-

Networking for Operating
Systems
CS 111
Operating Systems
Peter Rether

\

/ [Outline} \

* Networking implications for operating systems

* Networking and distributed systems

CS 111 Lecture 15
Fall 2015 Page 2

/ " Networking Implications \
_ for the Operating System

* Networking requires serious operating system
support

* Changes 1n the clients
* Changes 1n protocol implementations

* Changes to IPC and inter-module plumbing

* Changes to object implementations and
semantics

* Challenges of distributed computing)

CS 111 Lecture 15
Fall 2015 Page 3

/ Changing Paradigms \

* Network connectivity becomes “a given”
— New applications assume/exploit connectivity
— New distributed programming paradigms emerge

— New functionality depends on network services

* Thus, applications demand new services from the OS:
— Location independent operations
— Rendezvous between cooperating processes
— WAN scale communication, synchronization
— Support for splitting and migrating computations

— Better virtualization services to safely share resources

— Network performance becomes critical /

CS 111 Lecture 15
Fall 2015 Page 4

/ The Old Networking Clients \

* Most clients were basic networking applications

— Implementations of higher level remote access protocols
* telnet, FTP, SMTP, POP/IMAP, network printing

— Occasionally run, to explicitly access remote systems

— Applications specifically written to network services

* OS provided transport level services
— TCP or UDP, IP, NIC drivers

* Little impact on OS APIs

— OS objects were not expected to have network semantics

— Network apps provided services, did not implement objects /

CS 111 Lecture 15
Fall 2015 Page 5

/ The New Networking Clients \

e The OS itself 1s a client for network services

— OS may depend on network services
* netboot, DHCP, LDAP, Kerberos, etc.

— OS-supported objects may be remote

* Files may reside on remote file servers
* Console device may be a remote X11 client

* A cooperating process might be on another machine

* Implementations must become part of the OS

— For both performance and security reasons

* Local resources may acquire new semantics

— Remote objects may behave differently than local /

CS 111 Lecture 15
Fall 2015 Page 6

/ The Old Implementations \

* Network protocol implemented in user-mode daemon
— Daemon talks to network through device driver

* Client requests
— Sent to daemon through IPC port

— Daemon formats messages, sends them to driver

* Incoming packets
— Daemon reads from driver and interprets them
— Unpacks data, forward to client through IPC port

* Advantages — user mode code 1s easily changed

* Disadvantages — lack of generality, poor performance,
weak security /

CS 111 Lecture 15
Fall 2015 Page 7

-

user mode

User-Mode Protocol \
Implementations

socket API

1¢ati

O

kernel mode

CS 111

device read/
write

ethemettC driver
And off to the packet’s destination! /

Lecture 15

Fall 2015

Page 8

/ The New Implementations \

* Basic protocols implemented as OS modules

— Each protocol implemented 1n its own module

— Protocol layering implemented with module plumbing

— Layering and interconnections are configurable
* User-mode clients attach via IPC-ports

— Which may map directly to internal networking plumbing
* Advantages

— Modularity (enables more general layering)

— Performance (less overhead from entering/leaving kernel)

— Security (most networking functionality inside the kernel)

\° A disadvantage — larger, more complex OS /

CS 111 Lecture 15
Fall 2015 Page 9

-~

In-Kernel Protocol \
Implementations

And off to the

; Instant messaging application SMTP — mail gelivery application
user modae Soskel ADT
kernel mode — L OCke

packet’s destination!

] [Streams

iI Streams

1L] o

Streams

] [Streams

] [Data Link Provider Interface

\ s m’e AN m-port driver Lecture 15

Fall 2015

Page 10

/ IPC Implications \

* IPC used to be occasionally used for pipes
— Now 1t 1s used for all types of services
* Demanding richer semantics, and better performance
* Previously connected local processes

— Now 1t interconnects agents all over the world

* Need naming service to register & find partners
* Must interoperate with other OSes IPC mechanisms

* Used to be stimple and fast inside the OS

— We can no longer depend on shared memory

\ — We must be prepared for new modes of failure

CS 111

Fall 2015

/

Lecture 15
Page 11

/ Improving Our OS Plumbing \

* Protocol stack performance becomes critical
— To support file access, network servers

* High performance plumbing: UNIX Streams

— General bi-directional in-kernel communications
* Can interconnect any two modules 1n kernel
* Can be created automatically or manually

— Message based communication

* Put (to stream head) and service (queued messages)

* Accessible via read/write/putmsg/getmsg system calls /

CS 111 Lecture 15
Fall 2015 Page 12

/ Network Protocol Performance\

* Layered implementation 1s flexible and modular

— But all those layers add overhead
* Calls, context switches and queuing between layers
* Potential data recopy at boundary of each layer

— Protocol stack plumbing must also be high performance
* High bandwidth, low overhead
* Copies can be avoided by clever data structures
— Messages can be assembled from multiple buffers

 Pass buffer pointers rather than copying messages

* Network adaptor drivers support scatter/gather

\° Increasingly more of the protocol stack 1s in the NIC /

CS 111 Lecture 15
Fall 2015 Page 13

/" Implications of Networking for

} Operating Systems

Centralized system management

)

Centralized services and servers

The end of “self-contained” systems

A new view of architecture
Performance, scalability, and availability

The rise of middleware

CS 111

Fall 2015

Lecture 15
Page 14

/Centralized System Management\

* For all computers 1n one local network,
manage them as a single type of resource

— Ensure consistent service configuration
— Eliminate problems with mis-configured clients
* Have all management done across the network

— To a large extent, 1n an automated fashion

— E.g., automatically apply software upgrades to all
machines at one time

* Possibly from one central machine

...~ For high scale, maybe more distributed .

Fall 2015 Page 15

fentralized System Management)

Pros and Cons
+ No client-side administration eases
management

+ Uniform, ubiquitous services
+ Easier security problems

— Loss of local autonomy

- Screw-ups become ubiquitous

- Increases sysadmin power

\— Harder security problems J

Lecture 15

CS 111
Page 16

Fall 2015

/Centralized Services and Servers\

* Networking encourages tendency to move
services from all machines to one machine

— E.g. file servers, web servers, authentication
SErvers

* Other machines can access and use the services
remotely
— So they don’t need local versions

— Or perhaps only simplified local versions

e Includes services that store lots of data /

CS 111 Lecture 15
Fall 2015 Page 17

/ Centralized Services — Pros and\

Cons
+ Easier to ensure reliability
+ Price/performance advantages
+ Ease of use
— Forces reliance on network

- Potential for huge security and privacy
breaches

Lecture 15

CS 111
Page 18

Fall 2015

ﬁhe End of Self Contained Systeng

Years ago, each computer was nearly totally
self-sufficient

Maybe you got some data or used specialized
hardware on some other machine

But your computer could do almost all of what
you wanted to do, on its own

Now vital services provided over the network

— Authentication, configuration and control, data
storage, remote devices, remote boot, etc. Y,

CS 111 Lecture 15
Fall 2015 Page 19

ﬁon-Self Contained Systems — Prcg

and Cons
+ Specialized machines may do work better

+ You don’t burn local resources on offloaded
tasks

+ Getting rid of sysadmin burdens
- Again, forces reliance on network

- Your privacy and security are not entirely
under your own control

— Less customization possible)

Lecture 15

CS 111
Page 20

Fall 2015

/ Achieving Performance, \
Availability, and Scalability

* There used to be an easy answer for these:
— Moore’s law (and 1its friends)

* The CPUs (and everything else) got faster and
cheaper
— So performance got better

— More people could afford machines that did
particular things

— Problems too big to solve today fell down when
speeds got fast enough

CS 111 Lecture 15
Fall 2015 Page 21

/ The Old Way Vs. The New Way\

* The old way — better components (4-40%/year)
— Find and optimize all avoidable overhead
— Get the OS to be as reliable as possible
— Run on the fastest and newest hardware

* The new way — better systems (1000x)
— Add more $150 blades and a bigger switch

— Spreading the work over many nodes is a huge win

* Performance — may be linear with the number of blades

* Availability — service continues despite node failures /

CS 111 Lecture 15
Fall 2015 Page 22

ﬁhe New Performance Approach —\

Pros and Cons

+ Adding independent HW easier than
squeezing new improvements out

+ Generally cheaper

— Swaps hard HW design problems for hard SW
design problems

— Performance improvements less predictable

— Systems built this way not very well
understood)

Lecture 15

CS 111
Page 23

Fall 2015

/ The Rise of Middleware \

* Traditionally, there was the OS and your application
— With little or nothing between them

* Since your application was “obviously” written to run
on your OS

* Now, the same application must run on many
machines, with different OSes

* Enabled by powerful middleware

— Which offer execution abstractions at higher levels than the
OS

— Essentially, powerful virtual machines that hide grubby
physical machines and their OSes /

CS 111 Lecture 15
Fall 2015 Page 24

/ The OS and Middleware \
* Old model — the OS was the platform

— Applications are written for an operating system

— OS implements resources to enable applications

* New model — the OS enables the platform

— Applications are written to a middleware layer

* E.g., Enterprise Java Beans, Component Object Model,
etc.

— Object management is user-mode and distributed
» E.g., CORBA, SOAP

— OS APIs less relevant to applications developers /

s * The network 1s the computer Lecture 15
Fall 2015 — Page 25

ﬁ he Middleware Approach — Pros\

and Cons

+ Easy portability

+ Allows programmers to work with higher
level abstractions

- Not always as portable and transparent as one
would hope

— Those higher level abstractions impact
performance

Lecture 15

CS 111
Page 26

Fall 2015

/[Networking and Distributed |

5 Systems
* Challenges of distributed computing

)

* Distributed synchronization

 Distributed consensus

CS 111 Lecture 15
Fall 2015 Page 27

* Having more than one computer work
cooperatively on some task

* Implies the use of some form of
communication
— Usually networking

* Adding the second computer immensely
complicates all problems
— And adding a third makes 1t worse

CS 111
Fall 2015

- What Is Distributed Computing?

Lecture 15
Page 28

/ Goals of Distributed Computing\

 Better services
— Scalability

* Some applications require more resources than one computer has

* Should be able to grow system capacity to meet growing demand
— Availability

* Disks, computers, and software fail, but services should be 24x7!
— Improved ease of use, with reduced operating expenses

* Ensuring correct configuration of all services on all systems

* New services

— Applications that span multiple system boundaries

— Global resource domains, services decoupled from systems /

« = Complete location transparency Lecture 15

Fall 2015 Page 29

/" Important Characteristics of ™\
Distributed Systems

e Performance

— Overhead, scalability, availability
* Functionality

— Adequacy and abstraction for target applications
* Transparency

— Compatibility with previous platforms

— Scope and degree of location independence

* Degree of coupling

— How many things do distinct systems agree on?

— How is that agreement achieved? /

CS 111 Lecture 15
Fall 2015 Page 30

/ Types of Transparency \

* Network transparency

— Is the user aware he’s going across a network?

* Name transparency

— Does remote use require a different name/kind of
name for a file than a local user?

* Location transparency

— Does the name change 1f the file location changes?

* Performance transparency

— Is remote access as quick as local access? /

CS 111 Lecture 15
Fall 2015 Page 31

/ Loosely and Tightly Coupled \

Systems
* Tightly coupled systems

— Share a global pool of resources

— Agree on their state, coordinate their actions
* Loosely coupled systems

— Have independent resources

— Only coordinate actions in special circumstances
* Degree of coupling

— Tight coupling: global coherent view, seamless fail-over
* But very difficult to do right

— Loose coupling: simple and highly scalable /

s But a less pleasant system model Lecture 15

Fall 2015 Page 32

/ Globally Coherent Views \

* Everyone sees the same thing
* Usually the case on single machines
* Harder to achieve in distributed systems

e How to achieve 1t?

— Have only one copy of things that need single view
* Limits the benefits of the distributed system
* And exaggerates some of their costs

— Ensure multiple copies are consistent

* Requiring complex and expensive consensus protocols

\- Not much of a choice /

CS 111 Lecture 15
Fall 2015 Page 33

/ The Big Goal for Distributed \
Computing

 Total transparency

* Entirely hide the fact that the computation/
service 1s being offered by a distributed system

* Make 1t look as 1f 1t 1s running entirely on a
single machine
— Usually the user’s own local machine

* Make the remote and distributed appear local
and centralized

CS 111 Lecture 15
Fall 2015 Page 34

/ Challenges of Distributed \
Computing

* Heterogeneity
— Different CPUs have different data representation
— Different OSes have different object semantics and
operations
* Intermittent connectivity
— Remote resources will not always be available

— We must recover from failures in mid-computation

— We must be prepared for conflicts when we reconnect

* Distributed object coherence

\ — Object management 1s easy with one in-memory copy /
(?

— How do we ensure multiple hosts agree on state of object? _ * .
CS 111

Fall 2015 Page 35

/ Deutsch's “Seven Fallacies of \
Network Computing”

. The network 1s reliable

. There 1s no latency (instant response time)

. The available bandwidth 1s infinite

. The network 1s secure

. The topology of the network does not change

AN D B~ W N

. There 1s one administrator for the whole network

7. The cost of transporting additional data 1s zero

Bottom Line: true transparency 1s not achievable

CS 111 Lecture 15
Fall 2015 Page 36

__

* As we’ve already seen, synchronization 1s
crucial in proper computer system behavior

* When things don’t happen 1n the required
order, we get bad results

* Distributed computing has all the
synchronization problems of single machines

* Plus genuinely independent interpreters and
memories

CS 111 Lecture 15
Fall 2015 Page 37

a Why Is Distributed I

Synchronization Harder?
* Spatial separation
— Different processes run on different systems
— No shared memory for (atomic instruction) locks
— They are controlled by different operating systems

* Temporal separation
— Can’t “totally order” spatially separated events

— “Before/simultaneous/after” become fuzzy

* Independent modes of failure

— One partner can die, while others continue /

CS 111 Lecture 15
Fall 2015 Page 38

/" How Do We Manage I

Distributed Synchronization?

* Distributed analogs to what we do 1n a single
machine

* But they are constrained by the fundamental
differences of distributed environments

* They tend to be:
— Less efficient

— More fragile and error prone

— More complex
— Often all three

CS 111
Fall 2015

Lecture 15
Page 39

/ [.eases \

A relative of locks

* Obtained from an entity that manages a resource
— Gives client exclusive right to update the file
— The lease “cookie” must be passed to server with an update

— Lease can be released at end of critical section

* Only valid for a limited period of time
— After which the lease cookie expires

» Updates with stale cookies are not permitted

— After which new leases can be granted

* Handles a wide range of failures

— Process, node, network /
CS 111 Lecture 15

Fall 2015 Page 40

/ A Lease Example \

Update file X CleniA T
Request lease on file X s eased
\ \f \g PM
REJECTED!

" Lease on file X o138 Resource
) Manager
Request lease op e X—
/ - P
N~
REJECTED! Xl

v /
CS 111 Lecture 15
Fall 2015 Page 41

/ What Is This Lease? \

* It’s essentially a ticket that allows the leasee to
do something

— In our example, update file X
* In other words, 1t’s a bunch of bits

* But proper synchronization requires that only
the manager create one

* So 1t can’t be forgeable

 How do we create an unforgeable bunch of
_ bits?)

CS 111 Lecture 15
Fall 2015 Page 42

/ What’s Good About Leases? \

* The resource manager controls access centrally

— So we don’t need to keep multiple copies of a lock
up to date

— Remember, easiest to synchronize updates to data
if only one party can write it

* The manager uses his own clock for leases

— So we don’t need to synchronize clocks

* What if a lease holder dies, losing 1ts lease?

— No big deal, the lease would expire eventually Y,

CS 111 Lecture 15
Fall 2015 Page 43

/~ Lock Breaking and Recovery ™\
With Leases

* The resource manager can “break” the lock by
refusing to honor the lease
— Could cause bad results for lease holder, so it’s undesirable

* Lock 1s automatically broken when lease expires
* What i1f lease holder left the resource in a bad state?

* In this case, the resource must be restored to last
“go0d” state
— Roll back to state prior to the aborted lease

— Implement all-or-none transactions

— Implies resource manager must be able to tell if lease /

cs 111 holder was “done” with the resource Lecture 15
Fall 2015 Page 44

/ Atomic Transactions

* What if we want guaranteed uninterrupted, all-or-

none execution?

* That requires true atomic transactions

* Solves multiple-update race conditions

— All updates are made part of a transaction

* Updates are accumulated, but not actually made
— After all updates are made, transaction 1s committed
— Otherwise the transaction is aborted

* E.g., if client, server, or network fails before the commit

\° Resource manager guarantees “all-or-none”

. Even it it crashes in the middle of the updates
Fall 2015

\

/

Lecture 15

Page 45

/ Atomic Transaction Example \

client (%>

[send startTransaction }

A 4

send updateOne

A 4

send updateTwo

A 4

send updateThree

A 4

send commit

CS 111

------------------------------ %i) server

— T
updateOne ~
updateTwo
updateThree ~— @@

/

Lecture 15

Fall 2015

Page 46

/ What If There’s a Failure? \

client @

[send startTransaction }

A 4

send updateOne

A 4

send updateTwo

A 4

send abort

(or timeout)

CS 111

? server

updateOne

updateTwo

—
)

/

Lecture 15

Fall 2015

Page 47

/ Transactions Spanning Multiple\

Machines
 That’s fine if the data 1s all on one resource
manager

— Its failure 1n the middle can be handled by
journaling methods

* What if we need to atomically update data on
multiple machines?

* How do we achieve the all-or-nothing effect
when each machine acts asynchronously?

— And can fail at any moment? /

CS 111 Lecture 15
Fall 2015 Page 48

/ Commitment Protocols

* Used to implement distributed commitment

— Provide for atomic all-or-none transactions

— Simultaneous commitment on multiple hosts
* Challenges

— Asynchronous conflicts from other hosts

— Nodes fail in the middle of the commitment process
* Multi-phase commitment protocol:

— Confirm no conflicts from any participating host

— All participating hosts are told to prepare for commit

— All participating hosts are told to “make 1t so”

CS 111

Fall 2015

/

Lecture 15
Page 49

/" Distributed Consensus ~ \

. Achlevmg simultaneous, unanimous
agreement

— Even 1n the presence of node & network failures
— Requires agreement, termination, validity, integrity
— Desired: bounded time

* Consensus algorithms tend to be complex

— And may take a long time to converge

* So they tend to be used sparingly

— E.g., use consensus to elect a leader)

s Who makes all subsequent decisions by fiat Lecture 1

Fall 2015 Page 50

/ A Typical Election Algorithm \

1. Each interested member broadcasts his nomination

2. All parties evaluate the received proposals
according to a fixed and well known rule

— E.g., largest ID number wins

3. After a reasonable time for proposals, each voter
acknowledges the best proposal 1t has seen

4. If a proposal has a majority of the votes, the
proposing member broadcasts a resolution claim

5. Each party that agrees with the winner’s claim
acknowledges the announced resolution

6. Election is over when a quorum acknowledges the
result /

CS 111 Lecture 15
Fall 2015 Page 51

/ [Conclusion} \

* Networking has become a vital service for
most machines

* The operating system 1s increasingly involved
in networking

— From providing mere access to a network device
— To supporting sophisticated distributed systems
* An increasing trend

* Future OSes might be primarily all about
networking

CS 111

Lecture 15
Fall 2015

Page 52

