-

File Systems: Introduction
CS 111
Operating Systems
Peter Rether

\

/ [Outline} \

* File systems:
— Why do we need them?
— Why are they challenging?

* Basic elements of file system design
* Designing file systems for disks

— Basic 1ssues

— Free space, allocation, and deallocation

CS 111 Lecture 13
Fall 2015 Page 2

/ [Introduction } \

* Most systems need to store data persistently

— So 1t’s still there after reboot, or even power down

* Typically a core piece of functionality for the
system
— Which 1s going to be used all the time

* Even the operating system itself needs to be
stored this way

* So we must store some data persistently

CS 111 Lecture 13
Fall 2015 Page 3

/ Our Persistent Data Options \

e Use raw disk blocks to store the data
— Those make no sense to users

— Not even easy for OS developers to work with

e Use a database to store the data

— Probably more structure (and possibly overhead)
than we need or can afford

* Use a file system

— Some organized way of structuring persistent data

— Which makes sense to users and programmers /

CS 111 Lecture 13
Fall 2015 Page 4

/ File Systems \

* Originally the computer equivalent of a physical
filing cabinet

Put related sets of data into individual containers

Put them all into an overall storage unit
* Organized by some simple principle

— E.g., alphabetically by title

— Or chronologically by date
* Goal 1s to provide:

— Persistence
\ — Ease of access /
< Good performance L

Fall 2015 Page 5

/ The Basic File System Concept\

* Organize data into natural coherent units
— Like a paper, a spreadsheet, a message, a program
* Store each unit as 1ts own self-contained entity
— A file
— Store each file in a way allowing efficient access
* Provide some simple, powerful organizing
principle for the collection of files
— Making 1t easy to find them

— And easy to organize them /

CS 111 Lecture 13
Fall 2015 Page 6

/ File Systems and Hardware \

* File systems are typically stored on hardware
providing persistent memory

— Disks, tapes, flash memory, etc.

* With the expectation that a file put in one
“place” will be there when we look again

* Performance considerations will require us to
match the implementation to the hardware

— Remember seek time and rotational latency?

* But ideally, the same user-visible file system
should work on any reasonable hardware

CS 111 Lecture 13
Fall 2015 Page 7

/F 1le Systems and OS Abstractions\

* Obviously a version of the basic memory
abstraction

* Sowe’d expect read () and write ()
operations for 1t

* We could have a file system abstraction very
close to the hardware reality

— E.g., exposing disk cylinders or flash erase cycles

* But it’s better to hide the messy details

— Treat files as magically persistent memory /

CS 111 Lecture 13
Fall 2015 Page 8

/ Data and Metadata \

* File systems deal with two kinds of information

* Data — the information that the file 1s actually
supposed to store

— E.g., the instructions of the program or the words in the
letter

e Metadata — Information about the information the file
stores

— E.g., how many bytes are there and when was 1t created
— Sometimes called attributes

» Ultimately, both data and metadata must be stored
persistently

— And usually on the same piece of hardware . /
CS 111 ecture 13

Fall 2015 Page 9

We want something like . . . But we’ve got

52 [m | [~

DEVICES
| ipisk

PLACES

SEARCH FOR
5 Today =
0 Yesterday
©) Past Week

Slides

¥

Q
4 Date Modified siz
Mar 22, 2013 11:21 AM 66 K
v 27, 2013 1:03 PM 123Kl

How

Bridging the Gap

something like . . .

9
1
[
5 platters head
10 surfaces’ positioning
‘ assembl
druwxr-xr-x 8 root wheel 272 May 4 2818 X11 8 y
OI‘ at lruxr-xr-x 1 root wheel 3 Moy 4 2018 X11R6 -» X11 9
druxr-xr-x 913 root wheel 31842 Apr 21 12:21 bin Motor
1 t druxr-xr-x 336 root wheel 11424 Mar 17 89:13 lib
eaS druxr-xr-x 183 root wheel 35082 Apr 21 12:23 libexec
drwxr-xr-x 7 root wheel 238 Jan 16 23:08 local
druxr-xr-x 238 root wheel 8892 Mar 17 89:13 sbin
druxr-xr-x 59 root wheel 2886 Apr 21 12:21 share
drwxr-xr-x 4 root wheel 136 May 4 2018 standalone
CS 111 Lecture 13
Fall 2015 Page 10

/ A Further Wrinkle \

* We want our file system to be agnostic to the storage
medium

* Same program should access the file system the same
way, regardless of medium
— Otherwise it’s hard to write portable programs

* Should work the same for disks of different types
 Orif we use a RAID instead of one disk
 Or 1f we use flash instead of disks

* Orif even we don’t use persistent memory at all
— E.g., RAM file systems /

CS 111 Lecture 13
Fall 2015 Page 11

/ Desirable File System Properties\

* What are we looking for from our file system?

— Persistence
— Easy use model

* For accessing one file

* For organizing collections of files
— Flexibility
* No limit on number of files

* No limit on file size, type, contents

— Portability across hardware device types
— Performance
\ — Reliability /

T Suitable security o
Fall 2015 Page 12

/ The Performance Issue \

* How fast does our file system need to be?

* Ideally, as fast as everything else
— Like CPU, memory, and the bus

— So i1t doesn’t provide a bottleneck

* But these other devices operate today at
nanosecond speeds

* Disk drives operate at millisecond speeds

* Suggesting we’ll need to do some serious work
\ to hide the mismatch /

CS 111 Lecture 13
Fall 2015 Page 13

/ The Reliability Issue \

* Persistence implies reliability

 We want our files to be there when we check,
no matter what

* Not just on a good day
* So our file systems must be free of errors

— Hardware or software

* Remember our discussion of concurrency, race
conditions, etc.?

— Might we have some challenges here?)

CS 111 Lecture 13
Fall 2015 Page 14

/ “Suitable” Security \

e What does that mean?
e Whoever owns the data should be able to
control who accesses it

— Using some well-defined access control model and
mechanism

* With strong guarantees that the system will
enforce his desired controls

— Implying we’ll apply complete mediation

— To the extent performance allows /

CS 111 Lecture 13
Fall 2015 Page 15

/ [Basics of File System Design} \

* Where do file systems fit in the OS?
e File control data structures

CS 111 Lecture 13
Fall 2015 Page 16

example
file

internal

interface | L O 00 B0 i

for file Device independent block [/O

system,s...d g I R R e

Fall 2015

systems

Non-file

system
services

that use

the same /
API Lecture 13

Page 17

File Systems and Layered ™\

Abstractions
At the top, apps think they are accessing files

At the bottom, various block devices are
reading and writing blocks

There are multiple layers of abstraction in
between

Why?

Why not translate directly from application file

operations to devices’ block operations?

CS 111
Fall 2015

/

Lecture 13
Page 18

/ The File System API

)

Device independent block 1/O

device driver finterfaces

/

CS 111 Lecture 13
Fall 2015 Page 19

/ The File System API \

* Highly desirable to provide a single API to
programmers and users for all files

* Regardless of how the file system underneath 1s
actually implemented

* Arequirement 1f one wants program portability

— Very bad i1f a program won’t work because there’s a
different file system underneath

* Three categories of system calls here
1. File container operations
2. Directory operations
3. File I/O operations /

CS 111 Lecture 13
Fall 2015 Page 20

/ File Container Operations \

* Standard file management system calls

— Manipulate files as objects

— These operations ignore the contents of the file
* Implemented with standard file system

methods

— Get/set attributes, ownership, protection ...

— Create/destroy files and directories

— Create/destroy links

* Real work happens 1n file system
implementation /

CS 111 Lecture 13
Fall 2015 Page 21

/ Directory Operations

* Directories provide the organization of a file
system
— Typically hierarchical

— Sometimes with some extra wrinkles

* At the core, directories translate a name to a
lower-level file pointer

* Operations tend to be related to that
— Find a file by name

— Create new name/file mapping

— [ist a set of known names

CS 111

\

Lecture 13

Fall 2015

Page 22

/ File I/O Operations

* Open — map name 1nto an open instance

Read data from file and write data to file
— Implemented using logical block fetches
— Copy data between user space and file buffer

— Request file system to write back block when done

Seek

— Change logical offset associated with open instance

Map file into address space

— File block buffers are just pages of physical memory

— Map into address space, page it to and from file system
CS 111

\

/

Lecture 13

Fall 2015

Page 23

/ The Virtual File System Layer \
“Appl © < App2 < App3 - App4

file
1/0

device
I/0

Device independent block 1/O

device driver [interfaces (disk-ddi)

CS 111
Fall 2015

The Virtual File System
(VES) Layer

* Federation layer to generalize file systems

— Permits rest of OS to treat all file systems as the same
— Support dynamic addition of new file systems

* Plug-in interface or file system implementations

— DOS FAT, Unix, EXT3, ISO 9660, network, etc.

— Each file system implemented by a plug-in module
— All implement same basic methods

* Create, delete, open, close, link, unlink,
* Get/put block, get/set attributes, read directory, etc.

* Implementation 1s hidden from higher level clients

\

T All clients see are the standard methods and properties

\

/

Lecture 13

Fall 2015

Page 25

/ The File System Layer \
~App4

%

~_App2 -

%

file

l l device
I/0

Device independent block 1/O

device driver [interfaces (disk-ddi)

Lecture 13

CS 111
Page 26

Fall 2015

/ The File Systems Layer

* Desirable to support multiple different file systems

* All implemented on top of block I/0O
— Should be independent of underlying devices

* All file systems perform same basic functions
— Map names to files
— Map <file, offset> into <device, block>
— Manage free space and allocate it to files
— Create and destroy files
— Get and set file attributes
— Manipulate the file name space

CS 111

\

/

Lecture 13

Fall 2015

Page 27

/ Why Multiple File Systems? \

* Why not instead choose one “good” one?

* There may be multiple storage devices
— E.g., hard disk and flash drive
— They might benefit from very different file systems

* Dafferent file systems provide different services,
despite the same interface

— Differing reliability guarantees
— Differing performance
— Read-only vs. read/write

* Dafferent file systems used for different purposes)
— E.g., a temporary file system

CS 111 Lecture 13
Fall 2015 Page 28

ﬁ)evice Independent Block I/0O \

Laver
G I <EE

T
J1l

Device independent block 1/O

device driver [interfaces (disk-ddi)

file
1/0

device
I/0

CS 111
Fall 2015

/ File Systems and Block 1/0 \

Devices
* File systems typically sit on a general block 1/0 layer

* A generalizing abstraction — make all disks look same

* Implements standard operations on each block device
— Asynchronous read (physical block #, buffer, bytecount)
— Asynchronous write (physical block #, buffer, bytecount)

Map logical block numbers to device addresses

— E.g., logical block number to <cylinder, head, sector>

* Encapsulate all the particulars of device support

— I/0O scheduling, initiation, completion, error handlings

— Size and alignment limitations
CS 111 Lecture 13

Fall 2015 Page 30

/ Why Device Independent \
Block I/0?

A better abstraction than generic disks
Allows unified LRU buffer cache for disk data

— Hold frequently used data until 1t 1s needed again

— Hold pre-fetched read-ahead data until 1t 1s requested

* Provides buffers for data re-blocking
— Adapting file system block size to device block size
— Adapting file system block size to user request sizes

Handles automatic buffer management

— Allocation, deallocation
— Automatic write-back of changed buffers /

CS 111 Lecture 13
Fall 2015 Page 31

/ Why Do We Need That Cache?\

* File access exhibits a high degree of reference
locality at multiple levels:

— Users often read and write a single block in small
operations, reusing that block

— Users read and write the same files over and over
— Users often open files from the same directory
— OS regularly consults the same meta-data blocks

* Having common cache eliminates many disk
accesses, which are slow)

CS 111 Lecture 13
Fall 2015 Page 32

ﬁ)evices, Sockets and File System\

“Appl P

~ App4

file
1/0

device
I/0

T
JlL

Device independent block 1/O

device driver [interfaces (disk-ddi)

CS 111

Fall 2015

/ Device and Socket /O \

Devices are, well, devices
Sockets are an [IPC mechanism

What are they doing 1n this description of file
systems?

Unix systems typically abstract them using the
file interface

— Which allows file-type operations to be performed
on them

CS 111 Lecture 13
Fall 2015 Page 34

e A file 1s a named collection of information

* Primary roles of file system:
— To store and retrieve data
— To manage the media/space where data 1s stored

* Typical operations:
— Where 1s the first block of this file?
— Where 1s the next block of this file?
— Where 1s block 35 of this file?
— Allocate a new block to the end of this file
— Free all blocks associated with this file /

CS 111 Lecture 13
Fall 2015 Page 35

/ Finding Data On Disks \

* Essentially a question of how you managed the
space on your disk

* Space management on disk 1s complex
— There are millions of blocks and thousands of files
— Files are continuously created and destroyed
— Files can be extended after they have been written
— Data placement on disk has performance effects

— Poor management leads to poor performance

* Must track the space assigned to each file

— On-disk, master data structure for each file Leoture 13

CS 111
Fall 2015 Page 36

/ On-Disk File Control Structures\

On-disk description of important attributes of a file

— Particularly where its data 1s located

Virtually all file systems have such data structures
— Different implementations, performance & abilities

— Implementation can have profound effects on what the file
system can do (well or at all)

* A core design element of a file system

Paired with some kind of in-memory representation
of the same information

/

CS 111 Lecture 13
Fall 2015 Page 37

/ The Basic File Control

Structure Problem

* A file typically consists of multiple data blocks
The control structure must be able to find them

Preferably able to find any of them quickly

— |.e., shouldn’t need to read the entire file to find a

block near the end
Blocks can be changed
New data can be added to the file
— Or old data deleted

Files can be sparsely populated

CS 111

\

Lecture 13

Fall 2015

Page 38

/ The In-Memory Representation\

* There 1s an on-disk structure pointing to disk
blocks (and holding other information)

* When file 1s opened, an in-memory structure 1s
created

* Not an exact copy of the disk version
— The disk version points to disk blocks

— The mm-memory version points to RAM pages
* Or indicates that the block 1sn’t in memory

— Also keeps track of which blocks are dirty and /
s Which aren’t Lecture 13

Fall 2015 Page 39

/" In-Memory Structures and ™\

Processes
* What if multiple processes have a given file
open’?
* Should they share one control structure or have
one each?
* In-memory structures typically contain a
cursor pointer

— Indicating how far into the file data has been read/
written

\' Sounds like that should be per-process . . . /

CS 111 Lecture 13
Fall 2015 Page 40

/ Per-Process or Not? \

* What if cooperating processes are working
with the same file?

— They might want to share a cursor

* And how can we know when all processes are
finished with an open file?

— So we can reclaim space used for 1ts in-memory
descriptor

* Implies a two-level solution

1. A structure shared by all

2. A structure shared by cooperating processes

/

CS 111 Lecture
Fall 2015 Page 41

13

The Unix Approach

Two processes can
share one descriptor

Two descriptors can
share one inode

stdin stdin stdin (UN]X user ﬁle
stdout stdout stdout d .
stderr stderr stderr escriptor)

In process dGSCI'lptOI'
offset offset offset offset offset Open ﬁle
options options options options options instance
I-node ptr I-node ptr I-node ptr I-node ptr I-node ptr .

. ! ! ! . descriptors
I-node I-node I-node I-node In-memory file descriptors
(UNIX struct inode)
On-disk file
descriptors
(UNIX struct
dinode)
CS 111 Lecture 13
Fall 2015 Page 42

Open-file references

/ [File System Structure } \

* How do I organize a disk into a file system?

— Linked extents
* The DOS FAT file system

— File index blocks
* Unix System V file system

CS 111 Lecture 13
Fall 2015 Page 43

/ Basics of File System Structure\

* Most file systems live on disks

 Disk volumes are divided into fixed-sized blocks
— Many sizes are used: 512, 1024, 2048, 4096, 8192 ...

Most blocks will be used to store user data

* Some will be used to store organizing “meta-data”
— Description of the file system (e.g., layout and state)
— File control blocks to describe individual files
— Lists of free blocks (not yet allocated to any file)

All operating systems have such data structures
— Different OSes and file systems have very different goals /

os 17 These result in very different implementations Lecture 13
Fall 2015 Page 44

/ The Boot Block \

* The O™ block of a disk is usually reserved for
the boot block

— Code allowing the machine to boot an OS
* Not usually under the control of a file system
— It typically 1gnores the boot block entirely

e Not all disks are bootable

— But the 0™ block is usually reserved, “just in case”

* So file systems start work at block 1

CS 111 Lecture 13
Fall 2015 Page 45

/ Managing Allocated Space \

* A core activity for a file system, with various choices

What if we give each file same amount of space?

— Internal fragmentation ... just like memory

What if we allocate just as much as file needs?

— External fragmentation, compaction ... just like memory

* Perhaps we should allocate space 1n “pages”

— How many chunks can a file contain?

The file control data structure determines this

— It only has room for so many pointers, then file 1s “full”

\° So how do we want to organize the space in a file? /

CS 111 Lecture 13
Fall 2015 Page 46

/" Linked Extents N

__

* A simple answer

File control block contains exactly one pointer
— To the first chunk of the file
— Each chunk contains a pointer to the next chunk

— Allows us to add arbitrarily many chunks to each file

* Pointers can be in the chunks themselves

— This takes away a little of every chunk
— To find chunk N, you have to read the first N-1 chunks

* Pointers can be 1n auxiliary “chunk linkage” table

— Faster searches, especially if table kept in memory /

CS 111 Lecture 13
Fall 2015 Page 47

/ The DOS File System

block 05,

block 15,

block 25,

CS 111

boot block

Cluster size and FAT length
are specified in the BPB

Data clusters begin
immediately after the end
of the FAT

Root directory begins in
the first data cluster

Fall 2015

~

/

Lecture 13
Page 48

/ DOS File System Overview \

DOS file systems divide space into “clusters”

— Cluster size (multiple of 512) fixed for each file system
— Clusters are numbered 1 though N

File control structure points to first cluster of a file

File Allocation Table (FAT), one entry per cluster
— Contains the number of the next cluster in file
— A 0 entry means that the cluster is not allocated
— A -1 entry means “end of file”

* File system 1s sometimes called “FAT,” after the name
of this key data structure /

CS 111 Lecture 13
Fall 2015 Page 49

/ DOS FAT Clusters \

directory entry File Allocation Table

Each FAT entry
corresponds to a
cluster, and
contains the
number of the
next cluster.

-1 = End of File

cluster #3

0 = free cluster

cluster #4

cluster #5

/

CS 111 Lecture 13
Fall 2015 Page 50

/DOS File System Characteristics\

* To find a particular block of a file
— Get number of first cluster from directory entry

— Follow chain of pointers through File Allocation Table

* Entire File Allocation Table 1s kept in memory
— No disk I/O 1s required to find a cluster
— For very large files the search can still be long

* No support for “sparse” files

— Of a file has a block #n, 1t must have all blocks < n

* Width of FAT determines max file system size

— How many bits describe a cluster address?
— Originally 8 bits, eventually expanded to 32 /

CS 111 Lecture 13
Fall 2015 Page 51

/" FileIndex Blocks ~ \

__

* A different way to keep track of where a file’s
data blocks are on the disk

* A file control block points to all blocks 1n file

— Very fast access to any desired block

— But how many pointers can the file control block
hold?

* File control block could point at extent
descriptors

— But this still gives us a fixed number of extents /

CS 111 Lecture 13
Fall 2015 Page 52

/ Hierarchically Structured File \
Index Blocks

* To solve the problem of file size being limited
by entries 1n file index block

* The basic file index block points to blocks

* Some of those contain pointers which 1n turn
point to blocks

* Can point to many extents, but still a limit to
how many

— But that limit might be a very large number
— Has potential to adapt to wide range of file sizes /

CS 111 ecture 13
Fall 2015 Page 53

/ Unix System V File System \

Block 0

Block 1

Block 2

CS 111

Boot block

Block size and number of I-nodes are
specified in super block

[-node #1 (traditionally) describes the
root directory

Data blocks begin immediately after the
end of the I-nodes.

/

Lecture 13

Fall 2015

Page 54

/ Unix Inodes and Block Pointers\

Block pointers
(in I-node)

Triple-indirect Double-indirect Indirect blocks Data blocks

CS 111 Lecture 13
Fall 2015 Page 55

/ Why Is This a Good Idea? \

* The UNIX pointer structure seems ad hoc and
complicated
* Why not something simpler?
— E.g., all block pointers are triple indirect
* File sizes are not random

— The majority of files are only a few thousand bytes long

* Unix approach allows us to access up to 40Kbytes
(assuming 4K blocks) without extra I/Os

— Remember, the double and triple indirect blocks
must themselves be fetched off disk /

CS 111 Lecture 13
Fall 2015 Page 56

/How Big a File Can Unix Handle?\

* The on-disk inode contains 13 block pointers
— First 10 point to first 10 blocks of file

— 11th points to an indirect block (which contains pointers to 1024
blocks)

— 12th points to a double indirect block (pointing to 1024 indirect blocks)
— 13th points to a triple indirect block (pointing to 1024 double indirect
blocks)
* Assuming 4k bytes per block and 4 bytes per pointer
— 10 direct blocks = 10 * 4K bytes = 40K bytes
— Indirect block = 1K * 4K = 4M bytes
— Double indirect = 1K * 4M = 4G bytes
— Triple indirect = 1K * 4G = 4T bytes
— At the time system was designed, that seemed impossibly large /

Cs 111 But. .. Lecture 13

Fall 2015 Page 57

/ Unix Inode Performance Issues\

The 1node 1s in memory whenever file 1s open
So the first ten blocks can be found with no extra I/O
After that, we must read indirect blocks

— The real pointers are in the indirect blocks

— Sequential file processing will keep referencing it
— Block I/O will keep it 1n the buffer cache

1-3 extra I/O operations per thousand pages

— Any block can be found with 3 or fewer reads

Index blocks can support “sparse” files

— Not unlike page tables for sparse address spaces) / ,
CS 111 ecture

Fall 2015 Page 58

