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/ [ Outline} \

* Allocating and managing file system free
space

* File naming and directories

* File volumes

* File system performance issues
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ﬁ? ree Space and Allocation Issues}\

 How do I keep track of a file system’s free
space?

e How do I allocate new disk blocks when
needed?

— And how do I handle deallocation?
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/ The Allocation/Deallocation \

Problem
* File systems usually aren’t static

* You create and destroy files

* You change the contents of files

— Sometimes extending their length in the process

* Such changes convert unused disk blocks to
used blocks (or visa versa)

* Need correct, efficient ways to do that

* Typically implies a need to maintain a free list
\ of unused disk blocks /
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/ Creating a New File \

 Allocate a free file control block

— For UNIX

* Search the super-block free I-node list
* Take the first free I-node

— For DOS

* Search the parent directory for an unused directory entry

* Initialize the new file control block
— With file type, protection, ownership, ...

e (G1ve new file a name

— Naming 1ssues will be discussed in the next lecture /
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Extending a File

* Application requests new data be assigned to a file

— May be an explicit allocation/extension request
— May be implicit (e.g., write to a currently non-existent

block — remember sparse files?)

* Find a free chunk of space
— Traverse the free list to find an appropriate chunk
— Remove the chosen chunk from the free list

* Associate 1t with the appropriate address 1n the file
— Go to appropriate place in the file or extent descriptor

— Update 1t to point to the newly allocated chunk

\

/
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/ Deleting a File \

* Release all the space that is allocated to the file
— For UNIX, return each block to the free block list

— DOS does not free space
* [t uses garbage collection
* So 1t will search out deallocated blocks and add them to
the free list at some future time

e Deallocate the file control lock

— For UNIX, zero inode and return 1t to free list

— For DOS, zero the first byte of the name 1n the
parent directory

* Indicating that the directory entry is no longer in use / )
CS 111 ecture
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/ Free Space Maintenance

* File system manager manages the free space

* Getting/releasing blocks should be fast operations
— They are extremely frequent
— We'd like to avoid doing I/O as much as possible

* Unlike memory, 1t matters what block we choose

— Best to allocate new space in same cylinder as file’s
existing space
— User may ask for contiguous storage

* Free-list organization must address both concerns

\ — Speed of allocation and deallocation

< Ability to allocate contiguous or near-by space

\

/
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Space Management

+ Search for free clusters in desired cylinder

— We can map clusters to cylinders
* The BIOS Parameter Block describes the device geometry

— Look at first cluster of file to choose the desired cylinder
— Start search at first cluster of desired cylinder
— Examine each FAT entry until we find a free one

* If no free clusters, we must garbage collect
— Recursively search all directories for existing files

— Enumerate all of the clusters in each file

— Any clusters not found 1n search can be marked as free

os 7 This won’t be fast . . .
Fall 2015
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/ Extending a DOS File \

 Note cluster number of current last cluster in file

* Search the FAT to find a free cluster
— Free clusters are indicated by a FAT entry of zero
— Look for a cluster 1n the same cylinder as previous cluster
— Put -1 in its FAT entry to indicate that this is the new EOF

— This has side effect of marking the new cluster as “not
free”

 (Chain new cluster on to end of the file

— Put the number of new cluster into FAT entry for last
cluster /
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/ DOS Free Space \

boot
block

Each FAT entry corresponds to a cluster, and contains the
number of the next cluster.

A value of zero indicates a cluster that is not allocated to any

file, and is therefore free. /
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/" The BSD File System ™\
Free Space Management |

___________________________________________________________________________________

e BSD is another version of Unix

* The details of 1ts inodes are similar to those of
Unix System V
— As previously discussed

* Other aspects are somewhat different
— Including free space management

— Typically more advanced

* Uses bit map approach to managing free space

— Keeping cylinder 1ssues in mind /
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The BSD Approach

* Instead of all control information at start of disk,

* Divide file system into cylinder groups

— Each cylinder group has 1ts own control information

* The cylinder group summary

— Active cylinder group summaries are kept in memory
— Each cylinder group has its own inodes and blocks
— Free block list 1s a bit-map in cylinder group summary

* Enables significant reductions in head motion
— Data blocks 1n file can be allocated in same cylinder

— Inode and its data blocks 1n same cylinder group

— Directories and their files in same cylinder group

CS 111
Fall 2015

\

/

Lecture 14

Page 13



/" BSD Cylinder Groups "\
and Free Space
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/ Bit Map Free Lists \

block #1 block #2 block #4
(in use) (in use) (in use)
Actual data blocks

BSD Unix file systems use bit-maps to keep
track of both free blocks and free I-nodes in
each cylinder group /
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/ Extending a BSD/Unix File \

* Determine the cylinder group for the file’s inode

— Calculated from the inode’s 1dentifying number
* Find the cylinder for the previous block in the file

* Find a free block 1n the desired cylinder

— Search the free-block bit-map for a free block 1n the right
cylinder

— Update the bit-map to show the block has been allocated
* Update the mnode to point to the new block

— Go to appropriate block pointer in inode/indirect block

— If new indirect block 1s needed, allocate/assign it first
— Update mode/indirect to point to new block /

CS 111 Lecture 14
Fall 2015 Page 16




/ Unix File Extension \

block pointers
(in I-node)
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/ [Naming in File Systems} \

 Each file needs some kind of handle to allow
us to refer to 1t

* Low level names (like inode numbers) aren’t
usable by people or even programs

* We need a better way to name our files
— User friendly

— Allowing for easy organization of large numbers of
files

— Readily realizable 1n file systems /
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/ File Names and Binding \

* File system knows files by descriptor structures
* We must provide more useful names for users
* The file system must handle name-to-file mapping

— Associating names with new files
— Finding the underlying representation for a given name
— Changing names associated with existing files

— Allowing users to organize files using names

* Name spaces — the total collection of all names
known by some naming mechanism

— Sometimes all names that could be created by the )
., mechanism e 14
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/" Name Space Structure ~\

_______________________________________________________________________________

* There are many ways to structure a name space
— Flat name spaces
* All names exist 1n a single level

— Hierarchical name spaces
* A graph approach
* Can be a strict tree

* Or a more general graph (usually directed)

* Are all files on the machine under the same
name structure?

\* Or are there several independent name spaces? /
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/ Some Issues in Name \
Space Structure

* How many files can have the same name?

— One per file system ... flat name spaces
— One per directory ... hierarchical name spaces

* How many different names can one file have?
— A single “true name”
— Only one “true name”, but aliases are allowed
— Arbitrarily many

— What’s different about “true names”?

Do different names have different characteristics?

— Does deleting one name make others disappear too? /

s 17 Do all names see the same access permissions? Lecture 14
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/ Flat Name Spaces \

* There 1s one naming context per file system

— All file names must be unique within that context

* All files have exactly one true name

— These names are probably very long

* File names may have some structure

— This structure may be used to optimize searches

— The structure 1s very useful to users

— But the structure has no meaning to the file system

. .
- No longer a widely used approach I
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/ Hierarchical Name Spaces \

* Essentially a graphical organization

* Typically organized using directories
— A file containing references to other files
— A non-leaf node in the graph

— It can be used as a naming context
* Each process has a current directory
* File names are interpreted relative to that directory

* Nested directories can form a tree
— A file name describes a path through that tree

— The directory tree expands from a “root” node
* A name beginning from root is called “fully qualified”

— May actually form a directed graph

* If files are allowed to have multiple names /
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/ A Rooted Directory Tree \

/Ot\
user 1 user 2 user 3
v
file a dir a file b file c dir a
(/user l/file a) (/user I /dir_a) (/user 2/file b) (/user 3/file ¢)  (/ user[/dira)
file a file b
(/user_l/dir_a/file a) (Juser 3/dir affile b) /
CS 111 Lecture 14
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/ Directories Are Files \

* Directories are a special type of file

— Used by OS to map file names into the associated files

* A directory contains multiple directory entries
— Each directory entry describes one file and its name

* User applications are allowed to read directories
— To get information about each file

— To find out what files exist

* Usually only the OS 1s allowed to write them

— Users can cause writes through special system calls
— The file system depends on the integrity of directories /
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/ Traversing the Directory Tree \

* Some entries in directories point to child
directories

— Describing a lower level in the hierarchy

* To name a file at that level, name the parent
directory and the child directory, then the file

— With some kind of delimiter separating the file
name components

* Moving up the hierarchy 1s often useful

— Directories usually have special entry for parent
— Many file systems use the name “..” for that /
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/ Example: The DOS File System\

* File & directory names separated by back-slashes
— E.g.,, \user 3\dir a\file b
* Directory entries are the file descriptors

— As such, only one entry can refer to a particular file

* Contents of a DOS directory entry
— Name (relative to this directory)
— Type (ordinary file, directory, ...)
— Location of first cluster of file

— Length of file in bytes
— Other privacy and protection attributes /
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/ DOS File System Directories \

Root directory, starting in cluster #1

file name type length 15t cluster
user 1 DIR | 256 bytes 9
user 2 DIR | 512 bytes 31
user 3 DIR | 284 bytes 114

CS 111

— Directory /user 3, starting in cluster #114

file name type length st cluster
DIR 256 bytes 1
dir a DIR 512 bytes 62
file c FILE | 1824 bytes 102 /
Lecture 14
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/ File Names Vs. Path Names \

* In some flat name space systems files had “true
names”
— Only one possible name for a file,

— Kept in a record somewhere

* In DOS, a file 1s described by a directory entry

— Local name is specified in that directory entry
— Fully qualified name 1s the path to that directory entry

* E.g., start from root, to user 3, to dir a, to file b

— But DOS files still have only one name

 What if files had no intrinsic names of their own?

— All names came from directory paths /
CS 111 Lecture 14
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/ Example: Unix Directories \

* A file system that allows multiple file names

— So there 1s no single “true” file name, unlike DOS

* File names separated by slashes
— E.g.,, /user 3/dir a/file b

* The actual file descriptors are the inodes
— Directory entries only point to inodes

— Association of a name with an inode 1s called a hard link
— Multiple directory entries can point to the same inode

* Contents of a Unix directory entry
— Name (relative to this directory) /
\ T Pointer to the inode of the associated file

Lecture 14
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/ Unix Directories \

_ Root directory, inode #1
But what’s this inode # file name

¢ 9

. entry?

It’s a directory
entry that
points to the
directory
it%g:lf !

We’ll see why
that’s useful

irectory /usdates, inode #114 +———
node # file name

Here’s a “..”

entry, pointing to

the parent /
CS 111 directory Lecture 14
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/ Multiple File Names In Unix \

e How do links relate to files?

— They’re the names only

* All other metadata is stored in the file inode

— File owner sets file protection (e.g., read-only)

* All links provide the same access to the file

— Anyone with read access to file can create new link
— But directories are protected files too

* Not everyone has read or search access to every directory

* All links are equal

— There 1s nothing special about the first (or owner's) link /
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/ [Links and De-allocation

Files exist under multiple names
What do we do 1f one name 1s removed?

If we also removed the file itself, what about
the other names?
— Do they now point to something non-existent?

The Unix solution says the file exists as long
as at least one name exists

Implying we must keep and maintain a
reference count of links

— In the file inode, not 1n a directory

CS 111
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/ Unix Hard Link Example \

Note that we now
associate names
with links rather
han with files.

/user 1/file a
and

/user 3/dir a/
file b

/

xl@ both links to the Lecture 14
Fall 2015 Page 34
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ﬁ{ard Links, Directories, and Files\

inode #1, root directory

mode #9, directory <

— 1node #114, directory

— inode #29, file <

CS 111 Lecture 14
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/ A Potential Problem With \
Hard Links

* Hard links are essentially edges in the graph

* Those edges can lead backwards to other graph
nodes

* Might that not create cycles in the graph?

 If 1t does, what happens when we delete one of
the links?

* Might we not disconnect the graph?
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/ [llustrating the Problem \

The link count
here 1s still 1,

SO we can’t
delete the file

Now let’s add a link

And now let’s
delete a link

But our graph
has become
disconnected!

/
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/ Solving the Problem \

* Only directories contain links
— Not regular files

* So if a link can’t point to a directory, there
can’t be a loop

* In which case, there’s no problem with
deletions

* This 1s the Unix solution: no hard links to
directories
— The *“.” and “..” links are harmless exceptions )
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/ Symbolic Links \

* A different way of giving files multiple names

* Symbolic links implemented as a special type of file
— An indirect reference to some other file
— Contents is a path name to another file

* OS recognizes symbolic links

— Automatically opens associated file instead

— If file 1s inaccessible or non-existent, the open fails
* Symbolic link 1s not a reference to the inode

— Symbolic links will not prevent deletion

\ — Do not guarantee ability to follow the specified path /

— Internet URLs are similar to symbolic links .
CS 111 ecture 14
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Symbolic Link Example

The link count
for this file 1s
still 1, though

\




/ Symbolic Links, Files, and \
Directories

inode #1, root directory

inode #9, directory <

N\

\ . — 1node #114, directory

inode #29, fileM N

\
Link count  inode #46, symlink «—

still equals 1!
JESRVIEIE /
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/ What About Looping Problems?\

* Do symbolic links have the potential to introduce
loops 1nto a pathname?

— Yes, if the target of the symbolic link includes the symbolic
link 1tself

— Or some transitive combination of symbolic links

* How can such loops be detected?

— Could keep a list of every inode we have visited in the
interpretation of this path

— But simpler to limit the number of directory searches
allowed 1n the interpretation of a single path name

— E.g., after 256 searches, just fail

— The usual solution for Unix-style systems /
CS 111 Lecture 14
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/[F 1le Systems and Multiple Disks}\

machine

the several disks?

— Considering the kinds of disk specific information a file
system keeps

— Like cylinder information

* Usually more trouble than it’s worth
— With the exception of RAID . ..

* Instead, put separate file system on each disk

* Or several file systems on one disk

CS 111

* You can (and often do) attach more than one disk to a

* Would i1t make sense to have a single file system span

Fall 2015
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/ Working With Multiple File \
Systems

* One machine can have multiple independent file
systems

— Each handling 1ts own disk layout, free space, and other
organizational i1ssues

* How will the overall system work with those several
file systems?

* Treat them as totally independent namespaces?
* Or somehow stitch the separate namespaces together?
* Key questions:

1. How does an application specify which file 1t wants? /
4 How does the OS find that file? Lecture 14
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/ Finding Files With Multiple File ™\
Systems

* Finding files 1s easy if there 1s only one file system
— Any file we want must be on that one file system
— Directories enable us to name files within a file system
* What if there are multiple file systems available?

— Somehow, we have to say which one our file is on

* How do we specify which file system to use?
— One way or another, 1t must be part of the file name
— It may be implicit (e.g., same as current directory)

— Or explicit (e.g., every name specifies it)

— Regardless, we need some way of specifying which file /

cs1i System to look into for a given file name Lecture 14
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/~ Options for Naming With ™\

Multiple Partitions
* Could specity the physical device it resides on

—E.g., /devices/pci/pcil000,4/disk/lunl/partition?
* that would get old real quick
* Could assign logical names to our partitions
—E.g., “A:”, “C.”, “D.”
* You only have to think physical when you set them up
* But you still have to be aware multiple volumes exist

* Could weave a multi-file-system name space

— E.g., Unix mounts Y,

CS 111 Lecture 14
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/ Unix File System Mounts \
* Goal:

— To make many file systems appear to be one giant
one

— Users need not be aware of file system boundaries

e Mechanism:

— Mount device on directory

— Creates a warp from the named directory to the
top of the file system on the specified device

— Any file name beneath that directory 1s interpreted
relative to the root of the mounted file system
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/ Unix Mounted File System \
Example

root file system

mount filesystem2 on /export/userl
mount filesystem3 on /export/user2

mount filesystem4 on /opt }KHA Jopt /bin

userl user2

I I I

i file system 2 file system 3 file System 4 | o 14
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/ How Does This Actually Work?\

* Mark the directory that was mounted on

* When file system opens that directory, don’t
treat 1t as an ordinary directory

— Instead, consult a table of mounts to figure out
where the root of the new file system 1s

* (o to that device and open its root directory
* And proceed from there
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/" What Happened To the Real ™\
Directory?

* You can mount on top of any directory
— Not just 1n some special places in the file hierarchy
— Not even just empty directories

* Did the mount wipe out the contents of the
directory mounted on?

* No, 1t just hid them

— Since traversals jump to a new file system, rather
than reading the directory contents

\- It’s all still there when you unmount /
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/[ File System Performance Issues}\

* Key factors 1n file system performance
— Head motion

— Block size

* Possible optimizations for file systems
— Read-ahead
— Delayed writes

— Caching (general and special purpose)

CS 111
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/" Head Motion and File System

Performance
* File system organization affects head motion

— If blocks 1n a single file are spread across the disk
— If files are spread randomly across the disk
— If files and “meta-data” are widely separated

* All files are not used equally often
— 5% of the files account for 90% of disk accesses

— File locality should translate into head cylinder
locality

e So how can we reduce head motion? )
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/ Ways To Reduce Head Motion \

* Keep blocks of a file together
— Easiest to do on original write
— Try to allocate each new block close to the last one
— Especially keep them 1n the same cylinder
* Keep metadata close to files
— Again, easiest to do at creation time
* Keep files in the same directory close together

— On the assumption directory implies locality of reference

* If performing compaction, move popular files close
together

CS 111
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/~ File System Performance and ™\
Block Size

Larger block sizes result in efficient transfers

— DMA 1is very fast, once 1t gets started
— Per request set-up and head-motion 1s substantial

They also result in internal fragmentation
— Expected waste: 2 block per file

As disks get larger, speed outweighs wasted space
— File systems support ever-larger block sizes

* Clever schemes can reduce fragmentation

— E.g., use smaller block size for the last block of a file

/
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/" Read Early, Write Late ~ \

 If we read blocks before we actually need
them, we don’t have to wait for them

— But how can we know which blocks to read early?

* If we write blocks long after we told the
application it was done, we don’t have to wait

— But are there bad consequences of delaying those
writes?

* Some optimizations depend on good answers
to these questions /
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/ Read-Ahead \

* Request blocks from the disk before any
process asked for them

* Reduces process wait time

* When does 1t make sense?
— When client specifically requests sequential access
— When client seems to be reading sequentially

e What are the risks?

— May waste disk access time reading unwanted
blocks

— May waste buffer space on unneeded blocks Leotune 14
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Delayed Writes \

* Don’t wait for disk write to complete to tell
application it can proceed

Written block 1s 1n a buffer in memory

 Wait until it’s “convenient” to write 1t to disk
— Handle reads from in-memory buffer
 Benefits:

— Applications don’t wait for disk writes
— Writes to disk can be optimally ordered
— If file 1s deleted soon, may never need to perform disk I/O

Potential problems:

— Lost writes when system crashes /

cs mr Buffers holding delayed writes can’t be re-used Lecure 14
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__________________________________________________________________________________________

/ Caching and Performance \

~

* Big performance wins are possible if caches
work well

— They typically contain the block you’re looking for

* Should we have one big LRU cache for all
purposes?

* Should we have some special-purpose caches?
— If so, 1s LRU right for them?
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/Common Types of Disk Caching\

* General block caching
— Popular files that are read frequently
— Files that are written and then promptly re-read
— Provides buffers for read-ahead and deferred write

* Special purpose caches
— Directory caches speed up searches of same dirs

— Inode caches speed up re-uses of same file

* Special purpose caches are more complex

— But they often work much better /
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/Performance Gain For Different\
Performance  Types of Caches

Special Purpose Cache

General Block Cache

CS 111 Cache si1ze (bytes) Lecture 14
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Why Are Special Purpose
Caches More Effective?

* They match caching granularity to their need

— E.g., cache modes or directory entries
— Rather than full blocks

* Why does that help?

* Consider an example:

— A block might contain 100 directory entries, only four of
which are regularly used

— Caching the other 96 as part of the block 1s a waste of
cache space

— Caching 4 entries allows more popular entries to be cached

— Tending to lead to higher hit ratios /

CS 111 Lecture 14
Fall 2015 Page 61




