
Lecture 12
Page 1

CS 111
Fall 2015

Devices and Device Drivers
CS 111

Operating Systems
Peter Reiher

Lecture 12
Page 2

CS 111
Fall 2015

Outline

•  The role of devices
•  Device drivers
•  Classes of device driver

Lecture 12
Page 3

CS 111
Fall 2015

So You’ve Got Your Computer . . .
It’s got memory, a

bus, a CPU or
two

But there’s
usually a lot more

to it than that

Lecture 12
Page 4

CS 111
Fall 2015

Welcome to the Wonderful
World of Peripheral Devices!

•  Our computers typically have lots of devices
attached to them

•  Each device needs to have some code
associated with it
– To perform whatever operations it does
– To integrate it with the rest of the system

•  In modern commodity OSes, the code that
handles these devices dwarfs the rest

Lecture 12
Page 5

CS 111
Fall 2015

Peripheral Device Code and the OS
•  Why are peripheral devices the OS’ problem,

anyway?
•  Why can’t they be handled in user-level code?
•  Maybe they sometimes can, but . . .
•  Some of them are critical for system correctness

–  E.g., the disk drive holding swap space

•  Some of them must be shared among multiple
processes
–  Which is often rather complex

•  Some of them are security-sensitive
•  Perhaps more appropriate to put the code in the OS

Lecture 12
Page 6

CS 111
Fall 2015

Where the Device Driver Fits in
•  At one end you have an application

– Like a web browser

•  At the other end you have a very specific piece
of hardware
– Like an Intel Gigabit CT PCI-E Network Adapter

•  In between is the OS
•  When the application sends a packet, the OS

needs to invoke the proper driver
•  Which feeds detailed instructions to the

hardware

Lecture 12
Page 7

CS 111
Fall 2015

Connecting Peripherals
•  Most peripheral devices don’t connect directly

to the processor
– Or to the main bus

•  They connect to a specialized peripheral bus
•  Which, in turn, connects to the main bus
•  Various types are common

– PCI
– USB
– Several others

Lecture 12
Page 8

CS 111
Fall 2015

Device Drivers
•  Generally, the code for these devices is pretty

specific to them
•  It’s basically code that drives the device

– Makes the device perform the operations it’s
designed for

•  So typically each system device is represented
by its own piece of code

•  The device driver
•  A Linux 2.6 kernel had over 3200 of them . . .

Lecture 12
Page 9

CS 111
Fall 2015

Typical Properties of
Device Drivers

•  Highly specific to the particular device
•  Inherently modular
•  Usually interacts with the rest of the system in

limited, well defined ways
•  Their correctness is critical

–  At least device behavior correctness
–  Sometimes overall correctness

•  Generally written by programmers who understand
the device well
–  But are not necessarily experts on systems issues

Lecture 12
Page 10

CS 111
Fall 2015

Abstractions and Device Drivers
•  OS defines idealized device classes

– Disk, display, printer, tape, network, serial ports

•  Classes define expected interfaces/behavior
– All drivers in class support standard methods

•  Device drivers implement standard behavior
– Make diverse devices fit into a common mold
– Protect applications from device eccentricities

•  Abstractions regularize and simplify the chaos
of the world of devices

Lecture 12
Page 11

CS 111
Fall 2015

What Can Driver Abstractions
Help With?

•  Encapsulate knowledge of how to use the device
–  Map standard operations into operations on device
–  Map device states into standard object behavior
–  Hide irrelevant behavior from users
–  Correctly coordinate device and application behavior

•  Encapsulate knowledge of optimization
–  Efficiently perform standard operations on a device

•  Encapsulate fault handling
–  Understanding how to handle recoverable faults
–  Prevent device faults from becoming OS faults

Lecture 12
Page 12

CS 111
Fall 2015

How Do Device Drivers Fit
Into a Modern OS?

•  There may be a lot of them
•  They are each pretty independent
•  You may need to add new ones later
•  So a pluggable model is typical
•  OS provides capabilities to plug in particular

drivers in well defined ways
•  Then plug in the ones a given machine needs
•  Making it easy to change or augment later

Lecture 12
Page 13

CS 111
Fall 2015

Layering Device Drivers
•  The interactions with the bus, down at the

bottom, are pretty standard
– How you address devices on the bus, coordination

of signaling and data transfers, etc.
– Not too dependent on the device itself

•  The interactions with the applications, up at
the top, are also pretty standard
– Typically using some file-oriented approach

•  In between are some very device specific
things

Lecture 12
Page 14

CS 111
Fall 2015

A Pictorial View

App 1 App 2 App 3

User space

Kernel
space

Hardware

USB bus
controller

PCI bus
controller

USB
bus

PCI
bus

Device
Drivers

System
Call

Device
Call

Lecture 12
Page 15

CS 111
Fall 2015

Device Drivers Vs. Core OS Code
•  Device driver code is in the OS, but . . .
•  What belongs in core OS vs. a device driver?
•  Common functionality belongs in the OS

– Caching
– File systems code not tied to a specific device
– Network protocols above physical/link layers

•  Specialized functionality belongs in the drivers
– Things that differ in different pieces of hardware
– Things that only pertain to the particular piece of

hardware

Lecture 12
Page 16

CS 111
Fall 2015

Linux Device Driver Abstractions
•  An example of how an OS handles device

drivers
•  Basically inherited from earlier Unix systems
•  A class-based system
•  Several super-classes

– Block devices
– Character devices
– Some regard network devices as a third major class

•  Other divisions within each super-class

Lecture 12
Page 17

CS 111
Fall 2015

Why Classes of Drivers?
•  Classes provide a good organization for

abstraction
•  They provide a common framework to reduce

amount of code required for each new device
•  The framework ensure all devices in class

provide certain minimal functionality
•  But a lot of driver functionality is very specific

to the device
–  Implying that class abstractions don’t cover

everything

Lecture 12
Page 18

CS 111
Fall 2015

Character Device Superclass
•  Devices that read/write one byte at a time

– “Character” means byte, not ASCII

•  May be either stream or record structured
•  May be sequential or random access
•  Support direct, synchronous reads and writes
•  Common examples:

– Keyboards
– Monitors
– Most other devices

Lecture 12
Page 19

CS 111
Fall 2015

Block Device Superclass
•  Devices that deal with a block of data at a time
•  Usually a fixed size block
•  Most common example is a disk drive
•  Reads or writes a single sized block (e.g., 4K

bytes) of data at a time
•  Random access devices, accessible one block

at a time
•  Support queued, asynchronous reads and

writes

Lecture 12
Page 20

CS 111
Fall 2015

Why a Separate Superclass
for Block Devices?

•  Block devices span all forms of block-addressable
random access storage
–  Hard disks, CDs, flash, and even some tapes

•  Such devices require some very elaborate services
–  Buffer allocation, LRU management of a buffer cache, data

copying services for those buffers, scheduled I/O,
asynchronous completion, etc.

•  Key system functionality (file systems and swapping/
paging) implemented on top of block I/O

•  Block I/O services are designed to provide very high
performance for critical functions

Lecture 12
Page 21

CS 111
Fall 2015

Network Device Superclass
•  Devices that send/receive data in packets
•  Originally treated as character devices
•  But sufficiently different from other character

devices that some regard as distinct
•  Only used in the context of network protocols

– Unlike other devices
– Which leads to special characteristics

•  Typical examples are Ethernet cards, 802.11
cards, Bluetooth devices

Lecture 12
Page 22

CS 111
Fall 2015

Device Instances
•  Can be multiple hardware instances of a device

–  E.g., multiple copies of same kind of disk drive
•  One hardware device might be multiplexed into

pieces
–  E.g., four partitions on one hard drive

•  Or there might be different modes of accessing the
same hardware
–  Media writeable at different densities

•  The same device driver usable for such cases, but
something must distinguish them

•  Linux uses minor device numbers for this purpose

Lecture 12
Page 23

CS 111
Fall 2015

Accessing Linux Device Drivers
•  Done through the file system
•  Special files

–  Files that are associated with a device instance
–  UNIX/LINUX uses <block/character, major, minor>

•  Major number corresponds to a particular device driver
•  Minor number identifies an instance under that driver

•  Opening special file opens the associated device
–  Open/close/read/write/etc. calls map to calls to appropriate

entry-points of the selected driver

brw-r----- 1 root operator 14, 0 Apr 11 18:03 disk0
brw-r----- 1 root operator 14, 1 Apr 11 18:03 disk0s1
brw-r----- 1 root operator 14, 2 Apr 11 18:03 disk0s2
br--r----- 1 reiher reiher 14, 3 Apr 15 16:19 disk2
br--r----- 1 reiher reiher 14, 4 Apr 15 16:19 disk2s1
br--r----- 1 reiher reiher 14, 5 Apr 15 16:19 disk2s2

A
block
speci
al
devic
e

Majo
r
numb
er is
14

Mino
r
numb
er is
0

Lecture 12
Page 24

CS 111
Fall 2015

Linux Device Driver Interface
(DDI)

•  Standard (top-end) device driver entry-points
– Basis for device independent applications
– Enables system to exploit new devices
– Critical interface contract for 3rd party developers

•  Some calls correspond directly to system calls
– E.g., open, close, read, write

•  Some are associated with OS frameworks
– Disk drivers are meant to be called by block I/O
– Network drivers meant to be called by protocols

Lecture 12
Page 25

CS 111
Fall 2015

DDIs and Sub-DDIs

Basic I/O
read, write,
seek, ioctl,

select

Life Cycle
initialize, cleanup

open, release

Common DDI
Block
request

revalidate
fsync

Network
receive,
transmit
set MAC

stats

Serial
receive character

start write
line parms

Lecture 12
Page 26

CS 111
Fall 2015

General Linux DDI Entry Points
•  Standard entry points for most drivers
•  House-keeping operations

– xx_open ... check/initialize hardware and software
– xx_release ... release one reference, close on last

•  Generic I/O operations
– xx_read, xx_write ... synchronous I/O operations
– xx_seek ... change target address on device
– xx_ioctl ... generic & device specific control

functions
– xx_select ... is data currently available?

Lecture 12
Page 27

CS 111
Fall 2015

What About Basic DDI
Functionality For Networks?

•  Network drivers don’t support some pretty basic stuff
–  Like read and write

•  Any network device works in the context of a link protocol
–  E.g., 802.11

•  You can’t just read, you must follow the protocol to get bytes
•  So what?
•  Well, do you want to implement the link protocol in every

device driver for 802.11?
–  No, do that at a higher level so you can reuse it

•  That implies doing a read on a network card makes no sense
•  You need to work in the context of the protocol

Lecture 12
Page 28

CS 111
Fall 2015

The Role of Drivers in Networking
SMTP – mail delivery application

TCP session management

IP transport & routing

802.12 Wireless LAN

Linksys WaveLAN m-port driver

sockets

Data Link Provider
Interface (a sub-DDI)

socket API (system
calls)

streams

streams

streams

User-mode
application

(Device driver)

Hardware
independent system

software

Hardware specific

Lecture 12
Page 29

CS 111
Fall 2015

Controlling Devices - ioctl
•  Not all device interactions are reading/writing
•  Other operations control device behavior

–  Operations supported are device class specific
•  Unix/Linux uses ioctl calls for many of those
•  There are many general ioctl operations

–  Get/release exclusive access to device
–  Blocking and non-blocking opens, reads and writes

•  There are also class-specific operations
–  Tape: write file mark, space record, rewind
–  Serial: set line speed, parity, character length
–  Disk: get device geometry

Lecture 12
Page 30

CS 111
Fall 2015

Device Drivers and the Kernel
•  Drivers are usually systems code
•  But they’re not kernel code
•  Most drivers are optional

– Only present if the device they support is there
•  They’re modular and isolated from the kernel
•  But they do make use of kernel services
•  Implying they need an interface to the kernel
•  Different from application/kernel interface,

because driver needs are different

Lecture 12
Page 31

CS 111
Fall 2015

What Kernel Services Do
Device Drivers Need?

sub-class DDI

device driver

common DDI

memory
allocation

synchronization error reporting

run-time
loader

I/O resource
management

DMA

buffering

DKI – driver/kernel interface

configuration

Lecture 12
Page 32

CS 111
Fall 2015

The Device Driver Writer’s
Problem

•  Device drivers are often written by third parties (not
the OS developers)

•  There are a lot of drivers and driver authors
•  Device drivers require OS services to work

–  All of these services are highly OS specific
–  Drivers must be able to call OS routines to obtain these

services

•  The horde of driver authors must know how to get the
OS services

•  Drivers can’t be rewritten for each OS release
–  So the services and their interfaces must be stable

Lecture 12
Page 33

CS 111
Fall 2015

The Driver-Kernel Interface

•  Bottom-end services OS provides to drivers
•  Must be very well-defined and stable

–  To enable third party driver writers to build drivers
–  So old drivers continue to work on new OS versions

•  Each OS has its own DKI, but they are all similar
–  Memory allocation, data transfer and buffering
–  I/O resource (e.g., ports and interrupts) management, DMA
–  Synchronization, error reporting
–  Dynamic module support, configuration, plumbing

Lecture 12
Page 34

CS 111
Fall 2015

DKI Memory Management
Services

•  Heap allocation
–  Allocate and free variable partitions from a kernel heap

•  Page allocation
–  Allocate and free physical pages

•  Cached file system buffers
–  Allocate and free block-sized buffers in an LRU cache

•  Specialized buffers
–  For serial communication, network packets, etc.

•  Efficient data transfer between kernel/user space

Lecture 12
Page 35

CS 111
Fall 2015

DKI I/O Resource Management
Services

•  I/O ports and device memory
–  Reserve, allocate, and free ranges of I/O ports or memory
–  Map device memory in/out of process address space

•  Interrupts
–  Allocate and free interrupt request lines
–  Bind an interrupt to a second level handler
–  Enable and disable specific interrupts

•  DMA channels
–  Allocate/free DMA channels, set-up DMA operations

Lecture 12
Page 36

CS 111
Fall 2015

DKI Synchronization Services
•  Mutual exclusion

– A wide range of different types of locks

•  Asynchronous completion/notifications
– Sleep/wakeup, wait/signal, P/V

•  Timed delays
– Sleep (block and wake up at a time)
– Spin (for a brief, calibrated, time)

•  Scheduled future processing
– Delayed Procedure Calls, tasks, software interrupts

Lecture 12
Page 37

CS 111
Fall 2015

DKI Error Management Services

•  Logging error messages
–  Print diagnostic information on the console
–  Record information in persistent system log
–  Often supports severity codes, configurable levels

•  Event/trace facilities
–  Controllable recording of system calls, interrupts, ...
–  Very useful as audit-trail when diagnosing failures

•  High Availability fault management frameworks
–  Rule-based fault diagnosis systems
–  Automated intelligent recovery systems

Lecture 12
Page 38

CS 111
Fall 2015

DKI Configuration Services
•  Devices need to be properly configured at boot time

–  Not all configuration can be done at install time
–  Primary display adaptor, default resolution
–  IP address assignment (manual, DHCP)
–  Mouse button mapping
–  Enabling and disabling of devices

•  Such information can be kept in a registry
–  Database of nodes, property names and values
–  Available to both applications and kernel software

•  E.g., properties associated with service/device instances

–  May be part of a distributed management system
•  E.g., LDAP, NIS, Active Directory

Lecture 12
Page 39

CS 111
Fall 2015

The Life Cycle of a Device Driver
•  Device drivers are part of the OS, but . . .
•  They’re also pretty different

– Every machine has its own set of devices
–  It needs device drivers for those specific devices
– But not for any other devices
– So a kernel usually doesn’t come configured with

all possible device drivers
•  How drivers are installed and used in an OS is

very different than, say, memory management
•  More modular and dynamic

Lecture 12
Page 40

CS 111
Fall 2015

Installing and Using Device
Drivers

•  Loading
– Load the module, determine device configuration
– Allocate resources, configure and initialize driver
– Register interfaces

•  Use
– Open device session (initialize device)
– Use device (seek/read/write/ioctl/request/...)
– Process completion interrupts, error handling
– Close session (clean up device)

•  Unloading
– Free all resources, and unload the driver

Lecture 12
Page 41

CS 111
Fall 2015

Dynamic OS Module Loading
and Unloading

•  Most OSes can dynamically load and unload their
own modules
–  While the OS continues running

•  Used to support many plug-in features
–  E.g., file systems, network protocols, device drivers

•  The OS includes a run-time linker/loader
–  Linker needed to resolve module-to-OS references
–  There is usually a module initialize entry point

•  That initializes the module and registers its other entry-points

–  There is usually a module finish entry point
•  To free all resources and un-register its entry points

Lecture 12
Page 42

CS 111
Fall 2015

Device Driver Configuration
•  Binding a device driver to the hardware it controls

–  May be several devices of that type on the computer
–  Which driver instance operates on which hardware?

•  Identifying I/O resources associated with a device
–  What I/O ports, IRQ and DMA channels does it use?
–  Where (in physical space) does its memory reside?

•  Assigning I/O resources to the hardware
–  Some are hard-wired for specific I/O resources
–  Most can be programmed for what resources to use
–  Many busses define resource allocation protocols

•  Large proportion of driver code is devoted to
configuration and initialization

Lecture 12
Page 43

CS 111
Fall 2015

The Static Configuration Option

•  We could, instead, build an OS for the specific
hardware configuration of its machine
–  Identify which devices use which I/O resources
–  OS can only support pre-configured devices
–  Rebuild to change devices or resource assignments

•  Drivers may find resources in system config table
–  Eliminates the need to recompile drivers every time

•  This was common many years ago
–  Too cumbersome for a modern commercial OS
–  Still done for some proprietary/micro/real-time OSs

Lecture 12
Page 44

CS 111
Fall 2015

Dynamic Device Discovery
•  How does a driver find its hardware?

–  Which is typically sitting somewhere on an I/O bus
•  Could use probing (peeking and poking)

–  Driver reserves ports/IRQs and tries talking to them
–  See if they respond like the expected device
–  Error-prone & dangerous (may wedge device/bus)

•  Self-identifying busses
–  Many busses define device identification protocols
–  OS selects device by geographic (e.g. slot) address
–  Bus returns description (e.g. type, version) of device

•  May include a description of needed I/O resources
•  May include a list of assigned I/O resources

Lecture 12
Page 45

CS 111
Fall 2015

Configuring I/O Resources
•  Driver must obtain I/O resources from the OS

–  OS manages ports, memory, IRQs, DMA channels
–  Some may be assigned exclusively (e.g., I/O ports)
–  Some may be shared (e.g., IRQs, DMA channels)

•  Driver may have to program bus and device
–  To associate I/O resources with the device

•  Driver must initialize its own code
–  Which I/O ports correspond to which instances
–  Bind appropriate interrupt handlers to assigned IRQs
–  Allocate & initialize device/request status structures

Lecture 12
Page 46

CS 111
Fall 2015

Using Devices and Their Drivers
•  Practical use issues
•  Achieving good performance in driver use

Lecture 12
Page 47

CS 111
Fall 2015

Device Sessions
•  Some devices are serially reusable

–  Processes use them one at a time, in turn
–  Each using process opens and closes a session with the

device
–  Opener may have to wait until previous process closes

•  Each session requires initialization
–  Initialize & test hardware, make sure it is working
–  Initialize session data structures for this instance
–  Increment open reference count on the instance

•  Releasing references to a device
–  Shut down instance when last reference closes

Lecture 12
Page 48

CS 111
Fall 2015

Shared Devices and Serialization

•  Device drivers often contain sharable resources
–  Device registers, request structures, queues, etc.
–  Code that updates them will contain critical sections

•  Use of these resources must be serialized
–  Serialization may be coarse (one open at a time)
–  Serialization may be very fine grained
–  This can be implemented with locks or semaphores

•  Serialization is usually implemented within driver
–  Callers needn't understand how locking works

Lecture 12
Page 49

CS 111
Fall 2015

Interrupt Disabling For Device
Drivers

•  Locking isn’t protection against interrupts
–  Remember the sleep/wakeup race?
–  What if interrupt processing requires an unavailable lock?

•  Drivers often share data with interrupt handlers
–  Device registers, request structures, queues, etc.

•  Some critical sections require interrupt disabling
–  Which is dangerous and can cause serious problems
–  Where possible, do updates with atomic instructions
–  Disable only the interrupts that could conflict
–  Make the disabled period as brief as possible

Lecture 12
Page 50

CS 111
Fall 2015

Performance Issues for
Device Drivers

•  Device utilization
•  Double buffering and queueing I/O requests
•  Handling unsolicited input
•  I/O and interrupts

Lecture 12
Page 51

CS 111
Fall 2015

Device Utilization
•  Devices (and their drivers) are mainly

responsive
•  They sit idle until someone asks for something
•  Then they become active
•  Also periods of overhead between when

process wants device and it becomes active
•  The result is that most devices are likely to be

idle most of the time
– And so are their device drivers

Lecture 12
Page 52

CS 111
Fall 2015

So What?
•  Why should I care if devices are being used or not?
•  Key system devices limit system performance

–  File system I/O, swapping, network communication
•  If device sits idle, its throughput drops

–  This may result in lower system throughput
–  Longer service queues, slower response times

•  Delays can disrupt real-time data flows
–  Resulting in unacceptable performance
–  Possible loss of irreplaceable data

•  It is very important to keep key devices busy
–  Start request n+1 immediately when n finishes

Lecture 12
Page 53

CS 111
Fall 2015

Keeping Key Devices Busy
•  Allow multiple pending requests at a time

– Queue them, just like processes in the ready queue
– Requesters block to await eventual completions

•  Use DMA to perform the actual data transfers
– Data transferred, with no delay, at device speed
– Minimal overhead imposed on CPU

•  When the currently active request completes
– Device controller generates a completion interrupt
–  Interrupt handler posts completion to requester
–  Interrupt handler selects and initiates next transfer

Lecture 12
Page 54

CS 111
Fall 2015

Double Buffering For
Device Output

•  Have multiple buffers queued up, ready to write
–  Each write completion interrupt starts the next write

•  Application and device I/O proceed in parallel
–  Application queues successive writes

•  Don’t bother waiting for previous operation to finish

–  Device picks up next buffer as soon as it is ready
•  If we're CPU-bound (more CPU than output)

–  Application speeds up because it doesn't wait for I/O
•  If we're I/O-bound (more output than CPU)

–  Device is kept busy, which improves throughput
–  But eventually we may have to block the process

Lecture 12
Page 55

CS 111
Fall 2015

Double-Buffered Output

buffer
#1

buffer
#2

application

device

Lecture 12
Page 56

CS 111
Fall 2015

Double Buffering For Input

•  Have multiple reads queued up, ready to go
–  Read completion interrupt starts read into next buffer

•  Filled buffers wait until application asks for them
–  Application doesn't have to wait for data to be read

•  Can use more than two buffers, of course
•  When can we do read queueing?

–  Each app will probably block until its read completes
•  So we won’t get multiple reads from one application

–  We can queue reads from multiple processes
–  We can do predictive read-ahead

Lecture 12
Page 57

CS 111
Fall 2015

Double Buffered Input

buffer
#1

buffer
#2

application

device

Lecture 12
Page 58

CS 111
Fall 2015

Handling I/O Queues
•  What if we allow a device to have a queue of

requests?
–  Key devices usually have several waiting at all times
–  In what order should we process queued requests?

•  Performance based scheduling
–  Elevator algorithm head motion scheduling for disks

•  Priority based scheduling
–  Handle requests from higher priority processes first

•  Quality-of-service based scheduling
–  Guaranteed bandwidth share
–  Guaranteed response time

Lecture 12
Page 59

CS 111
Fall 2015

Solicited Vs. Unsolicited Input
•  In the write case, a buffer is always available

–  The writing application provides it
•  Is the same true in the read case?

–  Some data comes only in response to a read request
•  E.g., disks and tapes

–  Some data comes at a time of its own choosing
•  E.g., networks, keyboards, mice

•  What to do when unexpected input arrives?
–  Discard it? … probably a mistake
–  Buffer it in anticipation of a future read
–  Can we avoid exceeding the available buffer space?

•  Slow devices (like keyboards) or flow-controlled networks

