-

CS 111
Fall 2015

Devices and Device Drivers
CS 111
Operating Systems
Peter Rether

\

/ [Outline} \

 The role of devices

e Device drivers

e (Classes of device driver

CS 111 Lecture 12
Fall 2015 Page 2

/So You’ve Got Your Computer . \

It’s got memory, a But there’s
bus, a CPU or usually a nt more
two -
+ that
X ase?
e
—

ElEDjﬂEEEDD:EDDj:J

CS 111 Lecture 12
Fall 2015 Page 3

/ Welcome to the Wonderful \
World of Peripheral Devices!

* Our computers typically have lots of devices
attached to them

* Each device needs to have some code
assoclated with it
— To perform whatever operations it does
— To integrate 1t with the rest of the system

* In modern commodity OSes, the code that
handles these devices dwarfs the rest

CS 111 Lecture 12
Fall 2015 Page 4

@ripheral Device Code and the OS\

* Why are peripheral devices the OS’ problem,
anyway?

* Why can’t they be handled 1n user-level code?
* Maybe they sometimes can, but . . .

* Some of them are critical for system correctness
— E.g., the disk drive holding swap space

* Some of them must be shared among multiple
processes

— Which 1s often rather complex

Some of them are security-sensitive

\ _Perhaps more appropriate to put the code in the OS /

Lecture 12
Fall 2015 Page 5

/ Where the Device Driver Fits in\

* At one end you have an application

— Like a web browser

* At the other end you have a very specific piece
of hardware
— Like an Intel Gigabit CT PCI-E Network Adapter

* In between 1s the OS

* When the application sends a packet, the OS
needs to invoke the proper driver

e Which feeds detailed instructions to the
hardware /

CS 111 Lecture 12
Fall 2015 Page 6

/ Connecting Peripherals \

* Most peripheral devices don’t connect directly
to the processor

— Or to the main bus
* They connect to a specialized peripheral bus
 Which, in turn, connects to the main bus

* Various types are common
— PCI
— USB
— Several others /

CS 111 Lecture 12
Fall 2015 Page 7

/ [Device Drivers} \

* Generally, the code for these devices 1s pretty
specific to them

* It’s basically code that drives the device

— Makes the device perform the operations it’s
designed for

* So typically each system device 1s represented
by 1ts own piece of code

 The device driver
* A Linux 2.6 kernel had over 3200 of them . . . /

CS 111 Lecture 12
Fall 2015 Page 8

/ Typical Properties of \

Device Drivers
* Highly specific to the particular device

* Inherently modular

* Usually interacts with the rest of the system in
limited, well defined ways

 Their correctness i1s critical
— At least device behavior correctness

— Sometimes overall correctness

Generally written by programmers who understand
the device well

— But are not necessarily experts on systems 1ssues /
CS 111 Lecture 12

Fall 2015 Page 9

/ Abstractions and Device Drivers\

* OS defines 1dealized device classes
— Disk, display, printer, tape, network, serial ports
* (Classes define expected interfaces/behavior

— All drivers 1n class support standard methods

* Device drivers implement standard behavior
— Make diverse devices fit into a common mold

— Protect applications from device eccentricities

* Abstractions regularize and simplify the chaos
\ of the world of devices /

CS 111 Lecture 12
Fall 2015 Page 10

/ What Can Driver Abstractions \

Help With?
* Encapsulate knowledge of how to use the device
— Map standard operations into operations on device
— Map device states into standard object behavior
— Hide irrelevant behavior from users
— Correctly coordinate device and application behavior

* Encapsulate knowledge of optimization
— Efficiently perform standard operations on a device

* Encapsulate fault handling

— Understanding how to handle recoverable faults

— Prevent device faults from becoming OS faults

CS 111

Fall 2015

/

Lecture 12
Page 11

/ How Do Device Drivers Fit \
Into a Modern OS?

* There may be a lot of them

* They are each pretty independent

* You may need to add new ones later
* So a pluggable model 1s typical

* OS provides capabilities to plug in particular
drivers 1n well defined ways

* Then plug in the ones a given machine needs

* Making 1t easy to change or augment later J

CS 111 Lecture 12
Fall 2015 Page 12

/ Layering Device Drivers \

* The interactions with the bus, down at the
bottom, are pretty standard

— How you address devices on the bus, coordination
of signaling and data transfers, etc.

— Not too dependent on the device itself

* The interactions with the applications, up at
the top, are also pretty standard

— Typically using some file-oriented approach

* In between are some very device specific
_ things /

CS 111 Lecture 12
Fall 2015 Page 13

/ A Pictorial View \

User space

System | App | App 2 App 3
Call

Kernel X Devs
CVICC 5
Space Drivers
Device | / \

Ol ontiler—

_____________ R T
Hardware - -+

USB

bus /
CS 111 - h :] Lecture 12
Fall 2015

Page 14

/Device Drivers Vs. Core OS Code\

* Device driver code 1s 1n the OS, but . . .
* What belongs 1n core OS vs. a device driver?

* Common functionality belongs in the OS
— Caching
— File systems code not tied to a specific device

— Network protocols above physical/link layers

* Specialized functionality belongs in the drivers

— Things that differ in different pieces of hardware

— Things that only pertain to the particular piece of /
CS 111 hardware Lecture 12

Fall 2015 Page 15

/[Linux Device Driver Abstractionm

* An example of how an OS handles device
drivers

* Basically inherited from earlier Unix systems
* A class-based system

* Several super-classes
— Block devices
— Character devices

— Some regard network devices as a third major class

\- Other divisions within each super-class /

CS 111 Lecture 12
Fall 2015 Page 16

/ Why Classes of Drivers? \

* Classes provide a good organization for
abstraction

* They provide a common framework to reduce
amount of code required for each new device

e The framework ensure all devices 1n class
provide certain minimal functionality

* But a lot of driver functionality i1s very specific
to the device

— Implying that class abstractions don’t cover)
\ CS 111 everything Lecture 12

Fall 2015 Page 17

/ Character Device Superclass \

* Devices that read/write one byte at a time
— “Character” means byte, not ASCII

* May be either stream or record structured
* May be sequential or random access
* Support direct, synchronous reads and writes

* Common examples:
— Keyboards
— Monitors
— Most other devices /

CS 111 Lecture 12
Fall 2015 Page 18

/ Block Device Superclass \

Devices that deal with a block of data at a time
Usually a fixed size block
Most common example 1s a disk drive

Reads or writes a single sized block (e.g., 4K
bytes) of data at a time

Random access devices, accessible one block
at a time

Support queued, asynchronous reads and
Wri1tes /

CS 111 Lecture 12
Fall 2015 Page 19

Why a Separate Superclass \
for Block Devices?

* Block devices span all forms of block-addressable
random access storage
— Hard disks, CDs, flash, and even some tapes

* Such devices require some very elaborate services

— Buffer allocation, LRU management of a buffer cache, data
copying services for those buffers, scheduled 1/0,
asynchronous completion, etc.

* Key system functionality (file systems and swapping/

paging) implemented on top of block I/O

* Block I/O services are designed to provide very high
performance for critical functions

CS 111 Lecture 12
Fall 2015 Page 20

/ Network Device Superclass \

* Devices that send/receive data 1n packets
* Originally treated as character devices

* But sufficiently different from other character
devices that some regard as distinct

* Only used in the context of network protocols
— Unlike other devices
— Which leads to special characteristics

* Typical examples are Ethernet cards, 802.11
cards, Bluetooth devices Y,

CS 111 Lecture 12
Fall 2015 Page 21

/ Device Instances \

* Can be multiple hardware instances of a device

— E.g., multiple copies of same kind of disk drive

* One hardware device might be multiplexed into
pieces

— E.g., four partitions on one hard drive

* Or there might be different modes of accessing the
same hardware
— Media writeable at different densities

* The same device driver usable for such cases, but
something must distinguish them

\° Linux uses minor device numbers for this purpose /

CS 111 Lecture 12
Fall 2015 Page 22

A

block\

* Done through the file system Majo Mino
* Special files

SIPCC1 —r ————— 1 root operator @Apr 11 18:03 diskO
ofw-r———-—- 1 root operator T, Apr 11 18:03 diskOsl

a

brw-r-—---- 1 root operator 14, 2 Apr 11 18:03 disk0s2

(1 br--r-—---- 1 reiher reiher 14, 3 Apr 15 16:19 disk2
VIC br--r-—-—--- 1 reiher reiher 14, 4 Apr 15 16:19 disk2sl
br--r-—---- 1 reiher reiher 14, 5 Apr 15 16:19 disk2s2

C

* Opening special file opens the associated device

— Open/close/read/write/etc. calls map to calls to appropriate /

. entry-points of the selected driver

Fall 2015

Lecture 12
Page 23

/ [1inux Device Driver Interface \
(DDI)

* Standard (top-end) device driver entry-points
— Basis for device independent applications
— Enables system to exploit new devices
— Critical interface contract for 3rd party developers

* Some calls correspond directly to system calls
— E.g., open, close, read, write
 Some are associated with OS frameworks

— Disk drivers are meant to be called by block I/O
— Network drivers meant to be called by protocols /

CS 111 Lecture 12
Fall 2015 Page 24

/ DDIs and Sub-DDIs \

Comﬁ@n DDI

Basic 1/0
read, write,
seek, 10ctl,

select

Block

request
revalidate
fsync

Life Cycle
initialize, cleanup
open, release

/

CS 111 Lecture 12
Fall 2015 Page 25

/ General Linux DDI Entry Points\

* Standard entry points for most drivers
* House-keeping operations
— xx_open ... check/initialize hardware and software

— xx_release ... release one reference, close on last

* Generic I/0O operations
— xx_read, xx_write ... synchronous I/O operations
— xx_seek ... change target address on device

— xx_1octl ... generic & device specific control
functions

— xXx_select ... 1s data currently available? Lecture 12

CS 111
Fall 2015 Page 26

/" What About Basic DDI ™\
Functionality For Networks?

* Network drivers don’t support some pretty basic stuff

— Like read and write

* Any network device works 1n the context of a link protocol
— E.g., 802.11

* You can’t just read, you must follow the protocol to get bytes
* So what?

* Well, do you want to implement the link protocol 1n every
device driver for 802.117?

— No, do that at a higher level so you can reuse it

* That implies doing a read on a network card makes no sense

* You need to work 1n the context of the protocol /

CS 111 Lecture 12
Fall 2015 Page 27

ﬁ he Role of Drivers in Networking\

User-mode SMTP — mail delivery application
application

------------------------- 1L socket API (system

ﬁ streams

Hardware [streams
Independent system _
software 1 T streams
| BRI WinksIAN |
....................................... Data Link Provider
Interface (a sub-DDI)
\Hardware sp ecific Linksys WaveLAN m-port driver (Device driver) /

CS 111 Lecture 12
Fall 2015 Page 28

/ Controlling Devices - 10ctl \

* Not all device interactions are reading/writing
* Other operations control device behavior

— Operations supported are device class specific
* Unix/Linux uses ioctl calls for many of those
* There are many general 10ctl operations

— Qet/release exclusive access to device

— Blocking and non-blocking opens, reads and writes

* There are also class-specific operations

— Tape: write file mark, space record, rewind

— Serial: set line speed, parity, character length /

« 7 Disk: get device geometry Lecture 12

Fall 2015 Page 29

/[Device Drivers and the Kernel }\

Drivers are usually systems code

But they’re not kernel code

Most drivers are optional

— Only present if the device they support 1s there
They’re modular and 1solated from the kernel
But they do make use of kernel services
Implying they need an interface to the kernel

Different from application/kernel interface,
because driver needs are different

CS 111
Fall 2015

Lecture 12
Page 30

/ What Kernel Services Do
Device Drivers Need?

‘‘‘‘‘
-

-
-

DKI — driver/kernel interface

[error reporting}

CS 111

~

/

Lecture 12

Fall 2015

Page 31

/ The Device Driver Writer’s \
Problem

* Device drivers are often written by third parties (not
the OS developers)

There are a lot of drivers and driver authors

* Device drivers require OS services to work
— All of these services are highly OS specific

— Drivers must be able to call OS routines to obtain these
services

The horde of driver authors must know how to get the
OS services

 Drivers can’t be rewritten for each OS release /

« i S0 the services and their interfaces must be stable Lecture 12
Fall 2015 Page 32

/ The Driver-Kernel Interface \

* Bottom-end services OS provides to drivers

* Must be very well-defined and stable
— To enable third party driver writers to build drivers

— So old drivers continue to work on new OS versions

* Each OS has its own DKI, but they are all similar
— Memory allocation, data transfer and buffering
— I/O resource (e.g., ports and interrupts) management, DMA
— Synchronization, error reporting

— Dynamic module support, configuration, plumbing

/

CS 111 Lecture 12
Fall 2015 Page 33

/ DKI Memory Management \
Services

Heap allocation

— Allocate and free variable partitions from a kernel heap

Page allocation
— Allocate and free physical pages

Cached file system buffers
— Allocate and free block-sized buffers in an LRU cache

* Specialized buffers

— For serial communication, network packets, etc.

» Efficient data transfer between kernel/user space

CS 111 Lecture 12
Fall 2015 Page 34

/“DKI I/O Resource Management
Services

* I/O ports and device memory
— Reserve, allocate, and free ranges of I/O ports or memory
— Map device memory in/out of process address space

* Interrupts
— Allocate and free interrupt request lines
— Bind an interrupt to a second level handler
— Enable and disable specific interrupts

 DMA channels
— Allocate/free DMA channels, set-up DMA operations

/

CS 111 Lecture 12
Fall 2015 Page 35

/ DKI Synchronization Services \

* Mutual exclusion
— A wide range of different types of locks

* Asynchronous completion/notifications
— Sleep/wakeup, wait/signal, P/V

* Timed delays
— Sleep (block and wake up at a time)
— Spin (for a brief, calibrated, time)

* Scheduled future processing

— Delayed Procedure Calls, tasks, software interrupts /

CS 111 Lecture 12
Fall 2015 Page 36

/DKI Error Management Services\

* Logging error messages
— Print diagnostic information on the console
— Record information in persistent system log
— Often supports severity codes, configurable levels
* Event/trace facilities
— Controllable recording of system calls, interrupts, ...
— Very useful as audit-trail when diagnosing failures
* High Availability fault management frameworks

— Rule-based fault diagnosis systems

— Automated intelligent recovery systems /

CS 111 Lecture 12
Fall 2015 Page 37

/ DKI Configuration Services \

* Devices need to be properly configured at boot time
— Not all configuration can be done at install time
— Primary display adaptor, default resolution
— IP address assignment (manual, DHCP)
— Mouse button mapping

— Enabling and disabling of devices

* Such information can be kept in a registry

— Database of nodes, property names and values
— Available to both applications and kernel software

* E.g., properties associated with service/device instances

— May be part of a distributed management system
cs11 ¢ E.g., LDAP, NIS, Active Directory

Fall 2015

/

Lecture 12
Page 38

ﬁ he Life Cycle of a Device Driveﬁ

* Device drivers are part of the OS, but . . .

* They’re also pretty different
— Every machine has its own set of devices
— It needs device drivers for those specific devices
— But not for any other devices

— So a kernel usually doesn’t come configured with
all possible device drivers

* How drivers are installed and used 1n an OS 1s
very different than, say, memory management

* More modular and dynamic Y,

CS 111 Lecture 12
Fall 2015 Page 39

/ Installing and Using Device \

| Drivers
* Loading

— Load the module, determine device configuration
— Allocate resources, configure and 1nitialize driver
— Register interfaces

e Use

— Open device session (1nitialize device)

— Use device (seek/read/write/ioctl/request/...)
— Process completion interrupts, error handling
— Close session (clean up device)

* Unloading

\ .~ Free all resources, and unload the driver .

Fall 2015 Page 40

/ Dynamic OS Module Loading \

and Unloading

* Most OSes can dynamically load and unload their
own modules
— While the OS continues running

* Used to support many plug-in features

— E.g., file systems, network protocols, device drivers

 The OS includes a run-time linker/loader
— Linker needed to resolve module-to-OS references

— There 1s usually a module initialize entry point

 That initializes the module and registers its other entry-points

— There 1s usually a module finish entry point

cs1y * To free all resources and un-register its entry points

Fall 2015

/

Lecture 12
Page 41

/ Device Driver Configuration \

* Binding a device driver to the hardware 1t controls

— May be several devices of that type on the computer
— Which driver instance operates on which hardware?

* Identifying I/O resources associated with a device
— What I/0 ports, IRQ and DMA channels does it use?
— Where (in physical space) does its memory reside?
* Assigning I/O resources to the hardware
— Some are hard-wired for specific I/O resources
— Most can be programmed for what resources to use

— Many busses define resource allocation protocols

* Large proportion of driver code 1s devoted to)
\ configuration and initialization

CS 111 Lecture 12
Fall 2015 Page 42

/ The Static Configuration Option\

* We could, instead, build an OS for the specific
hardware configuration of 1ts machine
— Identify which devices use which I/O resources
— OS can only support pre-configured devices
— Rebuild to change devices or resource assignments

* Drivers may find resources in system config table
— Eliminates the need to recompile drivers every time

* This was common many years ago

— Too cumbersome for a modern commercial OS

— Still done for some proprietary/micro/real-time OSs /

CS 111 Lecture 12
Fall 2015 Page 43

/ Dynamic Device Discovery

* How does a driver find its hardware?
— Which i1s typically sitting somewhere on an I/0 bus
* Could use probing (peeking and poking)
— Driver reserves ports/IRQs and tries talking to them
— See if they respond like the expected device
— Error-prone & dangerous (may wedge device/bus)
* Self-identifying busses
— Many busses define device identification protocols
— OS selects device by geographic (e.g. slot) address

— Bus returns description (e.g. type, version) of device
* May include a description of needed I/O resources
cs11 * May include a list of assigned I/0 resources

Fall 2015

/

Lecture 12
Page 44

/ Configuring I/O Resources

* Driver must obtain I/O resources from the OS
— OS manages ports, memory, IRQs, DMA channels
— Some may be assigned exclusively (e.g., I/0 ports)
— Some may be shared (e.g., IRQs, DMA channels)
* Driver may have to program bus and device
— To associate I/0 resources with the device
* Driver must initialize its own code
— Which I/O ports correspond to which instances
— Bind appropriate interrupt handlers to assigned IRQs

— Allocate & 1nitialize device/request status structures

CS 111

Fall 2015

/

Lecture 12
Page 45

/[Using Devices and Their Drivers}\

* Practical use 1ssues

* Achieving good performance in driver use

CS 111

Fall 2015

Lecture 12
Page 46

/ Device Sessions

* Some devices are serially reusable

— Processes use them one at a time, 1n turn

— Each using process opens and closes a session with the
device

— Opener may have to wait until previous process closes

* Each session requires 1nitialization
— Initialize & test hardware, make sure it 1s working
— Initialize session data structures for this instance

— Increment open reference count on the instance

* Releasing references to a device

— Shut down 1nstance when last reference closes
CS 111

\

/

Lecture 12

Fall 2015

Page 47

/Shared Devices and Serialization\

 Device drivers often contain sharable resources
— Device registers, request structures, queues, etc.

— Code that updates them will contain critical sections

* Use of these resources must be serialized
— Serialization may be coarse (one open at a time)
— Serialization may be very fine grained
— This can be implemented with locks or semaphores

* Serialization is usually implemented within driver

— Callers needn't understand how locking works

/

CS 111 Lecture 12
Fall 2015 Page 48

/" Interrupt Disabling For Device ™\
Drivers

* Locking isn’t protection against interrupts
— Remember the sleep/wakeup race?
— What if interrupt processing requires an unavailable lock?

* Drivers often share data with interrupt handlers

— Device registers, request structures, queues, etc.

* Some critical sections require interrupt disabling
— Which 1s dangerous and can cause serious problems
— Where possible, do updates with atomic instructions
— Disable only the interrupts that could conflict
— Make the disabled period as brief as possible /

CS 111 Lecture 12
Fall 2015 Page 49

/"~ Performance Issues for

~

Device utilization
Double buffering and queueing 1I/O requests
Handling unsolicited iput

I/O and interrupts

CS 111 Lecture 12
Fall 2015 Page 50

/ Device Utilization \

* Devices (and their drivers) are mainly
responsive

* They sit 1dle until someone asks for something
* Then they become active

* Also periods of overhead between when
process wants device and 1t becomes active

* The result 1s that most devices are likely to be
1dle most of the time

— And so are their device drivers /

CS 111 Lecture 12
Fall 2015 Page 51

/ So What? \

* Why should I care if devices are being used or not?

* Key system devices limit system performance

— File system I/0O, swapping, network communication

If device sits 1dle, its throughput drops

— This may result in lower system throughput
— Longer service queues, slower response times

Delays can disrupt real-time data flows
— Resulting 1n unacceptable performance

— Possible loss of irreplaceable data

* It1s very important to keep key devices busy

— Start request n+/ immediately when # finishes . m/ ’
CS 111 age 52

Fall 2015 Page 52

/" Keeping Key Devices Busy

* Allow multiple pending requests at a time
— Queue them, just like processes in the ready queue

— Requesters block to await eventual completions

* Use DMA to perform the actual data transfers
— Data transferred, with no delay, at device speed
— Minimal overhead imposed on CPU

* When the currently active request completes
— Device controller generates a completion interrupt

— Interrupt handler posts completion to requester

— Interrupt handler selects and 1nitiates next transfer /

CS 111 Lecture 12
Fall 2015 Page 53

/ Double Buffering For
Device Output

* Have multiple buffers queued up, ready to write
— Each write completion interrupt starts the next write

* Application and device I/O proceed in parallel

— Application queues successive writes

* Don’t bother waiting for previous operation to finish

— Device picks up next buffer as soon as it 1s ready

* If we're CPU-bound (more CPU than output)

— Application speeds up because it doesn't wait for I/0

* If we're I/O-bound (more output than CPU)

— Device 1s kept busy, which improves throughput

s r But eventually we may have to block the process

Fall 2015

/

Lecture 12
Page 54

/ Double-Buffered Output \

=

CS 111
Fall 2015

/ Double Buffering For Input \

* Have multiple reads queued up, ready to go

— Read completion interrupt starts read into next buffer

Filled buffers wait until application asks for them

— Application doesn't have to wait for data to be read
* (Can use more than two bufters, of course

* When can we do read queueing?
— Each app will probably block until its read completes

* So we won’t get multiple reads from one application

— We can queue reads from multiple processes

— We can do predictive read-ahead /

CS 111 Lecture 12
Fall 2015 Page 56

-~

Double Buffered Input

~

/ Handling I/O Queues

* What if we allow a device to have a queue of
requests?
— Key devices usually have several waiting at all times
— In what order should we process queued requests?
* Performance based scheduling
— Elevator algorithm head motion scheduling for disks
* Priority based scheduling
— Handle requests from higher priority processes first

* Quality-of-service based scheduling
— Quaranteed bandwidth share

s 77 GQuaranteed response time

\

/

Lecture 12

Fall 2015

Page 58

/ Solicited Vs. Unsolicited Input \

* In the write case, a buffer 1s always available
— The writing application provides it
* Is the same true in the read case?

— Some data comes only 1n response to a read request
* E.g., disks and tapes

— Some data comes at a time of its own choosing
* E.g., networks, keyboards, mice

* What to do when unexpected input arrives?

— Discard it? ... probably a mistake
— Buffer 1t 1n anticipation of a future read

— Can we avoid exceeding the available buffer space? /

s ¢ Slow devices (like keyboards) or flow-controlled networks Lecture 12
Fall 2015 Fage 9

