-

Distributed Systems
CS 111
Operating Systems
Peter Rether

\




4 Outline

* Goals and vision of distributed computing

* Basic architectures
— Symmetric multiprocessors
— Single system 1mage distributed systems
— Cloud computing systems
— User-level distributed computing

* Distributed file systems

CS 111

\

Lecture 16

Fall 2015

Page 2



/" Important Characteristics of ™\
Distributed Systems

e Performance

— Overhead, scalability, availability
* Functionality

— Adequacy and abstraction for target applications
* Transparency

— Compatibility with previous platforms

— Scope and degree of location independence

* Degree of coupling

— How many things do distinct systems agree on?

— How is that agreement achieved? /

CS 111 Lecture 16
Fall 2015 Page 3




/ Types of Transparency \

* Network transparency

— Is the user aware he’s going across a network?

* Name transparency

— Does remote use require a different name/kind of
name for a file than a local user?

* Location transparency

— Does the name change if the file location changes?

* Performance transparency

— Is remote access as quick as local access? /

CS 111 Lecture 16
Fall 2015 Page 4




/ Loosely and Tightly Coupled \

Systems
* Tightly coupled systems

— Share a global pool of resources

— Agree on their state, coordinate their actions
* Loosely coupled systems

— Have independent resources

— Only coordinate actions in special circumstances
* Degree of coupling

— Tight coupling: global coherent view, seamless fail-over
* But very difficult to do right

— Loose coupling: simple and highly scalable /

s But a less pleasant system model Lecture 16

Fall 2015 Page 5




/ Globally Coherent Views \

* Everyone sees the same thing
* Usually the case on single machines
* Harder to achieve in distributed systems

e How to achieve 1t?

— Have only one copy of things that need single view
* Limits the benefits of the distributed system
* And exaggerates some of their costs

— Ensure multiple copies are consistent

* Requiring complex and expensive consensus protocols

\- Not much of a choice /

CS 111 Lecture 16
Fall 2015 Page 6




/" Major Classes of Distributed

Systems
* Symmetric Multi-Processors (SMP)
— Multiple CPUs, sharing memory and I/O devices
* Single-System Image (SSI) & Cluster Computing

— A group of computers, acting like a single computer

* Loosely coupled, horizontally scalable systems
— Coordinated, but relatively independent systems
— Cloud computing 1s the most widely used version

* Application level distributed computing

— Application level protocols
— Distributed middle-ware platforms /

CS 111 Lecture 16
Fall 2015 Page 7




[/Symmetric Multiprocessors (SMI%

* What are they and what are their goals?
* OS design for SMP systems

* SMP parallelism
— The memory bandwidth problem

Lecture 16

CS 111
Page 8

Fall 2015




/ SMP Systems \

* Computers composed of multiple identical compute
engines
— Each computer in SMP system usually called a node

* Sharing memories and devices
e Could run same or different code on all nodes

— Each node runs at i1ts own pace

— Though resource contention can cause nodes to block

* Examples:
— BBN Butterfly parallel processor

— More recently, multi-way Intel servers

CS 111
Fall 2015

/

Lecture 16
Page 9



/ SMP Goals \

* Price performance
— Lower price per MIP than single machine

— Since much of machine 1s shared

* Scalability
— Economical way to build huge systems

— Possibility of increasing machine’s power just by
adding more nodes

* Perfect application transparency

— Runs the same on 16 nodes as on one
\ — Except faster

CS 111
Fall 2015

Lecture 16
Page 10



/ A Typical SMP Architecture

CS 111
Fall 2015

v y v !
CPU 1 CPU 2 CPU 3 CPU 4
cache [ cache » cache [¢ » cache

interrupt
controller

I

shared memory & device busses

memory

I

1I

I

device
controller

device
controller

device
controller

/

Lecture 16

Page 11



/ SMP Operating Systems \

* One processor boots with power on
— It controls the starting of all other processors

* Same OS code runs 1n all processors
— One physical copy in memory, shared by all CPUs

* Each CPU has its own registers, cache, MMU

— They cooperatively share memory and devices

* ALL kernel operations must be Multi-Thread-
Safe
— Protected by appropriate locks/semaphores
— Very fine grained locking to avoid contention Lecmre/ §

CS 111
Fall 2015 Page 12




/ SMP Parallelism \

e Scheduling and load sharing

— Each CPU can be running a different process

— Just take the next ready process off the run-queue

— Processes run 1n parallel

— Most processes don't interact (other than inside kernel)

* If they do, poor performance caused by excessive synchronization

* Serialization

— Mutual exclusion achieved by locks in shared memory

— Locks can be maintained with atomic instructions

— Spin locks acceptable for VERY short critical sections

— If a process blocks, that CPU finds next ready process /

CS 111 Lecture 16
Fall 2015 Page 13




/~ The Challenge of SMP ™\
Performance

* Scalability depends on memory contention
— Memory bandwidth 1s limited, can't handle all CPUs
— Most references better be satisfied from per-CPU cache
— If too many requests go to memory, CPUs slow down
* Scalability depends on lock contention
— Waiting for spin-locks wastes time

— Context switches waiting for kernel locks waste time

* This contention wastes cycles, reduces throughput
— 2 CPUs might deliver only 1.9x performance

— 3 CPUs might deliver only 2.7x performance /

CS 111 Lecture 16
Fall 2015 Page 14




/ Managing Memory Contention\

* Each processor has its own cache

— Cache reads don’t cause memory contention
— Writes are more problematic

Locality of reference often solves the problems

— Different processes write to different places

* Keeping everything coherent still requires a smart
memory controller

* Fast n-way memory controllers are very expensive

— Without them, memory contention taxes performance

— Cost/complexity limits how many CPUs we can add /

CS 111 Lecture 16
Fall 2015 Page 15




/[Single System Image Approaches}\

* Built a distributed system out of many more-
or-less traditional computers

— Each with typical independent resources
— Each running its own copy of the same OS

— Usually a fixed, known pool of machines
* Connect them with a good local area network

* Use software techniques to allow them to work
cooperatively

— Often while still offering many benefits of /
s 1ndependent machines to the local users Lecture 16

Fall 2015 Page 16




/~ Motivations for Single System ™\
Image Computing

* High availability, service survives node/link failures

* Scalable capacity (overcome SMP contention
problems)

— You’re connecting with a LAN, not a special hardware
switch

— LANSs can host hundreds of nodes
* Good application transparency

* Examples:
— Locus, Sun Clusters, MicroSoft Wolf-Pack, OpenSSI
— Enterprise database servers /

CS 111 Lecture 16
Fall 2015 Page 17




The SSI Vision

1 1
1 \ 1 h
| - _
! b < |
“ “ 1 <t “
i e -~ 1
1 ! | [75) 1
1 | . p— 1
“ WJ “ 1 ho) “
“ Q ' “ “
' S o 1
O I 1
.= .= < 21
| ) N SO
! I )= —_—
_& 1 ! ©n % k Qu
_S ] “ y i~ w2 [OM]
“P 1 ) ) w. Im =
= P29 2
= L E B <!
L% 1S £ 2!
5 BN 1
1
= S N m
1
B SRS =% !
S 1 oo
8 o 5 m
- Ty “
| E 8828 g m
o o o o« 1
PO ,e288 oo m < !
“1n|.a %152»3’4., 3’“ ' — “
B %mmmm g S 0o w !
A= g~ 3 v = '
S & +4++ = ro “
1
| R |
e

Lecture 16
Page 18

Fall 2015



/ OS Design for SSI Clusters \

* All nodes agree on the state of all OS resources

— File systems, processes, devices, locks, IPC ports
— Any process can operate on any object, transparently

* They achieve this by exchanging messages

— Advising one another of all changes to resources

* Each OS’s internal state mirrors the global state

— To execute node-specific requests

* Node-specific requests automatically forwarded to right node

* The implementation 1s large, complex, and difficult

* The exchange of messages can be very expensive )

CS 111 Lecture 16
Fall 2015 Page 19




/ SSI Performance \

* Clever implementation can reduce overhead

— But 10-20% overhead 1s common, can be much worse

* Complete transparency
— Even very complex applications “just work™

— They do not have to be made “network aware”

* (Good robustness
— When one node fails, others notice and take-over
— Often, applications won't even notice the failure

— Each node hardware-independent

« Failures of one node don’t affect others, unlike some SMP failures

\° Very nice for application developers and customers /

T But they are complex, and not particularly scalable Loctune 16

Fall 2015 Page 20




/ An Example of SSI Complexity\

* Keeping track of which nodes are up

* Done in the Locus Operating System through
“topology change”

* Need to ensure that all nodes know of the 1dentity of
all nodes that are up

* By running a process to figure it out

* Complications:
— Who runs the process? What if he’s down himself?
— Who do they tell the results to?
— What happens if things change while you’re running it?
— What 1f the system 1is partitioned? /

CS 111 Lecture 16
Fall 2015 Page 21




/ Is It Really That Bad? \

* Nodes fail and recovery rarely

* So something like topology change doesn’t run that
often

 But consider a more common situation

* Two processes have the same file open
— What if they’re on different machines?
— What if they are parent and child, and share a file pointer?

* Basic read operations require distributed agreement

— Or, alternately, we compromise the single image
— Which was the whole point of the architecture /

CS 111 Lecture 16
Fall 2015 Page 22




/ Scaling and SSI \

* Scaling limits proved not to be hardware
driven
— Unlike SMP machines

* Instead, driven by algorithm complexity
— Consensus algorithms, for example

* Design philosophy essentially requires
distributed cooperation
— So this factor limits scalability

Lecture 16

CS 111
Page 23

Fall 2015




/ [Lessons [Learned From SSI \

* Consensus protocols are expensive
— They converge slowly and scale poorly
* Systems have a great many resources

— Resource change notifications are expensive

* Location transparency encouraged non-locality

— Remote resource use 1s much more expensive

* A very complicated operating system design

— Distributed objects are much more complex to manage

— Complex optimizations to reduce the added overheads

— New modes of failure with complex recovery procedures /

CS 111 Lecture 16
Fall 2015 Page 24




/ [Loosely Coupled Systems} \

 Characterization:

— A parallel group of independent computers
— Serving similar but independent requests
— Minimal coordination and cooperation required

* Motivation:
— Scalability and price performance

— Availability — 1f protocol permits stateless servers
— Ease of management, reconfigurable capacity

* Examples:

«m Web servers, app servers, cloud computing Lecture 16

Fall 2015 Page 25




/" Horizontal Scalability

* Each node largely independent

* So you can add capacity just by adding a node
“on the side”

* Scalability can be limited by network, instead
of hardware or algorithms

— Or, perhaps, by a load balancer
« Reliability is high

— Failure of one of N nodes just reduces capacity

Lecture 16

CS 111
Page 26

Fall 2015




/Horizontal Scalability Architectula

If I need more WAN to clients
web server ﬁ
‘ . load balancing switch
capacity, with fail-over
web web web web web app app app app app
server | | server || server | | server || server server | | server || server | | server || server
content HA
distribution database
server server
CS 111 Lecture 16

Fall 2015 Page 27



/" Elements of Loosely Coupled ™\
Architecture

* Farm of independent servers
— Servers run same software, serve different requests

— May share a common back-end database

* Front-end switch
— Distributes incoming requests among available servers

— Can do both load balancing and fail-over

* Service protocol
— Stateless servers and idempotent operations

— Successive requests may be sent to different servers

/

CS 111 Lecture 16
Fall 2015 Page 28




/Horizontally Scaled Performance\

* Individual servers are very inexpensive
— Blade servers may be only $100-$200 each

* Scalability 1s excellent
— 100 servers deliver approximately 100x performance

* Service availability 1s excellent
— Front-end automatically bypasses failed servers
— Stateless servers and client retries fail-over easily
* The challenge 1s managing thousands of servers

— Automated installation, global configuration services

— Self monitoring, self-healing systems

— Scaling limited by management, not HW or algorithms ) m/ y
CS 111 ecture

Fall 2015 Page 29




/ What About the Centralized \
Resources?

* The load balancer appears to be centralized
* And what about the back-end databases?

* Are these single points of failure for this
architecture?

* And also limits on performance?
* Yes, but. ..

CS 111 Lecture 16
Fall 2015 Page 30




/ Handling the Limiting Factors \

* The centralized pieces can be special hardware
— There are very few of them

— So they can use aggressive hardware redundancy

* Expensive, but only for a limited set of machines
— They can also be high performance machines

* Some of them have very simple functionality
— Like the load balancer

* With proper design, their roles can be
\ minimized, decreasing performance problems /

CS 111 Lecture 16
Fall 2015 Page 31




a

Cloud Computing } \

e The most

e Connect t
— And tot

* Set up a large number of machines all
1dentically configured

recent twist on distributed computing

hem to a high speed LAN

ne Internet

* Accept arl

* Run each job on one or more nodes

* Entire facility probably running mix of single

vitrary jobs from remote users

machine and distributed jobs, simultaneously /

CS 111

Lecture 16

Fall 2015

Page 32



/~ Distributed Computing and ™\
Cloud Computing

* In one sense, these are orthogonal

* Each job submitted to a cloud might or might
not be distributed

* Many of the hard problems of the distributed
jobs are the user’s problem, not the system’s

— E.g., proper synchronization and locking

* But the cloud facility must make
communications e€asy

CS 111 Lecture 16
Fall 2015 Page 33




/ What Runs 1n a Cloud?

In principle, anything
But general distributed computing 1s hard

So much of the work 1s run using special tools

These tools support particular kinds of parallel/

distributed processing
Either embarrassingly parallel jobs

Or those using a method like map-reduce

Things where the user need not be a distributed

\ systems expert

CS 111

\

/

Lecture 16

Fall 2015

Page 34



/ Embarrassingly Parallel Jobs \

* Problems where 1t’s really, really easy to
parallelize them

* Probably because the data sets are easily
divisible

* And exactly the same things are done on each
piece

* So you just parcel them out among the nodes
and let each go independently

\- Everyone finishes at more or less same time /

CS 111 Lecture 16
Fall 2015 Page 35




/ The Most Embarrassing of
Embarrassingly Parallel Jobs

* Say you have a large computation

* You need to perform it N times, with slightly
different inputs each time

* Each 1teration 1s expected to take the same
time

* If you have N cloud machines, write a script to
send one of the N jobs to each

* You get something like N times speedup

Lecture 16

CS 111
Page 36

Fall 2015




a "MapReduce I

__________________________________

* Perhaps the most common cloud computing
software tool/technique

* A method of dividing large problems into
compartmentalized pieces

* Each of which can be performed on a
separate node

 With an eventual combined set of results

CS 111 Lecture 16
Fall 2015 Page 37




/ The Idea Behind MapReduce \

* There 1s a single function you want to
perform on a lot of data

— Such as searching 1t for a string

* Divide the data into disjoint pieces

* Perform the function on each piece on a
separate node (171Ap)

* Combine the results to obtain output
(reduce)

CS 111

Fall 2015

Lecture 16
Page 38



/ An Example \

* We have 64 megabytes of text data

* We want to count how many times each word
occurs 1n the text

* Divide 1t into 4 chunks of 16 Mbytes

* Assign each chunk to one processor

* Perform the map function of “count words™ on
each

CS 111 Lecture 16
Fall 2015 Page 39




/ The Example Continued \

i/ @ )[4
0@ 08 08 [jf[

Foo Zoo | [ Foo [/ Zoo [ [ Foo || Zoo

1 6 7 2

Bar 4 Yes Bar 3 Yes Bar 6 Yes Bar 7 Yes 3

Baz 3 12 Baz 9 17 Baz 2 10 Baz 5 Too 7
Too 5 Too 8 Too 4

That’s the map stage

ccture
PPPPPP




/ On To Reduce \

* We might have two more nodes assigned to
doing the reduce operation

* They will each receive a share of data from a
map node

* The reduce node performs a reduce operation
to “combine” the shares

* QOutputting its own result

Lecture 16

CS 111
Page 41

Fall 2015




/ Continuing the Example

—

08 OB

N
N

0#

_- \’W {
7 Shl.
00 00 00 Foo Zoo Foo
2 2 4
ar4 es ar3 es Bar 6 Yes Bar es
az3 2 az9 7 Baz 2 10 Baz 0o
005 008 Too 4

Ww-—-~m
H43 <0

Ww~NT
N

o N

,/)
00

~N W

/

il Sl

CS 111

\

Fall 2015



ﬁl’ he Reduce Nodes Do Their J ob\

Write out the results to files
And MapReduce is done!

Foo Z00o

14 16

Bar 20 Yes
Baz 42

19 Too 24

CS 111 Lecture 16
Fall 2015 Page 43




/ But I Wanted A Combined List \

* No problem

* Run another (slightly different) MapReduce on
the outputs

e Have one reduce node that combines
everything

CS 111 Lecture 16
Fall 2015 Page 44




/ Synchronization in MapReduce\

* Each map node produces an output file for
each reduce node

* It 1s produced atomically

 The reduce node can’t work on this data
until the whole file 1s written

* Forcing a synchronization point between the
map and reduce phases

CS 111 Lecture 16
Fall 2015 Page 45




/" [Distributed File Systems: | ™\
Goals and Challenges

e Sometimes the files we want aren’t on our
machine

* We’d like to be able to access them anyway

* How do we provide access to remote files?

Lecture 16

CS 111
Fall 2015 Page 46




/~Key Characteristics of Network ™\

File System Solutions
* APIs and transparency
— How do users and processes access remote files?

— How closely do remote files mimic local files?
* Performance and robustness

— Are remote files as fast and reliable as local ones?

 Architecture

— How 1s solution integrated into clients and servers?

* Protocol and work partitioning

— How do client and server cooperate? Leeture 16

CS 111
Fall 2015 Page 47




________________________________________________________________________________________________________

* Goal: complete transparency
— Normal file system calls work on remote files
— Support file sharing by multiple clients

— High performance, availability, reliability,
scalability

* Typical Architecture
— Uses plug-in file system architecture
— Client-side file system is merely a local proxy
— Translates file operations into network requests
— Server-side daemon receives/process requests
\ — Translates them into real file system operations

CS 111

Fall 2015

Lecture 16
Page 48



/Remote File Access Architecture\

client

system calls

=
('D
o
(¢}

block I/O

CS 111

bbb

Goes through file system, not block 1/0

SCIVCr

remote FS server

block 1/O

Fall 2015

Lecture 16
Page 49



-

CS 111
Fall 2015

The Client Side

* On Unix/Linux, makes use of VFS interface
* Allows plug-1n of file system implementations

— Each implements a set of basic methods

* create, delete, open, close, link, unlink, etc.

— Translates logical operations into disk operations

* Remote file systems can also be implemented
— Translate each standard method into messages

— Forward those requests to a remote file server
— RFS client only knows the RFS protocol

\

* Need not know the underlying on-disk implementation /

Lecture 16

Page 50



/ Server Side Implementation \

* Remote file system server daemon
— Receives and decodes messages

— Does requested operations on local file system

* Can be implemented in user- or kernel-mode
— Kernel daemon may offer better performance

— User-mode 1s much easier to implement

* One daemon may serve all incoming requests

— Higher performance, fewer context switches

* Or could be many per-user-session daemons y

s Simpler, and probably more secure Leeture 16

Fall 2015 Page 51




/ "~ Remote File Access:

Problems and Solutions

Authentication and authorization
Synchronization
Performance

Robustness

CS 111

1
1
1
1
1
1
1
1
1
/7
’
-

\

Lecture 16

Fall 2015

Page 52



/ Performance Issues \

* Performance of the remote file system now
dependent on many more factors

— Not just the local CPU, bus, memory, and disk

 Also on the same hardware on the server that
stores the files

— Which often 1s servicing many clients

 And on the network 1n between

— Which can have wide or narrow bandwidth

CS 111 Lecture 16
Fall 2015 Page 53




/ Some Performance Solutions \

* Appropriate transport and session protocols

— Minimize messages, maximize throughput

* Partition the work
— Minimize number of remote requests
— Spread load over more processors and disks
* Client-side pre-fetching and caching
— Fetching whole file at a once 1s more efficient
— Block caching for read-ahead and deferred writes

— Reduces disk and network 1/O (vs. server cache) y

«mr Cache consistency can be a problem Lectue 16

Fall 2015 Page 54




/" Robustness Issues ~\

* Three major components in remote file system
operations

— The client machine

— The server machine

— The network 1n between

e All can fail

— Leading to potential problems for the remote file
system’s data and users

/

CS 111 Lecture 16
Fall 2015 Page 55




/Robustness Solution Approaches\

* Network errors — support client retries
— Have file system protocol uses idempotent requests

— Have protocol support all-or-none transactions

* Client failures — support server-side recovery
— Automatic back-out of uncommitted transactions

— Automatic expiration of timed out lock leases

* Server failures — support server fail-over

— Replicated (parallel or back-up) servers

— Stateless remote file system protocols )
s i Automatic client-server rebinding Lecture 16

Fall 2015 Page 56




/ The Network File System (NFS)

» Transparent, heterogeneous file system sharing
— Local and remote files are indistinguishable

* Peer-to-peer and client-server sharing
— Disk-full clients can export file systems to others
— Able to support diskless (or dataless) clients
— Minimal client-side administration

* High efficiency and high availability

— Read performance competitive with local disks

— Scalable to huge numbers of clients
— Seamless fail-over for all readers and some writers /

CS 111 Lecture 16
Fall 2015 Page 57




/ The NFS Protocol \

* Relies on idempotent operations and stateless server
— Built on top of a remote procedure call protocol
— With eXternal Data Representation, server binding
— Versions of RPC over both TCP or UDP
— Optional encryption (may be provided at lower level)

* Scope — basic file operations only
— Lookup (open), read, write, read-directory, stat
— Supports client or server-side authentication
— Supports client-side caching of file contents

— Locking and auto-mounting done with another protocol

/

CS 111 Lecture 16
Fall 2015 Page 58




/ NFS and Updates \

* An NFS server does not prevent conflicting updates
— As with local file systems, this 1s the applications’ job
* Auxiliary server/protocol for file and record locking

— All leases are maintained on the lock server

— All lock/unlock operations handed by lock server

* Client/network failure handling
— Server can break locks if client dies or times out
— “Stale-handle” errors inform client of broken lock
— Client response to these errors are application specific

* Lock server failure handling is very complex Y,

CS 111 Lecture 16
Fall 2015 Page 59




/[Distributed Systems - Summary}\

* Daifferent distributed system models support:

— Different degrees of transparency
* Do applications see a network or single system image?

— Different degrees of coupling

* Making multiple computers cooperate is difficult
* Doing it without shared memory is even worse

* Distributed systems always face a trade-off between
performance, independence, and robustness

— Cooperating redundant nodes offer higher availability

— Communication and coordination are expensive

— Mutual dependency creates more modes of failure /
CS 111 Lecture 16

Fall 2015 Page 60




