively
– Often while still offering many benefits of

independent machines to the local users

Lecture 16
Page 17

CS 111
Fall 2015

Motivations for Single System
Image Computing

•  High availability, service survives node/link failures
•  Scalable capacity (overcome SMP contention

problems)
–  You’re connecting with a LAN, not a special hardware

switch
–  LANs can host hundreds of nodes

•  Good application transparency
•  Examples:

–  Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI
–  Enterprise database servers

Lecture 16
Page 18

CS 111
Fall 2015

The SSI Vision

Virtual computer with 4x MIPS & memory

one large virtual file system

disk 1A

disk 1B

disk 2A

disk 2B

disk 3A

disk 3B

disk 4A

disk 4B

one global pool of
devices

physical systems

CD1

LP2

CD3

LP3

SCN4

CD1

CD3

LP2

LP3

SCN4

 secondary replicas

 primary copies

proc 101
proc 103
proc 106

lock 1A

proc 202
proc 204
proc 205

proc 301
proc 305
proc 306

lock 3B

proc 403
proc 405
proc 407

processes
 101, 103, 106,
+ 202, 204, 205,
+ 301, 305, 306,
+ 403, 405, 407

locks
 1A, 3B

Lecture 16
Page 19

CS 111
Fall 2015

OS Design for SSI Clusters

•  All nodes agree on the state of all OS resources
–  File systems, processes, devices, locks, IPC ports
–  Any process can operate on any object, transparently

•  They achieve this by exchanging messages
–  Advising one another of all changes to resources

•  Each OS’s internal state mirrors the global state

–  To execute node-specific requests
•  Node-specific requests automatically forwarded to right node

•  The implementation is large, complex, and difficult
•  The exchange of messages can be very expensive

Lecture 16
Page 20

CS 111
Fall 2015

SSI Performance
•  Clever implementation can reduce overhead

–  But 10-20% overhead is common, can be much worse
•  Complete transparency

–  Even very complex applications “just work”
–  They do not have to be made “network aware”

•  Good robustness
–  When one node fails, others notice and take-over
–  Often, applications won't even notice the failure
–  Each node hardware-independent

•  Failures of one node don’t affect others, unlike some SMP failures

•  Very nice for application developers and customers
–  But they are complex, and not particularly scalable

Lecture 16
Page 21

CS 111
Fall 2015

An Example of SSI Complexity
•  Keeping track of which nodes are up
•  Done in the Locus Operating System through

“topology change”
•  Need to ensure that all nodes know of the identity of

all nodes that are up
•  By running a process to figure it out
•  Complications:

–  Who runs the process? What if he’s down himself?
–  Who do they tell the results to?
–  What happens if things change while you’re running it?
–  What if the system is partitioned?

Lecture 16
Page 22

CS 111
Fall 2015

Is It Really That Bad?

•  Nodes fail and recovery rarely
•  So something like topology change doesn’t run that

often
•  But consider a more common situation
•  Two processes have the same file open

–  What if they’re on different machines?
–  What if they are parent and child, and share a file pointer?

•  Basic read operations require distributed agreement
–  Or, alternately, we compromise the single image
–  Which was the whole point of the architecture

Lecture 16
Page 23

CS 111
Fall 2015

Scaling and SSI

•  Scaling limits proved not to be hardware
driven
– Unlike SMP machines

•  Instead, driven by algorithm complexity
– Consensus algorithms, for example

•  Design philosophy essentially requires
distributed cooperation
–  So this factor limits scalability

Lecture 16
Page 24

CS 111
Fall 2015

Lessons Learned From SSI

•  Consensus protocols are expensive
–  They converge slowly and scale poorly

•  Systems have a great many resources
–  Resource change notifications are expensive

•  Location transparency encouraged non-locality
–  Remote resource use is much more expensive

•  A very complicated operating system design
–  Distributed objects are much more complex to manage
–  Complex optimizations to reduce the added overheads
–  New modes of failure with complex recovery procedures

Lecture 16
Page 25

CS 111
Fall 2015

Loosely Coupled Systems
•  Characterization:

– A parallel group of independent computers
– Serving similar but independent requests
– Minimal coordination and cooperation required

•  Motivation:
– Scalability and price performance
– Availability – if protocol permits stateless servers
– Ease of management, reconfigurable capacity

•  Examples:
– Web servers, app servers, cloud computing

Lecture 16
Page 26

CS 111
Fall 2015

Horizontal Scalability

•  Each node largely independent
•  So you can add capacity just by adding a node

“on the side”
•  Scalability can be limited by network, instead

of hardware or algorithms
– Or, perhaps, by a load balancer

•  Reliability is high
– Failure of one of N nodes just reduces capacity

Lecture 16
Page 27

CS 111
Fall 2015

Horizontal Scalability Architecture

load balancing switch
with fail-over

web
server

web
server

web
server

web
server

app
server

app
server

app
server

app
server

app
server

content
distribution

server
HA

database
server

WAN to clients

… … web
server

If I need more
web server
capacity,

Lecture 16
Page 28

CS 111
Fall 2015

Elements of Loosely Coupled
Architecture

•  Farm of independent servers
–  Servers run same software, serve different requests
–  May share a common back-end database

•  Front-end switch
–  Distributes incoming requests among available servers
–  Can do both load balancing and fail-over

•  Service protocol
–  Stateless servers and idempotent operations
–  Successive requests may be sent to different servers

Lecture 16
Page 29

CS 111
Fall 2015

Horizontally Scaled Performance
•  Individual servers are very inexpensive

–  Blade servers may be only $100-$200 each
•  Scalability is excellent

–  100 servers deliver approximately 100x performance

•  Service availability is excellent
–  Front-end automatically bypasses failed servers
–  Stateless servers and client retries fail-over easily

•  The challenge is managing thousands of servers
–  Automated installation, global configuration services
–  Self monitoring, self-healing systems
–  Scaling limited by management, not HW or algorithms

Lecture 16
Page 30

CS 111
Fall 2015

What About the Centralized
Resources?

•  The load balancer appears to be centralized
•  And what about the back-end databases?
•  Are these single points of failure for this

architecture?
•  And also limits on performance?
•  Yes, but . . .

Lecture 16
Page 31

CS 111
Fall 2015

Handling the Limiting Factors

•  The centralized pieces can be special hardware
– There are very few of them
– So they can use aggressive hardware redundancy

•  Expensive, but only for a limited set of machines

– They can also be high performance machines
•  Some of them have very simple functionality

– Like the load balancer
•  With proper design, their roles can be

minimized, decreasing performance problems

Lecture 16
Page 32

CS 111
Fall 2015

Cloud Computing
•  The most recent twist on distributed computing
•  Set up a large number of machines all

identically configured
•  Connect them to a high speed LAN

– And to the Internet
•  Accept arbitrary jobs from remote users
•  Run each job on one or more nodes
•  Entire facility probably running mix of single

machine and distributed jobs, simultaneously

Lecture 16
Page 33

CS 111
Fall 2015

Distributed Computing and
Cloud Computing

•  In one sense, these are orthogonal
•  Each job submitted to a cloud might or might

not be distributed
•  Many of the hard problems of the distributed

jobs are the user’s problem, not the system’s
– E.g., proper synchronization and locking

•  But the cloud facility must make
communications easy

Lecture 16
Page 34

CS 111
Fall 2015

What Runs in a Cloud?
•  In principle, anything
•  But general distributed computing is hard
•  So much of the work is run using special tools
•  These tools support particular kinds of parallel/

distributed processing
•  Either embarrassingly parallel jobs
•  Or those using a method like map-reduce
•  Things where the user need not be a distributed

systems expert

Lecture 16
Page 35

CS 111
Fall 2015

Embarrassingly Parallel Jobs
•  Problems where it’s really, really easy to

parallelize them
•  Probably because the data sets are easily

divisible
•  And exactly the same things are done on each

piece
•  So you just parcel them out among the nodes

and let each go independently
•  Everyone finishes at more or less same time

Lecture 16
Page 36

CS 111
Fall 2015

The Most Embarrassing of
Embarrassingly Parallel Jobs

•  Say you have a large computation
•  You need to perform it N times, with slightly

different inputs each time
•  Each iteration is expected to take the same

time
•  If you have N cloud machines, write a script to

send one of the N jobs to each
•  You get something like N times speedup

Lecture 16
Page 37

CS 111
Fall 2015

MapReduce

•  Perhaps the most common cloud computing
software tool/technique

•  A method of dividing large problems into
compartmentalized pieces

•  Each of which can be performed on a
separate node

•  With an eventual combined set of results

Lecture 16
Page 38

CS 111
Fall 2015

The Idea Behind MapReduce
•  There is a single function you want to

perform on a lot of data
– Such as searching it for a string

•  Divide the data into disjoint pieces
•  Perform the function on each piece on a

separate node (map)
•  Combine the results to obtain output

(reduce)

Lecture 16
Page 39

CS 111
Fall 2015

An Example

•  We have 64 megabytes of text data
•  We want to count how many times each word

occurs in the text
•  Divide it into 4 chunks of 16 Mbytes
•  Assign each chunk to one processor
•  Perform the map function of “count words” on

each

Lecture 16
Page 40

CS 111
Fall 2015

The Example Continued

1 2 3 4

Foo
1
Bar 4
Baz 3

Zoo
6

Yes
12
Too 5

Foo
7
Bar 3
Baz 9

Zoo
1
Yes
17
Too 8

Foo
2
Bar 6
Baz 2

Zoo
2
Yes
10
Too 4

Foo
4
Bar 7
Baz 5

Zoo
9
Yes 3
Too 7

That’s the map stage

Lecture 16
Page 41

CS 111
Fall 2015

On To Reduce

•  We might have two more nodes assigned to
doing the reduce operation

•  They will each receive a share of data from a
map node

•  The reduce node performs a reduce operation
to “combine” the shares

•  Outputting its own result

Lecture 16
Page 42

CS 111
Fall 2015

Continuing the Example

Foo
1
Bar 4
Baz 3

Zoo
6
Yes
12
Too 5

Foo
7
Bar 3
Baz 9

Zoo
1
Yes
17
Too 8

Foo
2
Bar 6
Baz 2

Zoo
2
Yes
10
Too 4

Foo
4
Bar 7
Baz 5

Zoo
9
Yes 3
Too 7

Lecture 16
Page 43

CS 111
Fall 2015

The Reduce Nodes Do Their Job

Foo
14
Bar 20
Baz
19

Zoo
16
Yes
42
Too 24

And MapReduce is done!
Write out the results to files

Lecture 16
Page 44

CS 111
Fall 2015

But I Wanted A Combined List

•  No problem
•  Run another (slightly different) MapReduce on

the outputs
•  Have one reduce node that combines

everything

Lecture 16
Page 45

CS 111
Fall 2015

Synchronization in MapReduce

•  Each map node produces an output file for
each reduce node

•  It is produced atomically
•  The reduce node can’t work on this data

until the whole file is written
•  Forcing a synchronization point between the

map and reduce phases

Lecture 16
Page 46

CS 111
Fall 2015

Distributed File Systems:
Goals and Challenges

•  Sometimes the files we want aren’t on our
machine

•  We’d like to be able to access them anyway
•  How do we provide access to remote files?

Lecture 16
Page 47

CS 111
Fall 2015

Key Characteristics of Network
File System Solutions

•  APIs and transparency
– How do users and processes access remote files?
– How closely do remote files mimic local files?

•  Performance and robustness
– Are remote files as fast and reliable as local ones?

•  Architecture
– How is solution integrated into clients and servers?

•  Protocol and work partitioning
– How do client and server cooperate?

Lecture 16
Page 48

CS 111
Fall 2015

Remote File Access Protocols
•  Goal: complete transparency

– Normal file system calls work on remote files
– Support file sharing by multiple clients
– High performance, availability, reliability,

scalability
•  Typical Architecture

– Uses plug-in file system architecture
– Client-side file system is merely a local proxy
– Translates file operations into network requests
– Server-side daemon receives/process requests
– Translates them into real file system operations

Lecture 16
Page 49

CS 111
Fall 2015

Remote File Access Architecture

system calls

U
N

IX
 FS

D
O

S FS

C
D

 FS

block I/O

CD
drivers

rem
ote FS

virtual file system integration layer

file
operations

directory
operations

file
I/O

socket
I/O

disk
drivers

NIC
driver

UDP

IP

MAC
driver

client server

TCP

flash
drivers

block I/O

EX
T3 FS

socket
I/O

disk
driver

NIC
driver

UDP

IP

MAC
driver

TCP

remote FS server

Goes through file system, not block I/O

Lecture 16
Page 50

CS 111
Fall 2015

The Client Side
•  On Unix/Linux, makes use of VFS interface
•  Allows plug-in of file system implementations

– Each implements a set of basic methods
•  create, delete, open, close, link, unlink, etc.

– Translates logical operations into disk operations

•  Remote file systems can also be implemented
– Translate each standard method into messages
– Forward those requests to a remote file server
– RFS client only knows the RFS protocol

•  Need not know the underlying on-disk implementation

Lecture 16
Page 51

CS 111
Fall 2015

Server Side Implementation
•  Remote file system server daemon

– Receives and decodes messages
– Does requested operations on local file system

•  Can be implemented in user- or kernel-mode
– Kernel daemon may offer better performance
– User-mode is much easier to implement

•  One daemon may serve all incoming requests
– Higher performance, fewer context switches

•  Or could be many per-user-session daemons
– Simpler, and probably more secure

Lecture 16
Page 52

CS 111
Fall 2015

Remote File Access:
Problems and Solutions

•  Authentication and authorization
•  Synchronization
•  Performance
•  Robustness

Lecture 16
Page 53

CS 111
Fall 2015

Performance Issues

•  Performance of the remote file system now
dependent on many more factors
– Not just the local CPU, bus, memory, and disk

•  Also on the same hardware on the server that
stores the files
– Which often is servicing many clients

•  And on the network in between
– Which can have wide or narrow bandwidth

Lecture 16
Page 54

CS 111
Fall 2015

Some Performance Solutions
•  Appropriate transport and session protocols

– Minimize messages, maximize throughput

•  Partition the work
– Minimize number of remote requests
– Spread load over more processors and disks

•  Client-side pre-fetching and caching
– Fetching whole file at a once is more efficient
– Block caching for read-ahead and deferred writes
– Reduces disk and network I/O (vs. server cache)
– Cache consistency can be a problem

Lecture 16
Page 55

CS 111
Fall 2015

Robustness Issues

•  Three major components in remote file system
operations
– The client machine
– The server machine
– The network in between

•  All can fail
– Leading to potential problems for the remote file

system’s data and users

Lecture 16
Page 56

CS 111
Fall 2015

Robustness Solution Approaches
•  Network errors – support client retries

– Have file system protocol uses idempotent requests
– Have protocol support all-or-none transactions

•  Client failures – support server-side recovery
– Automatic back-out of uncommitted transactions
– Automatic expiration of timed out lock leases

•  Server failures – support server fail-over
– Replicated (parallel or back-up) servers
– Stateless remote file system protocols
– Automatic client-server rebinding

Lecture 16
Page 57

CS 111
Fall 2015

The Network File System (NFS)
•  Transparent, heterogeneous file system sharing

– Local and remote files are indistinguishable

•  Peer-to-peer and client-server sharing
– Disk-full clients can export file systems to others
– Able to support diskless (or dataless) clients
– Minimal client-side administration

•  High efficiency and high availability
– Read performance competitive with local disks
– Scalable to huge numbers of clients
– Seamless fail-over for all readers and some writers

Lecture 16
Page 58

CS 111
Fall 2015

The NFS Protocol
•  Relies on idempotent operations and stateless server

–  Built on top of a remote procedure call protocol
–  With eXternal Data Representation, server binding
–  Versions of RPC over both TCP or UDP
–  Optional encryption (may be provided at lower level)

•  Scope – basic file operations only
–  Lookup (open), read, write, read-directory, stat
–  Supports client or server-side authentication
–  Supports client-side caching of file contents
–  Locking and auto-mounting done with another protocol

Lecture 16
Page 59

CS 111
Fall 2015

NFS and Updates
•  An NFS server does not prevent conflicting updates

–  As with local file systems, this is the applications’ job
•  Auxiliary server/protocol for file and record locking

–  All leases are maintained on the lock server
–  All lock/unlock operations handed by lock server

•  Client/network failure handling
–  Server can break locks if client dies or times out
–  “Stale-handle” errors inform client of broken lock
–  Client response to these errors are application specific

•  Lock server failure handling is very complex

Lecture 16
Page 60

CS 111
Fall 2015

Distributed Systems - Summary

•  Different distributed system models support:
–  Different degrees of transparency

•  Do applications see a network or single system image?

–  Different degrees of coupling
•  Making multiple computers cooperate is difficult
•  Doing it without shared memory is even worse

•  Distributed systems always face a trade-off between
performance, independence, and robustness
–  Cooperating redundant nodes offer higher availability
–  Communication and coordination are expensive
–  Mutual dependency creates more modes of failure

