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4 Outline

* Paging

* Swapping and demand paging
* Virtual memory
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/ [ Paging J \

* What 1s paging?

— What problem does it solve?

— How does 1t do so?
* Paged address translation
* Paging and fragmentation

* Paging memory management units
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/ Segmentation Revisited

* Segment relocation solved the relocation
problem for us

* It used base registers to compute a physical
address from a virtual address

— Allowing us to move data around in physical
memory

— By only updating the base register
* It did nothing about external fragmentation

— Because segments are still required to be
contiguous

* We need to eliminate the “contiguity
requirement”
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/" The Paging Approach

__________________________________________________________________________

* Divide physical memory into units of a single
fixed size

— A pretty small one, like 1-4K bytes or words
— Typically called a page frame
* Treat the virtual address space 1n the same way

* For each virtual address space page, store 1ts
data 1in one physical address page frame

* Use some magic per-page translation
mechanism to convert virtual to physical pages /
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/ Paged Address Translation \

process virtual address space
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/ Paging and Fragmentation \

* A segment 1s implemented as a set of virtual
pages

* Internal fragmentation T

— Averages only 72 page (half of the last one)
* External fragmentation

— Completely non-existent
— We never carve up pages e
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/" How Does This Compare To
Segment Fragmentation?

* Consider this scenario:
— Auverage requested allocation is 128K
— 256K fixed size segments available
— In the paging system, 4K pages
* For segmentation, average internal fragmentation 1s 50%
(128K of 256K used)

* For paging?
— Only the last page of an allocation 1s not full

— On average, half of it 1s unused, or 2K
— So 2K of 128K 1s wasted, or around 1.5%

* Segmentation: 50% waste ° Paging: 1.5% waste )
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Providing the Magic
Translation Mechanism

* On per page basis, we need to change a virtual
address to a physical address

 Needs to be fast

So we’ll use hardware

* The Memory Management Unit (MMU)

— A piece of hardware designed to perform the magic

quickly

\
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/ Paging and MMUs \

Virtual address

Virtual page
number is used
as an index into

the page table

Valid bit 1s

checked to ensure
\that this virtual

page number 1s

Physical address

[page# | offset

A

v
v

Page Table

Offset within
page remains the
same

Selected entry
contains physical
page number

/
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/ Some Examples \

Virtual address Physical address

0005 | 3E28 I

Hmm, no address

Why might that
happen?
And what can we do
about it?
v
: /
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/ The MMU Hardware \

« MMUs used to sit between the CPU and bus
— Now they are typically integrated into the CPU

* What about the page tables?

— Originally implemented in special fast registers
— But there’s a problem with that today

— If we have 4K pages, and a 64 Gbyte memory, how
many pages are there?

_136/212 — 924

— Or 16 M of pages

— We can’t afford 16 M of fast registers /
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/ Handling Big Page Tables \

* 16 M entries in a page table means we can’t use
registers

* So now they are stored in normal memory

* But we can’t afford 2 bus cycles for each memory
dCCCSS
— One to look up the page table entry
— One to get the actual data

* So we have a very fast set of MMU registers used as
a cache

— Which means we need to worry about hit ratios, cache
invalidation, and other nasty 1ssues /

— TANSTAAFL
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/T he MMU and Multiple Processes\

* There are several processes running
* Each needs a set of pages
* We can put any page anywhere

* But if they need, in total, more pages than
we’ve physically got,

* Something’s got to go

* How do we handle these ongoing paging
requirements?
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/ Ongoing MMU Operations \

* What if the current process adds or removes pages?
— Directly update active page table in memory

— Privileged instruction to flush (stale) cached entries

* What if we switch from one process to another?
— Maintain separate page tables for each process
— Privileged instruction loads pointer to new page table
— Areload instruction flushes previously cached entries

* How to share pages between multiple processes?
— Make each page table point to same physical page

— Can be read-only or read/write sharing /
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/ [Swapping J \

* Segmented paging allows us to have
(physically) non-contiguous allocations

— Virtual addresses 1n one segment still contiguous

* But it still limats us to the size of physical
RAM

* How can we avoid that?

* By keeping some segments somewhere else
* Where?

\' Maybe on a disk /
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/ Swapping Segments To Disk \

* An obvious strategy to increase effective
memory size

* When a process yields, copy its segments to
disk
* When 1t 1s scheduled, copy them back

* Paged segments mean we need not put any of
this data 1n the same place as before yielding

* Each process could see a memory space as big
\ as the total amount of RAM /
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/Downsides To Segment Swapping\

* If we actually move everything out, the costs
of a context switch are very high
— Copy all of RAM out to disk
— And then copy other stuff from disk to RAM
— Before the newly scheduled process can do

anything

* We’re still limiting processes to the amount of

RAM we actually have

— Even overlays could do better than that Y,
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/ [Demand Paging} \

* What 1s paging?

— What problem does it solve?

— How does 1t do so?
* Locality of reference

* Page faults and performance 1ssues
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_______________________________________________________________________________________

/ ?:What Is Demand Paging?j \

~

* A process doesn’t actually need all 1ts pages 1n
memory to run

* It only needs those it actually references

* So, why bother loading up all the pages when a
process 1s scheduled to run?

* And, perhaps, why get rid of all of a process’
pages when 1t yields?

* Move pages onto and off of disk “on demand”

/
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/ How To Make Demand
Paging Work
* The MMU must support “not present” pages

— Generates a fault/trap when they are referenced

— OS can bring 1n page and retry the faulted
reference

* Entire process needn’t be in memory to start
running
— Start each process with a subset of 1ts pages

\' The big challenge will be performance

CS 111

— Load additional pages as program demands them
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/Achieving Good Performance for ™\
Demand Paging

* Demand paging will perform poorly 1f most
memory references require disk access

— Worse than bringing 1n all the pages at once,
maybe

e So we need to be sure most don’t
e How?

* By ensuring that the page holding the next
memory reference 1s already there

— Almost always /
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/" Demand Pagingand = ™\
Locahty of Reference |

* How can we predict what pages we need n
memory?
— Since they’d better be there when we ask

* Primarily, rely on locality of reference

— Put simply, the next address you ask for 1s likely to
be close to the last address you asked for

* Do programs typically display locality of
reference?

. | /
\ CSEIC)rtunately, yes Lecture 11
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/" Reasons Why Locality of ™\
Reference Works

* For program instructions?
 For stack access?

 For data access?
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/Instruction Locality of Reference\

* Code usually executes sequences of
consecutive instructions

* Most branches tend to be relatively short
distances (into code in the same routine)

 Even routine calls tend to come 1n clusters

— E.g., we’ll do a bunch of file I/O, then we’ll do a
bunch of list operations
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/ Stack Locality of Reference \

* Obvious locality here

* We typically need access to things 1n the
current stack frame
— Either the most recently created one

— Or one we just returned to from another call

* Since the frames usually aren’t huge, obvious
locality here
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/Heap Data Locality of Referencg

* Many data references to recently allocated
buffers or structures

— E.g., creating or processing a message

* Also common to do a great deal of processing
using one data structure
— Before using another

 But more chances for non-local behavior than
with code or the stack
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4 Page Faults N

* Page tables no longer necessarily contain
points to pages of RAM

* In some cases, the pages are not in RAM, at
the moment

— They’re out on disk

* When a program requests an address from such
a page, what do we do?

* Generate a page fault

— Which 1s intended to tell the system to go get it /

CS 111 Lecture 11
Fall 2015 Page 28




/ Handling a Page Fault \

* Initialize page table entries to “not present”
* CPU faults 1f “not present” page 1s referenced

— Fault enters kernel, just like any other trap

— Forwarded to page fault handler

— Determine which page 1s required, where it resides
— Schedule I/0 to fetch it, then block the process

— Make page table point at newly read-in page

— Back up user-mode PC to retry failed instruction

— Return to user-mode and try again

\°CSI}{Ieanwhile, other processes can run /
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/ Pages and Secondary Storage \

* When not in memory, pages live on secondary
storage
— Typically a disk
— In an area called “swap space”

 How do we manage swap space?
— As a pool of variable length partitions?

* Allocate a contiguous region for each process
— As a random collection of pages?
* Just use a bit-map to keep track of which are free

— As a file system?

* Create a file per process (or segment)

 File offsets correspond to virtual address offsets /
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/ Demand Paging Performance \

* Page faults may result in shorter time slices
— Standard overhead/response-time tradeoft

* Overhead (fault handling, paging in and out)
— Process 1s blocked while we are reading in pages
— Delaying execution and consuming cycles
— Directly proportional to the number of page faults
* Key 1s having the “right” pages in memory
— Right pages -> few faults, little paging activity
— Wrong pages -> many faults, much paging
* We can’t control what pages we read 1n
— Key to performance is choosing which to kick out
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/ [Virtual Memory} \

* A generalization of what demand paging
allows

* A form of memory where the system provides
a useful abstraction

— A very large quantity of memory

— For each process

— All directly accessible via normal addressing
— At a speed approaching that of actual RAM

* The state of the art in modern memory
abstractions /
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/ The Basic Concept \

* (G1ve each process an address space of
Immense S1z¢

— Perhaps as big as your hardware’s word size allows

* Allow processes to request segments within
that space

* Use dynamic paging and swapping to support
the abstraction

* The key 1ssue 1s how to create the abstraction
when you don’t have that much real memory )
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/~  The Key VM Technology: ™\
Replacement Algorithms

* The goal 1s to have each page already 1n
memory when a process accesses it

* We can’t know ahead of time what pages will
be accessed
* We rely on locality of access

— In particular, to determine what pages to move out
of memory and onto disk

* If we make wise choices, the pages we need 1n
\ memory will still be there /
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ﬁ“ he Basics of Page Replacement\

* We keep some set of all possible pages in
memory

— Perhaps not all belonging to the current process

* Under some circumstances, we need to replace
one of them with another page that’s on disk
— E.g., when we have a page fault

* Paging hardware and MMU translation allows
us to choose any page for ejection to disk

\* Which one of them should go? /
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/" The Optimal Replacement ™\
Algorithm

* Replace the page that will be next referenced
furthest 1n the future

* Why 1s this the right page?
— It delays the next page fault as long as possible

— Fewer page faults per unit time = lower overhead

* A slight problem:

— We would need an oracle to know which page this
algorithm calls for

— And we don’t have one /
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/Do We Require Optimal ™\

Algorithms?
* Not absolutely

* What’s the consequence of the algorithm being
wrong?
— We take an extra page fault that we shouldn’t have

— Which 1s a performance penalty, not a program
correctness penalty

— Often an acceptable tradeoff

* The more often we’re right, the fewer page faults we
take /
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/ Approximating the Optimal \

* Rely on locality of reference

* Note which pages have recently been used
— Perhaps with extra bits 1n the page tables
— Updated when the page 1s accessed

* Use this data to predict future behavior

* If locality of reference holds, the pages we
accessed recently will be accessed again soon
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@mdidate Replacement Algorithn&
 Random, FIFO

— These are dogs, forget ‘em

* Least Frequently Used

— Sounds better, but 1t really 1sn’t

* Least Recently Used
— Assert that near future will be like the recent past

— If we haven’t used a page recently, we probably
won’t use 1t soon

— The computer science equivalent to the “unseen
hand” /
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How To Evaluate Page \
Replacement Algorithms

* We can’t predict the future, so we approximate
* Which algorithm approximates best?

* Based on the number of page faults each gets
while executing a standard test

e What should the standard test be?

— Daifferent algorithms will behave very differently
in different situations

* To test replacement algorithms, you need a
clear notion of what your load 1s like /
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/ Naive LRU \

* Each time a page 1s accessed, record the time

* When you need to ¢ject a page, look at all
timestamps for pages in memory

* Choose the one with the oldest timestamp

* And to search all timestamps every time we
need to eject a page

CS 111
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Lecture 11
Page 41



/ True LRU Page Replacement \

Reference stream

CS 111

Replacements 7

a b Cc d b a b Cc d a e d
Page table using true LRU

O 1 2 3 4 5 6 7 9 10 11 12 13 14 15
rame (0 | a ! !
rame 1 b ! |
rame 2 c
rame 3 d -

Loads 4

/
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/Maintaining Information for LRU\

* Can we keep 1t in the MMU?

— MMU notes the time whenever a page is referenced
— MMU translation must be blindingly fast
* Getting/storing time on every fetch would be very expensive

— At best they will maintain a read and a written bit per page

e (Can we maintain this information in software?

— Mark all pages invalid, even if they are in memory

— Take a fault first time each page 1s referenced, note the time
— Then mark this page valid for the rest of the time slice

— Causing page faults to reduce the number of page faults???

* We need a cheap software surrogate for LRU
— No extra page faults /

— Can’t scan entire list each time, since it’s big
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/ Clock Algorithms \

* A surrogate for LRU
* Organize all pages in a circular list
« MMU sets a reference bit for the page on access

* Scan whenever we need another page

— For each page, ask MMU if page has been referenced

— If so, reset the reference bit in the MMU & skip this page
— If not, consider this page to be the least recently used

— Next search starts from this position, not head of list

* Use position 1n the scan as a surrogate for age

* No extra page faults, usually scan only a few pages /
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flock Algorithm Page Replacemeﬁ

Reference Stream
alblc|d|a
LRU clogk

1 2

e|lfla|blc|d|a|e|d

U

d
3 4 5 6 7 8 9 1011 12 13 14 15

frame 0 | a S
frame 1 b R
frame 2 C
frame 3 d !
clock ol 1l213]0]0]0
pos

Loads 4
Replacements 7

\ /
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/ Comparing True LRU To Clock\

Algorithm

Same number of loads and replacements
— But didn’t replace the same pages

What, if anything, does that mean?

Both are just approximations to the optimal

If LRU clock’s decisions are 98% as good as

true LRU

— And can be done for 1% of the cost (1n hardware

and cycles)
— It’s a bargain!
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/~  PageReplacementand ™\

Multiprogramming

* We don’t want to clear out all the page frames
on each context switch

 How do we deal with sharing page frames?
* Possible choices:

— Single global pool

— Fixed allocation of page frames per process

— Working set-based page frame allocations
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/ Single Global Page Frame Pool\

* Treat the entire set of page frames as a shared
resource

* Approximate LRU for the entire set
* Replace whichever process’ page 1s LRU
* Probably a mistake

— Bad interaction with round-robin scheduling

— The guy who was last 1n the scheduling queue will
find all his pages swapped out

— And not because he 1sn’t using them

.. — When he gets 1n, lots of page faults L
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/ Per-Process Page Frame Pools \

* Set aside some number of page frames for each
running process

— Use an LRU approximation separately for each
 How many page frames per process?
* Fixed number of pages per process 1s bad

— Different processes exhibit different locality

* Which pages are needed changes over time
* Number of pages needed changes over time

— Much like different natural scheduling intervals

\- We need a dynamic customized allocation /
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- ‘Working Sets

________________________________________________

* Give each running process an allocation of page
frames matched to 1ts needs

 How do we know what 1ts needs are?
* Use working sets

* Set of pages used by a process 1n a fixed length
sampling window in the immediate past’

9

* Allocate enough page frames to hold each process
working set

* Each process runs replacement within 1ts own set

'This definition paraphrased from Peter Denning’s definition
CS 111

\

/

Lecture 11

Fall 2015

Page 50



/ The Natural Working Set Size \

Insufficient space
leads to huge
numbers of page

Number
of page
faults

/

. Working set size e
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/ Optimal Working Sets \

* What 1s optimal working set for a process?
— Number of pages needed during next time slice

* What if try to run the process in fewer pages?

— Needed pages will replace one another
continuously

— Thus 1s called thrashing
* How can we know what working set size 1s?

— By observing the process’ behavior

* Which pages should be 1in the working-set?

— No need to guess, the process will fault for them,,,
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/ Implementing Working Sets \

* Manage the working set size
— Assign page frames to each in-memory process
— Processes page against themselves in working set
— Observe paging behavior (faults per unit time)
— Adjust number of assigned page frames accordingly

* Page stealing algorithms
— E.g., Working Set-Clock
— Track last use time for each page, for owning process
— Find page least recently used (by its owner)

— Processes that need more pages tend to get more

— Processes that don't use their pages tend to lose them /
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/ Thrashing

* Working set size characterizes each process

— How many pages it needs to run for T milliseconds

* What if we don’t have enough memory?
— Sum of working sets exceeds available memory

— We will thrash unless we do something

* We cannot squeeze working set sizes
— This will also cause thrashing
* Reduce number of competing processes

— Swap some of the ready processes out
— To ensure enough memory for the rest to run

\° We can round-robin who 1s in and out
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/ Pre-Loading

* What happens when a process comes in from
disk?
* Pure swapping?
— All pages present before process 1s run, no page faults
* Pure demand paging?
— Pages are only brought in as needed

— Fewer pages per process, more processes in memory

* What if we pre-loaded the last working set?

— Far fewer pages to be read in than swapping

— Probably the same disk reads as pure demand paging

«  Far fewer initial page faults than pure demand paging

\

/

Lecture 11

Fall 2015

Page 55



/ Clean Vs. Dirty Pages \

* Consider a page, recently paged in from disk
— There are two copies, one on disk, one in memory

* If the in-memory copy has not been modified, there 1s
still a valid copy on disk
— The in-memory copy is said to be “clean”
— Clean pages can be replaced without writing them back to

disk

* If the in-memory copy has been modified, the copy

on disk 1s no longer up-to-date

— The mn-memory copy is said to be “dirty”

— If swapped out of memory, must be written to disk /
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/Dirty Pages and Page Replacemeth

* Clean pages can be replaced at any time
— The copy on disk 1s already up to date

* Dirty pages must be written to disk before the
frame can be reused

— A slow operation we don’t want to wait for

* Could only swap out clean pages
— But that would limit flexibility

* How to avoid being hamstrung by too many
dirty page frames in memory? )
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/ Pre-Emptive Page Laundering \

* Clean pages give memory scheduler flexibility

— Many pages that can, if necessary, be replaced

* We can increase flexibility by converting dirty
pages to clean ones

* Ongoing background write-out of dirty pages

— Find and write-out all dirty, non-running pages
* No point in writing out a page that is actively in use

— On assumption we will eventually have to page out

— Make them clean again, available for replacement

\' An outgoing equivalent of pre-loading /

CS 111 Lecture 11
Fall 2015 Page 58




/ Paging and Shared Segments \

* Some memory segments will be shared

— Shared memory, executables, DLLs

* Created/managed as mappable segments

— One copy mapped into multiple processes
— Demand paging same as with any other pages
— Secondary home may be 1n a file system

* Shared pages don't fit working set model

— May not be associated with just one process

— Global LRU may be more appropriate
\ — Shared pages often need/get special handling Ll

CS 111
Fall 2015 Page 59




