
Lecture 14
Page 1

CS 111
Fall 2015

File Systems: Allocation Issues,
Naming, and Performance

CS 111
Operating Systems

Peter Reiher

Lecture 14
Page 2

CS 111
Fall 2015

Outline

•  Allocating and managing file system free
space

•  File naming and directories
•  File volumes
•  File system performance issues

Lecture 14
Page 3

CS 111
Fall 2015

Free Space and Allocation Issues

•  How do I keep track of a file system’s free
space?

•  How do I allocate new disk blocks when
needed?
– And how do I handle deallocation?

Lecture 14
Page 4

CS 111
Fall 2015

The Allocation/Deallocation
Problem

•  File systems usually aren’t static
•  You create and destroy files
•  You change the contents of files

– Sometimes extending their length in the process
•  Such changes convert unused disk blocks to

used blocks (or visa versa)
•  Need correct, efficient ways to do that
•  Typically implies a need to maintain a free list

of unused disk blocks

Lecture 14
Page 5

CS 111
Fall 2015

Creating a New File
•  Allocate a free file control block

– For UNIX
•  Search the super-block free I-node list
•  Take the first free I-node

– For DOS
•  Search the parent directory for an unused directory entry

•  Initialize the new file control block
– With file type, protection, ownership, ...

•  Give new file a name
– Naming issues will be discussed in the next lecture

Lecture 14
Page 6

CS 111
Fall 2015

Extending a File

•  Application requests new data be assigned to a file
–  May be an explicit allocation/extension request
–  May be implicit (e.g., write to a currently non-existent

block – remember sparse files?)

•  Find a free chunk of space
–  Traverse the free list to find an appropriate chunk
–  Remove the chosen chunk from the free list

•  Associate it with the appropriate address in the file
–  Go to appropriate place in the file or extent descriptor
–  Update it to point to the newly allocated chunk

Lecture 14
Page 7

CS 111
Fall 2015

Deleting a File
•  Release all the space that is allocated to the file

– For UNIX, return each block to the free block list
– DOS does not free space

•  It uses garbage collection
•  So it will search out deallocated blocks and add them to

the free list at some future time

•  Deallocate the file control lock
– For UNIX, zero inode and return it to free list
– For DOS, zero the first byte of the name in the

parent directory
•  Indicating that the directory entry is no longer in use

Lecture 14
Page 8

CS 111
Fall 2015

Free Space Maintenance
•  File system manager manages the free space
•  Getting/releasing blocks should be fast operations

–  They are extremely frequent
–  We'd like to avoid doing I/O as much as possible

•  Unlike memory, it matters what block we choose
–  Best to allocate new space in same cylinder as file’s

existing space
–  User may ask for contiguous storage

•  Free-list organization must address both concerns
–  Speed of allocation and deallocation
–  Ability to allocate contiguous or near-by space

Lecture 14
Page 9

CS 111
Fall 2015

DOS File System Free
Space Management

•  Search for free clusters in desired cylinder
–  We can map clusters to cylinders

•  The BIOS Parameter Block describes the device geometry

–  Look at first cluster of file to choose the desired cylinder
–  Start search at first cluster of desired cylinder
–  Examine each FAT entry until we find a free one

•  If no free clusters, we must garbage collect
–  Recursively search all directories for existing files
–  Enumerate all of the clusters in each file
–  Any clusters not found in search can be marked as free
–  This won’t be fast . . .

Lecture 14
Page 10

CS 111
Fall 2015

Extending a DOS File

•  Note cluster number of current last cluster in file
•  Search the FAT to find a free cluster

–  Free clusters are indicated by a FAT entry of zero
–  Look for a cluster in the same cylinder as previous cluster
–  Put -1 in its FAT entry to indicate that this is the new EOF
–  This has side effect of marking the new cluster as “not

free”

•  Chain new cluster on to end of the file
–  Put the number of new cluster into FAT entry for last

cluster

Lecture 14
Page 11

CS 111
Fall 2015

DOS Free Space
boot
block

File Allocation
Table data clusters BIOS

parms

0 0 ## … 0 ##

Each FAT entry corresponds to a cluster, and contains the
number of the next cluster.

A value of zero indicates a cluster that is not allocated to any
file, and is therefore free.

-1

Lecture 14
Page 12

CS 111
Fall 2015

The BSD File System
Free Space Management

•  BSD is another version of Unix
•  The details of its inodes are similar to those of

Unix System V
– As previously discussed

•  Other aspects are somewhat different
–  Including free space management
– Typically more advanced

•  Uses bit map approach to managing free space
– Keeping cylinder issues in mind

Lecture 14
Page 13

CS 111
Fall 2015

The BSD Approach
•  Instead of all control information at start of disk,
•  Divide file system into cylinder groups

–  Each cylinder group has its own control information
•  The cylinder group summary

–  Active cylinder group summaries are kept in memory
–  Each cylinder group has its own inodes and blocks
–  Free block list is a bit-map in cylinder group summary

•  Enables significant reductions in head motion
–  Data blocks in file can be allocated in same cylinder
–  Inode and its data blocks in same cylinder group
–  Directories and their files in same cylinder group

Lecture 14
Page 14

CS 111
Fall 2015

BSD Cylinder Groups
and Free Space

I-nodes data blocks

file system &
cylinder group
parameters

free block
bit-map

free I-node
bit-map

cylinders

cylinder
groups

0 100 200 300 400

Lecture 14
Page 15

CS 111
Fall 2015

Bit Map Free Lists

block #1
(in use)

block #2
(in use)

block #3
(free)

block #4
(in use)

block #5
(free)

block #6
(free)

10 0 0 1 1 …

Actual data blocks

BSD Unix file systems use bit-maps to keep
track of both free blocks and free I-nodes in

each cylinder group

Lecture 14
Page 16

CS 111
Fall 2015

Extending a BSD/Unix File
•  Determine the cylinder group for the file’s inode

–  Calculated from the inode’s identifying number
•  Find the cylinder for the previous block in the file
•  Find a free block in the desired cylinder

–  Search the free-block bit-map for a free block in the right
cylinder

–  Update the bit-map to show the block has been allocated

•  Update the inode to point to the new block
–  Go to appropriate block pointer in inode/indirect block
–  If new indirect block is needed, allocate/assign it first
–  Update inode/indirect to point to new block

Lecture 14
Page 17

CS 111
Fall 2015

Unix File Extension

1st

2nd

1st

block pointers
(in I-node)

2nd

10th
11th
12th
13th

3rd
4th
5th
6th
7th
8th
9th

C.G.
summary

Free
I-node
bit map

Free
block

bit map

1. Determine cylinder
group and get its
information 2. Consult the cylinder
group free block bit map
to find a good block 3. Allocate the block to
the file

3d

3.1 Set appropriate block
pointer to it 3.2 Update the free block
bit map

✔

Lecture 14
Page 18

CS 111
Fall 2015

Naming in File Systems

•  Each file needs some kind of handle to allow
us to refer to it

•  Low level names (like inode numbers) aren’t
usable by people or even programs

•  We need a better way to name our files
– User friendly
– Allowing for easy organization of large numbers of

files
– Readily realizable in file systems

Lecture 14
Page 19

CS 111
Fall 2015

File Names and Binding
•  File system knows files by descriptor structures
•  We must provide more useful names for users
•  The file system must handle name-to-file mapping

–  Associating names with new files
–  Finding the underlying representation for a given name
–  Changing names associated with existing files
–  Allowing users to organize files using names

•  Name spaces – the total collection of all names
known by some naming mechanism
– Sometimes all names that could be created by the

mechanism

Lecture 14
Page 20

CS 111
Fall 2015

Name Space Structure
•  There are many ways to structure a name space

– Flat name spaces
•  All names exist in a single level

– Hierarchical name spaces
•  A graph approach
•  Can be a strict tree
•  Or a more general graph (usually directed)

•  Are all files on the machine under the same
name structure?

•  Or are there several independent name spaces?

Lecture 14
Page 21

CS 111
Fall 2015

Some Issues in Name
Space Structure

•  How many files can have the same name?
–  One per file system ... flat name spaces
–  One per directory ... hierarchical name spaces

•  How many different names can one file have?
–  A single “true name”
–  Only one “true name”, but aliases are allowed
–  Arbitrarily many
–  What’s different about “true names”?

•  Do different names have different characteristics?
–  Does deleting one name make others disappear too?
–  Do all names see the same access permissions?

Lecture 14
Page 22

CS 111
Fall 2015

Flat Name Spaces
•  There is one naming context per file system

– All file names must be unique within that context

•  All files have exactly one true name
– These names are probably very long

•  File names may have some structure
– E.g., CAC101.CS111.SECTION1.SLIDES.LECTURE_13

– This structure may be used to optimize searches
– The structure is very useful to users
– But the structure has no meaning to the file system

•  No longer a widely used approach

Lecture 14
Page 23

CS 111
Fall 2015

Hierarchical Name Spaces
•  Essentially a graphical organization
•  Typically organized using directories

–  A file containing references to other files
–  A non-leaf node in the graph
–  It can be used as a naming context

•  Each process has a current directory
•  File names are interpreted relative to that directory

•  Nested directories can form a tree
–  A file name describes a path through that tree
–  The directory tree expands from a “root” node

•  A name beginning from root is called “fully qualified”
–  May actually form a directed graph

•  If files are allowed to have multiple names

Lecture 14
Page 24

CS 111
Fall 2015

A Rooted Directory Tree
root

user_1 user_2 user_3

file_a
(/user_1/file_a)

file_b
(/user_2/file_b)

file_c
(/user_3/file_c)

dir_a
(/user_1/dir_a)

dir_a
(/user_3/dir_a)

file_a
(/user_1/dir_a/file_a)

file_b
(/user_3/dir_a/file_b)

Lecture 14
Page 25

CS 111
Fall 2015

Directories Are Files
•  Directories are a special type of file

–  Used by OS to map file names into the associated files
•  A directory contains multiple directory entries

–  Each directory entry describes one file and its name

•  User applications are allowed to read directories
–  To get information about each file
–  To find out what files exist

•  Usually only the OS is allowed to write them
–  Users can cause writes through special system calls
–  The file system depends on the integrity of directories

Lecture 14
Page 26

CS 111
Fall 2015

Traversing the Directory Tree
•  Some entries in directories point to child

directories
– Describing a lower level in the hierarchy

•  To name a file at that level, name the parent
directory and the child directory, then the file
– With some kind of delimiter separating the file

name components
•  Moving up the hierarchy is often useful

– Directories usually have special entry for parent
– Many file systems use the name “..” for that

Lecture 14
Page 27

CS 111
Fall 2015

Example: The DOS File System

•  File & directory names separated by back-slashes
–  E.g., \user_3\dir_a\file_b

•  Directory entries are the file descriptors
–  As such, only one entry can refer to a particular file

•  Contents of a DOS directory entry
–  Name (relative to this directory)
–  Type (ordinary file, directory, ...)
–  Location of first cluster of file
–  Length of file in bytes
–  Other privacy and protection attributes

Lecture 14
Page 28

CS 111
Fall 2015

DOS File System Directories

user_1 256 bytes 9 DIR …

Root directory, starting in cluster #1

file name length 1st cluster type …

user_2 512 bytes 31 DIR …

user_3 284 bytes 114 DIR …

Directory /user_3, starting in cluster #114

file name length 1st cluster type …

.. 256 bytes 1 DIR …

dir_a 512 bytes 62 DIR …

file_c 1824 bytes 102 FILE …

Lecture 14
Page 29

CS 111
Fall 2015

File Names Vs. Path Names
•  In some flat name space systems files had “true

names”
–  Only one possible name for a file,
–  Kept in a record somewhere

•  In DOS, a file is described by a directory entry
–  Local name is specified in that directory entry
–  Fully qualified name is the path to that directory entry

•  E.g., start from root, to user_3, to dir_a, to file_b

–  But DOS files still have only one name
•  What if files had no intrinsic names of their own?

–  All names came from directory paths

Lecture 14
Page 30

CS 111
Fall 2015

Example: Unix Directories
•  A file system that allows multiple file names

–  So there is no single “true” file name, unlike DOS

•  File names separated by slashes
–  E.g., /user_3/dir_a/file_b

•  The actual file descriptors are the inodes
–  Directory entries only point to inodes
–  Association of a name with an inode is called a hard link
–  Multiple directory entries can point to the same inode

•  Contents of a Unix directory entry
–  Name (relative to this directory)
–  Pointer to the inode of the associated file

Lecture 14
Page 31

CS 111
Fall 2015

Unix Directories

user_1 9

file name inode #

user_2 31

user_3 114

Directory /user_3, inode #114

dir_a

file_c

. 1

.. 1

Root directory, inode #1

194

307

. 114

.. 1

file name inode #

Here’s a “..”
entry, pointing to
the parent
directory

But what’s this
“.” entry?

It’s a directory
entry that
points to the
directory
itself!

We’ll see why
that’s useful
later

Lecture 14
Page 32

CS 111
Fall 2015

Multiple File Names In Unix
•  How do links relate to files?

–  They’re the names only

•  All other metadata is stored in the file inode
–  File owner sets file protection (e.g., read-only)

•  All links provide the same access to the file
–  Anyone with read access to file can create new link
–  But directories are protected files too

•  Not everyone has read or search access to every directory

•  All links are equal
–  There is nothing special about the first (or owner's) link

Lecture 14
Page 33

CS 111
Fall 2015

Links and De-allocation
•  Files exist under multiple names
•  What do we do if one name is removed?
•  If we also removed the file itself, what about

the other names?
– Do they now point to something non-existent?

•  The Unix solution says the file exists as long
as at least one name exists

•  Implying we must keep and maintain a
reference count of links
–  In the file inode, not in a directory

Lecture 14
Page 34

CS 111
Fall 2015

Unix Hard Link Example

root

user
_1

user
_3

dir_
a

file
_c file_a

file_b

Note that we now
associate names
with links rather
than with files.

/user_1/file_a
and

/user_3/dir_a/
file_b

are both links to the
same inode

Lecture 14
Page 35

CS 111
Fall 2015

Hard Links, Directories, and Files

user_1 9

user_2 31

user_3 114

inode #9, directory

dir_a

file_c

. 1

.. 1

inode #1, root directory

194

29

. 114

.. 1

inode #114, directory

dir_a

file_a

118

29

. 9

.. 1

inode #29, file

Lecture 14
Page 36

CS 111
Fall 2015

A Potential Problem With
Hard Links

•  Hard links are essentially edges in the graph
•  Those edges can lead backwards to other graph

nodes
•  Might that not create cycles in the graph?
•  If it does, what happens when we delete one of

the links?
•  Might we not disconnect the graph?

Lecture 14
Page 37

CS 111
Fall 2015

Illustrating the Problem

Now let’s add a link

And now let’s
delete a link

The link count
here is still 1,
so we can’t
delete the file

But our graph
has become
disconnected!

Lecture 14
Page 38

CS 111
Fall 2015

Solving the Problem
•  Only directories contain links

– Not regular files

•  So if a link can’t point to a directory, there
can’t be a loop

•  In which case, there’s no problem with
deletions

•  This is the Unix solution: no hard links to
directories
– The “.” and “..” links are harmless exceptions

Lecture 14
Page 39

CS 111
Fall 2015

Symbolic Links
•  A different way of giving files multiple names
•  Symbolic links implemented as a special type of file

–  An indirect reference to some other file
–  Contents is a path name to another file

•  OS recognizes symbolic links
–  Automatically opens associated file instead
–  If file is inaccessible or non-existent, the open fails

•  Symbolic link is not a reference to the inode
–  Symbolic links will not prevent deletion
–  Do not guarantee ability to follow the specified path
–  Internet URLs are similar to symbolic links

Lecture 14
Page 40

CS 111
Fall 2015

Symbolic Link Example

root

user
_1

user
_3

dir_
a

file
_c file

_a file
_b (/user_1/

file_a) The link count
for this file is
still 1, though

Lecture 14
Page 41

CS 111
Fall 2015

Symbolic Links, Files, and
Directories

user_1 9

user_2 31

user_3 114

inode #9, directory

dir_a

file_c

. 1

.. 1

inode #1, root directory

194

46

. 114

.. 1

inode #114, directory

dir_a

file_a

118

29

. 9

.. 1

inode #29, file

/user_1/file_a

inode #46, symlink Link count
still equals 1!

Lecture 14
Page 42

CS 111
Fall 2015

What About Looping Problems?
•  Do symbolic links have the potential to introduce

loops into a pathname?
–  Yes, if the target of the symbolic link includes the symbolic

link itself
–  Or some transitive combination of symbolic links

•  How can such loops be detected?
–  Could keep a list of every inode we have visited in the

interpretation of this path
–  But simpler to limit the number of directory searches

allowed in the interpretation of a single path name
–  E.g., after 256 searches, just fail
–  The usual solution for Unix-style systems

Lecture 14
Page 43

CS 111
Fall 2015

File Systems and Multiple Disks
•  You can (and often do) attach more than one disk to a

machine
•  Would it make sense to have a single file system span

the several disks?
–  Considering the kinds of disk specific information a file

system keeps
–  Like cylinder information

•  Usually more trouble than it’s worth
–  With the exception of RAID . . .

•  Instead, put separate file system on each disk
•  Or several file systems on one disk

Lecture 14
Page 44

CS 111
Fall 2015

Working With Multiple File
Systems

•  One machine can have multiple independent file
systems
–  Each handling its own disk layout, free space, and other

organizational issues

•  How will the overall system work with those several
file systems?

•  Treat them as totally independent namespaces?
•  Or somehow stitch the separate namespaces together?
•  Key questions:

1.  How does an application specify which file it wants?
2.  How does the OS find that file?

Lecture 14
Page 45

CS 111
Fall 2015

Finding Files With Multiple File
Systems

•  Finding files is easy if there is only one file system
–  Any file we want must be on that one file system
–  Directories enable us to name files within a file system

•  What if there are multiple file systems available?
–  Somehow, we have to say which one our file is on

•  How do we specify which file system to use?
–  One way or another, it must be part of the file name
–  It may be implicit (e.g., same as current directory)
–  Or explicit (e.g., every name specifies it)
–  Regardless, we need some way of specifying which file

system to look into for a given file name

Lecture 14
Page 46

CS 111
Fall 2015

Options for Naming With
Multiple Partitions

•  Could specify the physical device it resides on
– E.g., /devices/pci/pci1000,4/disk/lun1/partition2

•  that would get old real quick

•  Could assign logical names to our partitions
– E.g., “A:”, “C:”, “D:”

•  You only have to think physical when you set them up
•  But you still have to be aware multiple volumes exist

•  Could weave a multi-file-system name space
– E.g., Unix mounts

Lecture 14
Page 47

CS 111
Fall 2015

Unix File System Mounts
•  Goal:

– To make many file systems appear to be one giant
one

– Users need not be aware of file system boundaries

•  Mechanism:
– Mount device on directory
– Creates a warp from the named directory to the

top of the file system on the specified device
– Any file name beneath that directory is interpreted

relative to the root of the mounted file system

Lecture 14
Page 48

CS 111
Fall 2015

Unix Mounted File System
Example

file system 4 file system 2 file system 3

root file system

/bin /opt /export

user1 user2

mount filesystem2 on /export/user1
mount filesystem3 on /export/user2
mount filesystem4 on /opt

Lecture 14
Page 49

CS 111
Fall 2015

How Does This Actually Work?

•  Mark the directory that was mounted on
•  When file system opens that directory, don’t

treat it as an ordinary directory
–  Instead, consult a table of mounts to figure out

where the root of the new file system is
•  Go to that device and open its root directory
•  And proceed from there

Lecture 14
Page 50

CS 111
Fall 2015

What Happened To the Real
Directory?

•  You can mount on top of any directory
– Not just in some special places in the file hierarchy
– Not even just empty directories

•  Did the mount wipe out the contents of the
directory mounted on?

•  No, it just hid them
– Since traversals jump to a new file system, rather

than reading the directory contents
•  It’s all still there when you unmount

Lecture 14
Page 51

CS 111
Fall 2015

File System Performance Issues

•  Key factors in file system performance
– Head motion
– Block size

•  Possible optimizations for file systems
– Read-ahead
– Delayed writes
– Caching (general and special purpose)

Lecture 14
Page 52

CS 111
Fall 2015

Head Motion and File System
Performance

•  File system organization affects head motion
–  If blocks in a single file are spread across the disk
–  If files are spread randomly across the disk
–  If files and “meta-data” are widely separated

•  All files are not used equally often
– 5% of the files account for 90% of disk accesses
– File locality should translate into head cylinder

locality
•  So how can we reduce head motion?

Lecture 14
Page 53

CS 111
Fall 2015

Ways To Reduce Head Motion
•  Keep blocks of a file together

–  Easiest to do on original write
–  Try to allocate each new block close to the last one
–  Especially keep them in the same cylinder

•  Keep metadata close to files
–  Again, easiest to do at creation time

•  Keep files in the same directory close together
–  On the assumption directory implies locality of reference

•  If performing compaction, move popular files close
together

Lecture 14
Page 54

CS 111
Fall 2015

File System Performance and
Block Size

•  Larger block sizes result in efficient transfers
–  DMA is very fast, once it gets started
–  Per request set-up and head-motion is substantial

•  They also result in internal fragmentation
–  Expected waste: ½ block per file

•  As disks get larger, speed outweighs wasted space
–  File systems support ever-larger block sizes

•  Clever schemes can reduce fragmentation
–  E.g., use smaller block size for the last block of a file

Lecture 14
Page 55

CS 111
Fall 2015

Read Early, Write Late

•  If we read blocks before we actually need
them, we don’t have to wait for them
– But how can we know which blocks to read early?

•  If we write blocks long after we told the
application it was done, we don’t have to wait
– But are there bad consequences of delaying those

writes?
•  Some optimizations depend on good answers

to these questions

Lecture 14
Page 56

CS 111
Fall 2015

Read-Ahead
•  Request blocks from the disk before any

process asked for them
•  Reduces process wait time
•  When does it make sense?

– When client specifically requests sequential access
– When client seems to be reading sequentially

•  What are the risks?
– May waste disk access time reading unwanted

blocks
– May waste buffer space on unneeded blocks

Lecture 14
Page 57

CS 111
Fall 2015

Delayed Writes
•  Don’t wait for disk write to complete to tell

application it can proceed
•  Written block is in a buffer in memory
•  Wait until it’s “convenient” to write it to disk

–  Handle reads from in-memory buffer
•  Benefits:

–  Applications don’t wait for disk writes
–  Writes to disk can be optimally ordered
–  If file is deleted soon, may never need to perform disk I/O

•  Potential problems:
–  Lost writes when system crashes
–  Buffers holding delayed writes can’t be re-used

Lecture 14
Page 58

CS 111
Fall 2015

Caching and Performance

•  Big performance wins are possible if caches
work well
– They typically contain the block you’re looking for

•  Should we have one big LRU cache for all
purposes?

•  Should we have some special-purpose caches?
–  If so, is LRU right for them?

Lecture 14
Page 59

CS 111
Fall 2015

Common Types of Disk Caching
•  General block caching

– Popular files that are read frequently
– Files that are written and then promptly re-read
– Provides buffers for read-ahead and deferred write

•  Special purpose caches
– Directory caches speed up searches of same dirs
–  Inode caches speed up re-uses of same file

•  Special purpose caches are more complex
– But they often work much better

Lecture 14
Page 60

CS 111
Fall 2015

Performance Gain For Different
Types of Caches

General Block Cache

Special Purpose Cache

Cache size (bytes)

 Performance

Lecture 14
Page 61

CS 111
Fall 2015

Why Are Special Purpose
Caches More Effective?

•  They match caching granularity to their need
–  E.g., cache inodes or directory entries
–  Rather than full blocks

•  Why does that help?
•  Consider an example:

–  A block might contain 100 directory entries, only four of
which are regularly used

–  Caching the other 96 as part of the block is a waste of
cache space

–  Caching 4 entries allows more popular entries to be cached
–  Tending to lead to higher hit ratios

