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Outline 

•  The role of devices 
•  Device drivers 
•  Classes of device driver 
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So You’ve Got Your Computer . . . 
It’s got memory, a 

bus, a CPU or 
two 

But there’s 
usually a lot more 

to it than that 
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Welcome to the Wonderful  
World of Peripheral Devices! 

•  Our computers typically have lots of devices 
attached to them 

•  Each device needs to have some code 
associated with it 
– To perform whatever operations it does 
– To integrate it with the rest of the system 

•  In modern commodity OSes, the code that 
handles these devices dwarfs the rest 
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Peripheral Device Code and the OS 
•  Why are peripheral devices the OS’ problem, 

anyway? 
•  Why can’t they be handled in user-level code? 
•  Maybe they sometimes can, but . . . 
•  Some of them are critical for system correctness 

–  E.g., the disk drive holding swap space 

•  Some of them must be shared among multiple 
processes 
–  Which is often rather complex 

•  Some of them are security-sensitive 
•  Perhaps more appropriate to put the code in the OS 
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Where the Device Driver Fits in 
•  At one end you have an application 

– Like a web browser 

•  At the other end you have a very specific piece 
of hardware 
– Like an Intel Gigabit CT PCI-E Network Adapter 

•  In between is the OS 
•  When the application sends a packet, the OS 

needs to invoke the proper driver 
•  Which feeds detailed instructions to the 

hardware 
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Connecting Peripherals  
•  Most peripheral devices don’t connect directly 

to the processor 
– Or to the main bus 

•  They connect to a specialized peripheral bus 
•  Which, in turn, connects to the main bus 
•  Various types are common 

– PCI 
– USB 
– Several others 
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Device Drivers 
•  Generally, the code for these devices is pretty 

specific to them 
•  It’s basically code that drives the device  

– Makes the device perform the operations it’s 
designed for 

•  So typically each system device is represented 
by its own piece of code 

•  The device driver 
•  A Linux 2.6 kernel had over 3200 of them . . . 
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Typical Properties of  
Device Drivers 

•  Highly specific to the particular device 
•  Inherently modular 
•  Usually interacts with the rest of the system in 

limited, well defined ways 
•  Their correctness is critical 

–  At least device behavior correctness  
–  Sometimes overall correctness 

•  Generally written by programmers who understand 
the device well 
–  But are not necessarily experts on systems issues 
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Abstractions and Device Drivers 
•  OS defines idealized device classes 

– Disk, display, printer, tape, network, serial ports  

•  Classes define expected interfaces/behavior 
– All drivers in class support standard methods 

•  Device drivers implement standard behavior 
– Make diverse devices fit into a common mold 
– Protect applications from device eccentricities 

•  Abstractions regularize and simplify the chaos 
of the world of devices  
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What Can Driver Abstractions  
Help With? 

•  Encapsulate knowledge of how to use the device 
–  Map standard operations into operations on device 
–  Map device states into standard object behavior 
–  Hide irrelevant behavior from users 
–  Correctly coordinate device and application behavior 

•  Encapsulate knowledge of optimization 
–  Efficiently perform standard operations on a device 

•  Encapsulate fault handling 
–  Understanding how to handle recoverable faults 
–  Prevent device faults from becoming OS faults 
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How Do Device Drivers Fit  
Into a Modern OS? 

•  There may be a lot of them 
•  They are each pretty independent 
•  You may need to add new ones later 
•  So a pluggable model is typical 
•  OS provides capabilities to plug in particular 

drivers in well defined ways 
•  Then plug in the ones a given machine needs 
•  Making it easy to change or augment later 
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Layering Device Drivers 
•  The interactions with the bus, down at the 

bottom, are pretty standard 
– How you address devices on the bus, coordination 

of signaling and data transfers, etc. 
– Not too dependent on the device itself 

•  The interactions with the applications, up at 
the top, are also pretty standard 
– Typically using some file-oriented approach 

•  In between are some very device specific 
things 
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A Pictorial View 

App 1 App 2 App 3 

User space 

Kernel  
space 

Hardware 

USB bus 
controller 

PCI bus 
controller 

USB  
bus 

PCI 
bus 

Device 
Drivers 

System 
Call 

Device 
Call 
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Device Drivers Vs. Core OS Code 
•  Device driver code is in the OS, but . . . 
•  What belongs in core OS vs. a device driver? 
•  Common functionality belongs in the OS 

– Caching 
– File systems code not tied to a specific device 
– Network protocols above physical/link layers 

•  Specialized functionality belongs in the drivers 
– Things that differ in different pieces of hardware 
– Things that only pertain to the particular piece of 

hardware 
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Linux Device Driver Abstractions 
•  An example of how an OS handles device 

drivers 
•  Basically inherited from earlier Unix systems 
•  A class-based system 
•  Several super-classes 

– Block devices 
– Character devices 
– Some regard network devices as a third major class 

•  Other divisions within each super-class 
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Why Classes of Drivers? 
•  Classes provide a good organization for 

abstraction 
•  They provide a common framework to reduce 

amount of code required for each new device 
•  The framework ensure all devices in class 

provide certain minimal functionality 
•  But a lot of driver functionality is very specific 

to the device   
–  Implying that class abstractions don’t cover 

everything 
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Character Device Superclass 
•  Devices that read/write one byte at a time 

– “Character” means byte, not ASCII 

•  May be either stream or record structured 
•  May be sequential or random access 
•  Support direct, synchronous reads and writes 
•  Common examples: 

– Keyboards 
– Monitors 
– Most other devices 
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Block Device Superclass 
•  Devices that deal with a block of data at a time 
•  Usually a fixed size block 
•  Most common example is a disk drive 
•  Reads or writes a single sized block (e.g., 4K 

bytes) of data at a time 
•  Random access devices, accessible one block 

at a time 
•  Support queued, asynchronous reads and 

writes 
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Why a Separate Superclass  
for Block Devices? 

•  Block devices span all forms of block-addressable 
random access storage  
–  Hard disks, CDs, flash, and even some tapes 

•  Such devices require some very elaborate services  
–  Buffer allocation, LRU management of a buffer cache, data 

copying services for those buffers, scheduled I/O, 
asynchronous completion, etc. 

•  Key system functionality (file systems and swapping/
paging) implemented on top of block I/O 

•  Block I/O services are designed to provide very high 
performance for critical functions 
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Network Device Superclass 
•  Devices that send/receive data in packets 
•  Originally treated as character devices 
•  But sufficiently different from other character 

devices that some regard as distinct 
•  Only used in the context of network protocols 

– Unlike other devices 
– Which leads to special characteristics 

•  Typical examples are Ethernet cards, 802.11 
cards, Bluetooth devices 



Lecture 12 
Page 22 

CS 111 
Fall 2015  

Device Instances 
•  Can be multiple hardware instances of a device 

–  E.g., multiple copies of same kind of disk drive 
•  One hardware device might be multiplexed into 

pieces 
–  E.g., four partitions on one hard drive 

•  Or there might be different modes of accessing the 
same hardware 
–  Media writeable at different densities 

•  The same device driver usable for such cases, but 
something must distinguish them 

•  Linux uses minor device numbers for this purpose 
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Accessing Linux Device Drivers 
•  Done through the file system 
•  Special files 

–  Files that are associated with a device instance 
–  UNIX/LINUX uses <block/character, major, minor> 

•  Major number corresponds to a particular device driver 
•  Minor number identifies an instance under that driver 

•  Opening special file opens the associated device 
–  Open/close/read/write/etc. calls map to calls to appropriate 

entry-points of the selected driver 

brw-r-----  1 root    operator   14,   0 Apr 11 18:03 disk0 
brw-r-----  1 root    operator   14,   1 Apr 11 18:03 disk0s1 
brw-r-----  1 root    operator   14,   2 Apr 11 18:03 disk0s2 
br--r-----  1 reiher  reiher     14,   3 Apr 15 16:19 disk2 
br--r-----  1 reiher  reiher     14,   4 Apr 15 16:19 disk2s1 
br--r-----  1 reiher  reiher     14,   5 Apr 15 16:19 disk2s2 

A 
block 
speci
al 
devic
e 

Majo
r 
numb
er is 
14 

Mino
r 
numb
er is 
0 
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Linux Device Driver Interface  
(DDI) 

•  Standard (top-end) device driver entry-points 
– Basis for device independent applications 
– Enables system to exploit new devices 
– Critical interface contract for 3rd party developers 

•  Some calls correspond directly to system calls 
– E.g., open, close, read, write 

•  Some are associated with OS frameworks 
– Disk drivers are meant to be called by block I/O 
– Network drivers meant to be called by protocols 
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DDIs and Sub-DDIs 

Basic I/O 
read, write, 
seek, ioctl, 

select 

Life Cycle 
initialize, cleanup 

open, release 

Common DDI 
Block 
request 

revalidate 
fsync 

Network 
receive,  
transmit 
set MAC 

stats 

Serial 
receive character 

start write 
line parms 
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General Linux DDI Entry Points 
•  Standard entry points for most drivers 
•  House-keeping operations  

– xx_open ... check/initialize hardware and software 
– xx_release ... release one reference, close on last 

•  Generic I/O operations 
– xx_read, xx_write ... synchronous I/O operations 
– xx_seek ... change target address on device 
– xx_ioctl ... generic & device specific control 

functions 
– xx_select ... is data currently available? 
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What About Basic DDI 
Functionality For Networks? 

•  Network drivers don’t support some pretty basic stuff 
–  Like read and write 

•  Any network device works in the context of a link protocol 
–  E.g., 802.11 

•  You can’t just read, you must follow the protocol to get bytes 
•  So what? 
•  Well, do you want to implement the link protocol in every 

device driver for 802.11? 
–  No, do that at a higher level so you can reuse it 

•  That implies doing a read on a network card makes no sense 
•  You need to work in the context of the protocol 
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The Role of Drivers in Networking 
SMTP – mail delivery application 

TCP session management 

IP transport & routing 

802.12 Wireless LAN 

Linksys WaveLAN m-port driver 

sockets 

Data Link Provider 
Interface (a sub-DDI) 

socket API (system 
calls) 

streams 

streams 

streams 

User-mode 
application 

(Device driver) 

Hardware 
independent system 

software 

Hardware specific 
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Controlling Devices - ioctl 
•  Not all device interactions are reading/writing 
•  Other operations control device behavior 

–  Operations supported are device class specific 
•  Unix/Linux uses ioctl calls for many of those 
•  There are many general ioctl operations 

–  Get/release exclusive access to device 
–  Blocking and non-blocking opens, reads and writes 

•  There are also class-specific operations 
–  Tape: write file mark, space record, rewind 
–  Serial: set line speed, parity, character length 
–  Disk: get device geometry 
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Device Drivers and the Kernel 
•  Drivers are usually systems code 
•  But they’re not kernel code 
•  Most drivers are optional 

– Only present if the device they support is there 
•  They’re modular and isolated from the kernel 
•  But they do make use of kernel services 
•  Implying they need an interface to the kernel 
•  Different from application/kernel interface, 

because driver needs are different 
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What Kernel Services Do  
Device Drivers Need? 

sub-class DDI 

device driver 

common DDI 

memory 
allocation 

synchronization error reporting 

run-time 
loader 

I/O resource 
management 

DMA 

buffering 

DKI – driver/kernel interface 

configuration 
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The Device Driver Writer’s 
Problem 

•  Device drivers are often written by third parties (not 
the OS developers) 

•  There are a lot of drivers and driver authors 
•  Device drivers require OS services to work 

–  All of these services are highly OS specific  
–  Drivers must be able to call OS routines to obtain these 

services 

•  The horde of driver authors must know how to get the 
OS services 

•  Drivers can’t be rewritten for each OS release 
–  So the services and their interfaces must be stable 
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The Driver-Kernel Interface 

•  Bottom-end services OS provides to drivers 
•  Must be very well-defined and stable 

–  To enable third party driver writers to build drivers 
–  So old drivers continue to work on new OS versions 

•  Each OS has its own DKI, but they are all similar 
–  Memory allocation, data transfer and buffering 
–  I/O resource (e.g., ports and interrupts) management, DMA 
–  Synchronization, error reporting 
–  Dynamic module support, configuration, plumbing 



Lecture 12 
Page 34 

CS 111 
Fall 2015  

DKI Memory Management 
Services 

•  Heap allocation 
–  Allocate and free variable partitions from a kernel heap 

•  Page allocation 
–  Allocate and free physical pages 

•  Cached file system buffers 
–  Allocate and free block-sized buffers in an LRU cache 

•  Specialized buffers 
–  For serial communication, network packets, etc. 

•  Efficient data transfer between kernel/user space 
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DKI I/O Resource Management 
Services 

•  I/O ports and device memory 
–  Reserve, allocate, and free ranges of I/O ports or memory 
–  Map device memory in/out of process address space 

•  Interrupts 
–  Allocate and free interrupt request lines 
–  Bind an interrupt to a second level handler 
–  Enable and disable specific interrupts 

•  DMA channels 
–  Allocate/free DMA channels, set-up DMA operations 
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DKI Synchronization Services 
•  Mutual exclusion 

– A wide range of different types of locks  

•  Asynchronous completion/notifications 
– Sleep/wakeup, wait/signal, P/V 

•  Timed delays 
– Sleep (block and wake up at a time) 
– Spin (for a brief, calibrated, time) 

•  Scheduled future processing 
– Delayed Procedure Calls, tasks, software interrupts 
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DKI Error Management Services 

•  Logging error messages 
–  Print diagnostic information on the console 
–  Record information in persistent system log 
–  Often supports severity codes, configurable levels 

•  Event/trace facilities 
–  Controllable recording of system calls, interrupts, ... 
–  Very useful as audit-trail when diagnosing failures 

•  High Availability fault management frameworks 
–  Rule-based fault diagnosis systems 
–  Automated intelligent recovery systems 
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DKI Configuration Services 
•  Devices need to be properly configured at boot time 

–  Not all configuration can be done at install time 
–  Primary display adaptor, default resolution 
–  IP address assignment (manual, DHCP) 
–  Mouse button mapping 
–  Enabling and disabling of devices 

•  Such information can be kept in a registry 
–  Database of nodes, property names and values 
–  Available to both applications and kernel software 

•  E.g., properties associated with service/device instances 

–  May be part of a distributed management system 
•  E.g., LDAP, NIS, Active Directory 
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The Life Cycle of a Device Driver 
•  Device drivers are part of the OS, but . . . 
•  They’re also pretty different 

– Every machine has its own set of devices 
–  It needs device drivers for those specific devices 
– But not for any other devices 
– So a kernel usually doesn’t come configured with 

all possible device drivers 
•  How drivers are installed and used in an OS is 

very different than, say, memory management 
•  More modular and dynamic 
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Installing and Using Device 
Drivers 

•  Loading 
– Load the module, determine device configuration 
– Allocate resources, configure and initialize driver  
– Register interfaces 

•  Use 
– Open device session (initialize device) 
– Use device (seek/read/write/ioctl/request/...) 
– Process completion interrupts, error handling 
– Close session (clean up device) 

•  Unloading 
– Free all resources, and unload the driver 
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Dynamic OS Module Loading  
and Unloading 

•  Most OSes can dynamically load and unload their 
own modules 
–  While the OS continues running 

•  Used to support many plug-in features 
–  E.g., file systems, network protocols, device drivers 

•  The OS includes a run-time linker/loader 
–  Linker needed to resolve module-to-OS references 
–  There is usually a module initialize entry point 

•  That initializes the module and registers its other entry-points 

–  There is usually a module finish entry point 
•  To free all resources and un-register its entry points 
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Device Driver Configuration 
•  Binding a device driver to the hardware it controls 

–  May be several devices of that type on the computer 
–  Which driver instance operates on which hardware? 

•  Identifying I/O resources associated with a device 
–  What I/O ports, IRQ and DMA channels does it use? 
–  Where (in physical space) does its memory reside? 

•  Assigning I/O resources to the hardware 
–  Some are hard-wired for specific I/O resources 
–  Most can be programmed for what resources to use 
–  Many busses define resource allocation protocols 

•  Large proportion of driver code is devoted to 
configuration and initialization 
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The Static Configuration Option 

•  We could, instead, build an OS for the specific 
hardware configuration of its machine 
–  Identify which devices use which I/O resources 
–  OS can only support pre-configured devices 
–  Rebuild to change devices or resource assignments 

•  Drivers may find resources in system config table 
–  Eliminates the need to recompile drivers every time 

•  This was common many years ago 
–  Too cumbersome for a modern commercial OS 
–  Still done for some proprietary/micro/real-time OSs 
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Dynamic Device Discovery 
•  How does a driver find its hardware? 

–  Which is typically sitting somewhere on an I/O bus 
•  Could use probing (peeking and poking) 

–  Driver reserves ports/IRQs and tries talking to them 
–  See if they respond like the expected device 
–  Error-prone & dangerous (may wedge device/bus) 

•  Self-identifying busses 
–  Many busses define device identification protocols 
–  OS selects device by geographic (e.g. slot) address 
–  Bus returns description (e.g. type, version) of device 

•  May include a description of needed I/O resources 
•  May include a list of assigned I/O resources 
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Configuring I/O Resources 
•  Driver must obtain I/O resources from the OS 

–  OS manages ports, memory, IRQs, DMA channels 
–  Some may be assigned exclusively (e.g., I/O ports) 
–  Some may be shared (e.g., IRQs, DMA channels) 

•  Driver may have to program bus and device 
–  To associate I/O resources with the device 

•  Driver must initialize its own code 
–  Which I/O ports correspond to which instances 
–  Bind appropriate interrupt handlers to assigned IRQs 
–  Allocate & initialize device/request status structures 
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Using Devices and Their Drivers 
•  Practical use issues 
•  Achieving good performance in driver use 
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Device Sessions 
•  Some devices are serially reusable 

–  Processes use them one at a time, in turn 
–  Each using process opens and closes a session with the 

device 
–  Opener may have to wait until previous process closes 

•  Each session requires initialization 
–  Initialize & test hardware, make sure it is working 
–  Initialize session data structures for this instance 
–  Increment open reference count on the instance 

•  Releasing references to a device 
–  Shut down instance when last reference closes 
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Shared Devices and Serialization 

•  Device drivers often contain sharable resources 
–  Device registers, request structures, queues, etc. 
–  Code that updates them will contain critical sections 

•  Use of these resources must be serialized 
–  Serialization may be coarse (one open at a time) 
–  Serialization may be very fine grained 
–  This can be implemented with locks or semaphores 

•  Serialization is usually implemented within driver 
–  Callers needn't understand how locking works 
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Interrupt Disabling For Device 
Drivers 

•  Locking isn’t protection against interrupts 
–  Remember the sleep/wakeup race? 
–  What if interrupt processing requires an unavailable lock? 

•  Drivers often share data with interrupt handlers 
–  Device registers, request structures, queues, etc. 

•  Some critical sections require interrupt disabling 
–  Which is dangerous and can cause serious problems 
–  Where possible, do updates with atomic instructions 
–  Disable only the interrupts that could conflict 
–  Make the disabled period as brief as possible 
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Performance Issues for  
Device Drivers 

•  Device utilization 
•  Double buffering and queueing I/O requests 
•  Handling unsolicited input 
•  I/O and interrupts 
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Device Utilization 
•  Devices (and their drivers) are mainly 

responsive 
•  They sit idle until someone asks for something 
•  Then they become active 
•  Also periods of overhead between when 

process wants device and it becomes active 
•  The result is that most devices are likely to be 

idle most of the time 
– And so are their device drivers 
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So What? 
•  Why should I care if devices are being used or not? 
•  Key system devices limit system performance 

–  File system I/O, swapping, network communication 
•  If device sits idle, its throughput drops 

–  This may result in lower system throughput 
–  Longer service queues, slower response times 

•  Delays can disrupt real-time data flows 
–  Resulting in unacceptable performance 
–  Possible loss of irreplaceable data 

•  It is very important to keep key devices busy 
–  Start request n+1 immediately when n finishes 
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Keeping Key Devices Busy 
•  Allow multiple pending requests at a time 

– Queue them, just like processes in the ready queue 
– Requesters block to await eventual completions 

•  Use DMA to perform the actual data transfers 
– Data transferred, with no delay, at device speed 
– Minimal overhead imposed on CPU 

•  When the currently active request completes 
– Device controller generates a completion interrupt 
–  Interrupt handler posts completion to requester 
–  Interrupt handler selects and initiates next transfer 
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Double Buffering For  
Device Output 

•  Have multiple buffers queued up, ready to write 
–  Each write completion interrupt starts the next write 

•  Application and device I/O proceed in parallel 
–  Application queues successive writes  

•  Don’t bother waiting for previous operation to finish 

–  Device picks up next buffer as soon as it is ready 
•  If we're CPU-bound (more CPU than output) 

–  Application speeds up because it doesn't wait for I/O 
•  If we're I/O-bound (more output than CPU) 

–  Device is kept busy, which improves throughput 
–  But eventually we may have to block the process 
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Double-Buffered Output 

buffer 
#1 

buffer 
#2 

application 

device 
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Double Buffering For Input 

•  Have multiple reads queued up, ready to go 
–  Read completion interrupt starts read into next buffer 

•  Filled buffers wait until application asks for them 
–  Application doesn't have to wait for data to be read 

•  Can use more than two buffers, of course 
•  When can we do read queueing? 

–  Each app will probably block until its read completes 
•  So we won’t get multiple reads from one application 

–  We can queue reads from multiple processes 
–  We can do predictive read-ahead 
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Double Buffered Input 

buffer 
#1 

buffer 
#2 

application 

device 
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Handling I/O Queues 
•  What if we allow a device to have a queue of 

requests? 
–  Key devices usually have several waiting at all times 
–  In what order should we process queued requests? 

•  Performance based scheduling 
–  Elevator algorithm head motion scheduling for disks 

•  Priority based scheduling 
–  Handle requests from higher priority processes first 

•  Quality-of-service based scheduling 
–  Guaranteed bandwidth share 
–  Guaranteed response time 
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Solicited Vs. Unsolicited Input  
•  In the write case, a buffer is always available 

–  The writing application provides it 
•  Is the same true in the read case?  

–  Some data comes only in response to a read request 
•  E.g., disks and tapes 

–  Some data comes at a time of its own choosing 
•  E.g., networks, keyboards, mice 

•  What to do when unexpected input arrives? 
–  Discard it?  … probably a mistake 
–  Buffer it in anticipation of a future read 
–  Can we avoid exceeding the available buffer space? 

•  Slow devices (like keyboards) or flow-controlled networks 


