
Lecture 15
Page 1

CS 111
Fall 2015

Networking for Operating
Systems
CS 111

Operating Systems
Peter Reiher

Lecture 15
Page 2

CS 111
Fall 2015

Outline

•  Networking implications for operating systems
•  Networking and distributed systems

Lecture 15
Page 3

CS 111
Fall 2015

Networking Implications
for the Operating System

•  Networking requires serious operating system
support

•  Changes in the clients
•  Changes in protocol implementations
•  Changes to IPC and inter-module plumbing
•  Changes to object implementations and

semantics
•  Challenges of distributed computing

Lecture 15
Page 4

CS 111
Fall 2015

Changing Paradigms
•  Network connectivity becomes “a given”
–  New applications assume/exploit connectivity
–  New distributed programming paradigms emerge
–  New functionality depends on network services

•  Thus, applications demand new services from the OS:
–  Location independent operations
–  Rendezvous between cooperating processes
–  WAN scale communication, synchronization
–  Support for splitting and migrating computations
–  Better virtualization services to safely share resources
–  Network performance becomes critical

Lecture 15
Page 5

CS 111
Fall 2015

The Old Networking Clients

•  Most clients were basic networking applications
–  Implementations of higher level remote access protocols

•  telnet, FTP, SMTP, POP/IMAP, network printing

–  Occasionally run, to explicitly access remote systems
–  Applications specifically written to network services

•  OS provided transport level services
–  TCP or UDP, IP, NIC drivers

•  Little impact on OS APIs
–  OS objects were not expected to have network semantics
–  Network apps provided services, did not implement objects

Lecture 15
Page 6

CS 111
Fall 2015

The New Networking Clients
•  The OS itself is a client for network services
–  OS may depend on network services

•  netboot, DHCP, LDAP, Kerberos, etc.

–  OS-supported objects may be remote
•  Files may reside on remote file servers
•  Console device may be a remote X11 client
•  A cooperating process might be on another machine

•  Implementations must become part of the OS
–  For both performance and security reasons

•  Local resources may acquire new semantics
–  Remote objects may behave differently than local

Lecture 15
Page 7

CS 111
Fall 2015

The Old Implementations
•  Network protocol implemented in user-mode daemon
–  Daemon talks to network through device driver

•  Client requests
–  Sent to daemon through IPC port
–  Daemon formats messages, sends them to driver

•  Incoming packets
–  Daemon reads from driver and interprets them
–  Unpacks data, forward to client through IPC port

•  Advantages – user mode code is easily changed
•  Disadvantages – lack of generality, poor performance,

weak security

Lecture 15
Page 8

CS 111
Fall 2015

User-Mode Protocol
Implementations

SMTP – mail delivery application TCP/IP daemon

ethernet NIC driver

sockets (IPC)

socket API

device read/
write

user mode

kernel mode

And off to the packet’s destination!

Lecture 15
Page 9

CS 111
Fall 2015

The New Implementations
•  Basic protocols implemented as OS modules
–  Each protocol implemented in its own module
–  Protocol layering implemented with module plumbing
–  Layering and interconnections are configurable

•  User-mode clients attach via IPC-ports
–  Which may map directly to internal networking plumbing

•  Advantages
–  Modularity (enables more general layering)
–  Performance (less overhead from entering/leaving kernel)
–  Security (most networking functionality inside the kernel)

•  A disadvantage – larger, more complex OS

Lecture 15
Page 10

CS 111
Fall 2015

In-Kernel Protocol
Implementations

SMTP – mail delivery application

TCP session management

IP transport & routing

802.12 Wireless LAN

Linksys WaveLAN m-port driver

Sockets

Data Link Provider Interface

Socket API

Streams

Streams

UDP datagrams

Streams

Streams

Instant messaging application
user mode

kernel mode

And off to the
packet’s destination!

Lecture 15
Page 11

CS 111
Fall 2015

IPC Implications
•  IPC used to be occasionally used for pipes
– Now it is used for all types of services

•  Demanding richer semantics, and better performance

•  Previously connected local processes
– Now it interconnects agents all over the world

•  Need naming service to register & find partners
•  Must interoperate with other OSes IPC mechanisms

•  Used to be simple and fast inside the OS
– We can no longer depend on shared memory
– We must be prepared for new modes of failure

Lecture 15
Page 12

CS 111
Fall 2015

Improving Our OS Plumbing

•  Protocol stack performance becomes critical
– To support file access, network servers

•  High performance plumbing: UNIX Streams
– General bi-directional in-kernel communications

•  Can interconnect any two modules in kernel
•  Can be created automatically or manually

– Message based communication
•  Put (to stream head) and service (queued messages)
•  Accessible via read/write/putmsg/getmsg system calls

Lecture 15
Page 13

CS 111
Fall 2015

Network Protocol Performance

•  Layered implementation is flexible and modular
–  But all those layers add overhead

•  Calls, context switches and queuing between layers
•  Potential data recopy at boundary of each layer

–  Protocol stack plumbing must also be high performance
•  High bandwidth, low overhead

•  Copies can be avoided by clever data structures
–  Messages can be assembled from multiple buffers

•  Pass buffer pointers rather than copying messages
•  Network adaptor drivers support scatter/gather

•  Increasingly more of the protocol stack is in the NIC

Lecture 15
Page 14

CS 111
Fall 2015

Implications of Networking for
Operating Systems

•  Centralized system management
•  Centralized services and servers
•  The end of “self-contained” systems
•  A new view of architecture
•  Performance, scalability, and availability
•  The rise of middleware

Lecture 15
Page 15

CS 111
Fall 2015

Centralized System Management
•  For all computers in one local network,

manage them as a single type of resource
– Ensure consistent service configuration
– Eliminate problems with mis-configured clients

•  Have all management done across the network
– To a large extent, in an automated fashion
– E.g., automatically apply software upgrades to all

machines at one time
•  Possibly from one central machine
– For high scale, maybe more distributed

Lecture 15
Page 16

CS 111
Fall 2015

Centralized System Management –
Pros and Cons

+ No client-side administration eases
management

+  Uniform, ubiquitous services
+ Easier security problems
- Loss of local autonomy
- Screw-ups become ubiquitous
-  Increases sysadmin power
- Harder security problems

Lecture 15
Page 17

CS 111
Fall 2015

Centralized Services and Servers
•  Networking encourages tendency to move

services from all machines to one machine
– E.g. file servers, web servers, authentication

servers
•  Other machines can access and use the services

remotely
– So they don’t need local versions
– Or perhaps only simplified local versions

•  Includes services that store lots of data

Lecture 15
Page 18

CS 111
Fall 2015

Centralized Services – Pros and
Cons

+  Easier to ensure reliability
+  Price/performance advantages
+  Ease of use
- Forces reliance on network
- Potential for huge security and privacy

breaches

Lecture 15
Page 19

CS 111
Fall 2015

The End of Self Contained Systems
•  Years ago, each computer was nearly totally

self-sufficient
•  Maybe you got some data or used specialized

hardware on some other machine
•  But your computer could do almost all of what

you wanted to do, on its own
•  Now vital services provided over the network
– Authentication, configuration and control, data

storage, remote devices, remote boot, etc.

Lecture 15
Page 20

CS 111
Fall 2015

Non-Self Contained Systems – Pros
and Cons

+  Specialized machines may do work better
+  You don’t burn local resources on offloaded

tasks
+  Getting rid of sysadmin burdens
- Again, forces reliance on network
- Your privacy and security are not entirely

under your own control
- Less customization possible

Lecture 15
Page 21

CS 111
Fall 2015

Achieving Performance,
Availability, and Scalability

•  There used to be an easy answer for these:
– Moore’s law (and its friends)

•  The CPUs (and everything else) got faster and
cheaper
– So performance got better
– More people could afford machines that did

particular things
– Problems too big to solve today fell down when

speeds got fast enough

Lecture 15
Page 22

CS 111
Fall 2015

The Old Way Vs. The New Way
•  The old way – better components (4-40%/year)
– Find and optimize all avoidable overhead
– Get the OS to be as reliable as possible
– Run on the fastest and newest hardware

•  The new way – better systems (1000x)
– Add more $150 blades and a bigger switch
– Spreading the work over many nodes is a huge win

•  Performance – may be linear with the number of blades
•  Availability – service continues despite node failures

Lecture 15
Page 23

CS 111
Fall 2015

The New Performance Approach –
Pros and Cons

+  Adding independent HW easier than
squeezing new improvements out

+  Generally cheaper
- Swaps hard HW design problems for hard SW

design problems
- Performance improvements less predictable
- Systems built this way not very well

understood

Lecture 15
Page 24

CS 111
Fall 2015

The Rise of Middleware
•  Traditionally, there was the OS and your application
–  With little or nothing between them

•  Since your application was “obviously” written to run
on your OS

•  Now, the same application must run on many
machines, with different OSes

•  Enabled by powerful middleware
–  Which offer execution abstractions at higher levels than the

OS
–  Essentially, powerful virtual machines that hide grubby

physical machines and their OSes

Lecture 15
Page 25

CS 111
Fall 2015

The OS and Middleware
•  Old model – the OS was the platform
– Applications are written for an operating system
– OS implements resources to enable applications

•  New model – the OS enables the platform
– Applications are written to a middleware layer

•  E.g., Enterprise Java Beans, Component Object Model,
etc.

– Object management is user-mode and distributed
•  E.g., CORBA, SOAP

– OS APIs less relevant to applications developers
•  The network is the computer

Lecture 15
Page 26

CS 111
Fall 2015

The Middleware Approach – Pros
and Cons

+  Easy portability
+  Allows programmers to work with higher

level abstractions
- Not always as portable and transparent as one

would hope
- Those higher level abstractions impact

performance

Lecture 15
Page 27

CS 111
Fall 2015

Networking and Distributed
Systems

•  Challenges of distributed computing
•  Distributed synchronization
•  Distributed consensus

Lecture 15
Page 28

CS 111
Fall 2015

What Is Distributed Computing?
•  Having more than one computer work

cooperatively on some task
•  Implies the use of some form of

communication
– Usually networking

•  Adding the second computer immensely
complicates all problems
– And adding a third makes it worse

Lecture 15
Page 29

CS 111
Fall 2015

Goals of Distributed Computing
•  Better services
–  Scalability

•  Some applications require more resources than one computer has
•  Should be able to grow system capacity to meet growing demand

–  Availability
•  Disks, computers, and software fail, but services should be 24x7!

–  Improved ease of use, with reduced operating expenses
•  Ensuring correct configuration of all services on all systems

•  New services
–  Applications that span multiple system boundaries
–  Global resource domains, services decoupled from systems
–  Complete location transparency

Lecture 15
Page 30

CS 111
Fall 2015

Important Characteristics of
Distributed Systems

•  Performance
–  Overhead, scalability, availability

•  Functionality
–  Adequacy and abstraction for target applications

•  Transparency
–  Compatibility with previous platforms
–  Scope and degree of location independence

•  Degree of coupling
–  How many things do distinct systems agree on?
–  How is that agreement achieved?

Lecture 15
Page 31

CS 111
Fall 2015

Types of Transparency

•  Network transparency
–  Is the user aware he’s going across a network?

•  Name transparency
– Does remote use require a different name/kind of

name for a file than a local user?
•  Location transparency
– Does the name change if the file location changes?

•  Performance transparency
–  Is remote access as quick as local access?

Lecture 15
Page 32

CS 111
Fall 2015

Loosely and Tightly Coupled
Systems

•  Tightly coupled systems
–  Share a global pool of resources
–  Agree on their state, coordinate their actions

•  Loosely coupled systems
–  Have independent resources
–  Only coordinate actions in special circumstances

•  Degree of coupling
–  Tight coupling: global coherent view, seamless fail-over

•  But very difficult to do right

–  Loose coupling: simple and highly scalable
•  But a less pleasant system model

Lecture 15
Page 33

CS 111
Fall 2015

Globally Coherent Views
•  Everyone sees the same thing
•  Usually the case on single machines
•  Harder to achieve in distributed systems
•  How to achieve it?
– Have only one copy of things that need single view

•  Limits the benefits of the distributed system
•  And exaggerates some of their costs

– Ensure multiple copies are consistent
•  Requiring complex and expensive consensus protocols

•  Not much of a choice

Lecture 15
Page 34

CS 111
Fall 2015

The Big Goal for Distributed
Computing

•  Total transparency
•  Entirely hide the fact that the computation/

service is being offered by a distributed system
•  Make it look as if it is running entirely on a

single machine
– Usually the user’s own local machine

•  Make the remote and distributed appear local
and centralized

Lecture 15
Page 35

CS 111
Fall 2015

Challenges of Distributed
Computing

•  Heterogeneity
–  Different CPUs have different data representation
–  Different OSes have different object semantics and

operations

•  Intermittent connectivity
–  Remote resources will not always be available
–  We must recover from failures in mid-computation
–  We must be prepared for conflicts when we reconnect

•  Distributed object coherence
–  Object management is easy with one in-memory copy
–  How do we ensure multiple hosts agree on state of object?

Lecture 15
Page 36

CS 111
Fall 2015

Deutsch's “Seven Fallacies of
Network Computing”

1. The network is reliable
2. There is no latency (instant response time)
3. The available bandwidth is infinite
4. The network is secure
5. The topology of the network does not change
6. There is one administrator for the whole network
7. The cost of transporting additional data is zero
Bottom Line: true transparency is not achievable

Lecture 15
Page 37

CS 111
Fall 2015

Distributed Synchronization

•  As we’ve already seen, synchronization is
crucial in proper computer system behavior

•  When things don’t happen in the required
order, we get bad results

•  Distributed computing has all the
synchronization problems of single machines

•  Plus genuinely independent interpreters and
memories

Lecture 15
Page 38

CS 111
Fall 2015

Why Is Distributed
Synchronization Harder?

•  Spatial separation
– Different processes run on different systems
– No shared memory for (atomic instruction) locks
– They are controlled by different operating systems

•  Temporal separation
– Can’t “totally order” spatially separated events
– “Before/simultaneous/after” become fuzzy

•  Independent modes of failure
– One partner can die, while others continue

Lecture 15
Page 39

CS 111
Fall 2015

How Do We Manage
Distributed Synchronization?

•  Distributed analogs to what we do in a single
machine

•  But they are constrained by the fundamental
differences of distributed environments

•  They tend to be:
– Less efficient
– More fragile and error prone
– More complex
– Often all three

Lecture 15
Page 40

CS 111
Fall 2015

Leases
•  A relative of locks
•  Obtained from an entity that manages a resource
–  Gives client exclusive right to update the file
–  The lease “cookie” must be passed to server with an update
–  Lease can be released at end of critical section

•  Only valid for a limited period of time
–  After which the lease cookie expires

•  Updates with stale cookies are not permitted

–  After which new leases can be granted

•  Handles a wide range of failures
–  Process, node, network

Lecture 15
Page 41

CS 111
Fall 2015

A Lease Example

Resource
Manager

Clie
nt
A

Clie
nt
B X

Request lease on file X

Lease on file X granted

Client A
has leased
file X till 2

PM

Update file X

X

Request lease on file X

REJECTED!

REJECTED!

Lecture 15
Page 42

CS 111
Fall 2015

What Is This Lease?
•  It’s essentially a ticket that allows the leasee to

do something
–  In our example, update file X

•  In other words, it’s a bunch of bits
•  But proper synchronization requires that only

the manager create one
•  So it can’t be forgeable
•  How do we create an unforgeable bunch of

bits?

Lecture 15
Page 43

CS 111
Fall 2015

What’s Good About Leases?

•  The resource manager controls access centrally
– So we don’t need to keep multiple copies of a lock

up to date
– Remember, easiest to synchronize updates to data

if only one party can write it
•  The manager uses his own clock for leases
– So we don’t need to synchronize clocks

•  What if a lease holder dies, losing its lease?
– No big deal, the lease would expire eventually

Lecture 15
Page 44

CS 111
Fall 2015

Lock Breaking and Recovery
With Leases

•  The resource manager can “break” the lock by
refusing to honor the lease
–  Could cause bad results for lease holder, so it’s undesirable

•  Lock is automatically broken when lease expires
•  What if lease holder left the resource in a bad state?
•  In this case, the resource must be restored to last

“good” state
–  Roll back to state prior to the aborted lease
–  Implement all-or-none transactions
–  Implies resource manager must be able to tell if lease

holder was “done” with the resource

Lecture 15
Page 45

CS 111
Fall 2015

Atomic Transactions
•  What if we want guaranteed uninterrupted, all-or-

none execution?
•  That requires true atomic transactions
•  Solves multiple-update race conditions
–  All updates are made part of a transaction

•  Updates are accumulated, but not actually made

–  After all updates are made, transaction is committed
–  Otherwise the transaction is aborted

•  E.g., if client, server, or network fails before the commit

•  Resource manager guarantees “all-or-none”
–  Even if it crashes in the middle of the updates

Lecture 15
Page 46

CS 111
Fall 2015

Atomic Transaction Example

send startTransaction

client

server

send updateOne

send updateTwo

send updateThree

updateOne

updateTwo

updateThree

send commit

Lecture 15
Page 47

CS 111
Fall 2015

What If There’s a Failure?

send startTransaction

client

server

send updateOne

send updateTwo

updateOne

updateTwo

send abort

(or timeout)

Lecture 15
Page 48

CS 111
Fall 2015

Transactions Spanning Multiple
Machines

•  That’s fine if the data is all on one resource
manager
–  Its failure in the middle can be handled by

journaling methods
•  What if we need to atomically update data on

multiple machines?
•  How do we achieve the all-or-nothing effect

when each machine acts asynchronously?
– And can fail at any moment?

Lecture 15
Page 49

CS 111
Fall 2015

Commitment Protocols

•  Used to implement distributed commitment
–  Provide for atomic all-or-none transactions
–  Simultaneous commitment on multiple hosts

•  Challenges
–  Asynchronous conflicts from other hosts
–  Nodes fail in the middle of the commitment process

•  Multi-phase commitment protocol:
–  Confirm no conflicts from any participating host
–  All participating hosts are told to prepare for commit
–  All participating hosts are told to “make it so”

Lecture 15
Page 50

CS 111
Fall 2015

Distributed Consensus
•  Achieving simultaneous, unanimous

agreement
– Even in the presence of node & network failures
– Requires agreement, termination, validity, integrity
– Desired: bounded time

•  Consensus algorithms tend to be complex
– And may take a long time to converge

•  So they tend to be used sparingly
– E.g., use consensus to elect a leader
– Who makes all subsequent decisions by fiat

Lecture 15
Page 51

CS 111
Fall 2015

A Typical Election Algorithm
1.  Each interested member broadcasts his nomination
2.  All parties evaluate the received proposals

according to a fixed and well known rule
–  E.g., largest ID number wins

3.  After a reasonable time for proposals, each voter
acknowledges the best proposal it has seen

4.  If a proposal has a majority of the votes, the
proposing member broadcasts a resolution claim

5.  Each party that agrees with the winner’s claim
acknowledges the announced resolution

6.  Election is over when a quorum acknowledges the
result

Lecture 15
Page 52

CS 111
Fall 2015

Conclusion

•  Networking has become a vital service for
most machines

•  The operating system is increasingly involved
in networking
– From providing mere access to a network device
– To supporting sophisticated distributed systems

•  An increasing trend
•  Future OSes might be primarily all about

networking

