-

Memory Management
CS 111
Operating Systems
Peter Rether

\

/ [Outline} \

* What is memory management about?

* Memory management strategies:
— Fixed partition strategies
— Dynamic domains
— Buffer pools
— Garbage collection

— Memory compaction

CS 111 Lecture 10
Fall 2015 Page 2

/ [Memory Management}

* Memory is one of the key assets used in
computing

* In particular, memory abstractions that are
usable from a running program

— Which, in modern machines, typically means
RAM

* We have a limited amount of it

* Lots of processes want to use it

\- How do we manage 1ts use?

CS 111

Fall 2015

\

Lecture 10
Page 3

/ What Is Memory Used For? \

Anything that a program or the OS needs to access

— Except control and temporary values, which are kept in
registers

The code

— To allow the process to execute instructions

 The stack

— To keep track of its state of execution

The heap

— To hold dynamically allocated variables

\° Buftfers and other OS data structures /

CS 111 Lecture 10
Fall 2015 Page 4

/ Aspects of the Memory
Management Problem

* Most processes can’t perfectly predict how much
memory they will use

* The processes expect to find their existing data when
they need it where they left it

* The entire amount of data required by all processes
may exceed amount of available physical memory

* Switching between processes must be fast
— Can’t afford much delay for copying data

* The cost of memory management itself must not be
too high /

CS 111 Lecture 10
Fall 2015 Page 5

/[Memory Management Strategies}\

Domains and fixed partition allocations
Dynamic domains

Paging
Virtual memory
We’ll talk about the last two 1n the next class

CS 111

Fall 2015

Lecture 10
Page 6

* Pre-allocate partitions for n processes

— Usually one partition per process
* So n partitions

e Partitions come 1n one or a few set sizes

* Very easy to implement
—Common 1n old batch processing systems

N Well suited to well-known job mix

CS 111
Fall 2015

—Reserving space for largest possible process

— Allocation/deallocation very cheap and easy

/

Lecture 10
Page 7

/~ Memory Protection and Fixed ™\

Partitions
* Need to enforce partition boundaries

— To prevent one process from accessing another’s
memory

* Could use hardware similar to domain registers
for this purpose

* On the flip side, hard to arrange for shared
memory
— Especially 1f only one segment per process

Lecture 10

CS 111
Page 8

Fall 2015

/ Problems With Fixed Partition \

Allocation

* Presumes you know how much memory will
be used ahead of time

* Limits the number of processes supported to
the total of their memory requirements

* Not great for sharing memory
* Fragmentation causes inefficient memory use

Lecture 10

CS 111
Page 9

Fall 2015

/ Fragmentation \

* A problem for all memory management
systems

— Fixed partitions suffer it especially badly

* Based on processes not using all the memory
they requested

* As aresult, you can’t provide memory for as
many processes as you theoretically could

CS 111 Lecture 10
Fall 2015 Page 10

/ Fragmentation Example \

Let’s say there are three processes, A, B, and C
Their memory requirements: Available partition sizes:

A: 6 MBytes 8 Mbytes
B: 3 MBytes 4 Mbytes
waste 2MB C: 2 MBytes 4 Mbytes

Total waste = 2MB + 1MB + 2MB =
5/16MB = 31%

waste 1MB waste 2MB

Partition 1 Partition 2 Partition 3 /

Cs 111 EMB 4MB 4MB Lecture 10
Fall 2015 Page 11

/ Internal Fragmentation \

* Fragmentation comes 1n two kinds:

— Internal and external

* This 1s an example of internal fragmentation

— We’ll see external fragmentation later

* Wasted space in fixed sized blocks

— The requestor was given more than he needed

— The unused part 1s wasted and can’t be used for
others

* Internal fragmentation can occur whenever you
force allocation 1n fixed-sized chunks /

CS 111 Lecture 10
Fall 2015 Page 12

/ More on Internal Fragmentation\

* Internal fragmentation 1s caused by a mismatch
between

— The chosen sizes of a fixed-sized blocks

— The actual sizes that programs use
* Average waste: 50% of each block

* Overall waste reduced by multiple sizes

— Suppose blocks come 1n sizes S1 and S2
— Average waste = ((S1/2) + (S2 - S1)/2)/2

CS 111 Lecture 10
Fall 2015 Page 13

/ Multiple Fixed Partitions \

* You could allow processes to request multiple
partitions
— Of a single or a few sizes
* Doesn’t really help the fragmentation problem
— Now there are more segments to fragment

— Even 1f each contained less memory

CS 111 Lecture 10
Fall 2015 Page 14

/ Summary of Fixed Partition \

Allocation
* Very simple
* Inflexible
* Subject to a lot of internal fragmentation

* Not used 1n many modern systems

— But a possible option for special purpose systems,
like embedded systems

— Where we know exactly what our memory needs
will be

CS 111 Lecture 10
Fall 2015 Page 15

__

* A concept covered 1n a previous lecture

— We’ll just review i1t here

* Domains are regions of memory made
available to a process
— Variable sized, usually any size requested
— Each domain 1s contiguous in memory addresses
— Domains have access permissions for the process
— Potentially shared between processes

* Each process could have multiple domains

— With different sizes and characteristics Loctume 10

CS 111
Fall 2015 Page 16

/ Accessing Domains \

* The process 1ssues a memory address

* The address 1s checked against the domain
registers specifying the process’ access

— If address is in one of the process’ domains with
proper access permissions, allow access

— Otherwise don’t

— Failures due to access permission problems are
permission exceptions

— Failures due to requesting an address not 1n your
domain are illegal address exceptions /

CS 111 Lecture 10
Fall 2015 Page 17

/ The Domain Concept \

Domain
Register
S
Processor
J—
\ 1
«— i
D E 5
CS 111 B, ey > S— -7 Lecture 10

Fall 2015 Page 18

/ Problems With Domains \

 Not relocatable

— Once a process has a domain, you can’t easily
move its contents elsewhere

* Not easily expandable

* Impossible to support applications with larger
address spaces than physical memory

— Also can’t support several applications whose total
needs are greater than physical memory

* Also subject to fragmentation

CS 111

Lecture 10
Fall 2015

Page 19

/ Relocation and Expansion \

* Domains are tied to particular address ranges
— At least during an execution

* Can’t just move the contents of a domain to
another set of addresses

— All the pointers 1n the contents will be wrong

— And generally you don’t know which memory
locations contain pointers

* Hard to expand because there may not be
space “nearby” /

CS 111 Lecture 10
Fall 2015 Page 20

/ The Expansion Problem \

* Domains are allocated on request
* Processes may ask for new ones later

* But domains that have been given are fixed

— Can’t be moved somewhere else in memory

* Memory management system might have
allocated all the space after a given domain

* In which case, 1t can’t be expanded

CS 111 Lecture 10
Fall 2015 Page 21

/ [llustrating the Problem \

Now Process B wants to
expand its domain size

But 1f we do that, Process
B steps on Process C’s
memory
We can’t move C’s
domain out of the way

And we can’t move B’s
domain to a free area
We’re stuck, and must deny an expansion request
that we have enough memory to handle /

CS 111 Lecture 10
Fall 2015 Page 22

/ Address Spaces Bigger Than \
Physical Memory

* If a process needs that much memory, how
could you possibly support it?
* Two possibilities:

1. It’s not going to use all the memory 1t’s asked for,
or at least not all simultaneously

2. Maybe we can use something other than physical
memory to store some of it

* Domains are not friendly to either option

CS 111 Lecture 10
Fall 2015 Page 23

/“How To Keep Track of Variable ™
S1zed Domains?

Start with one large “heap” of memory

* Maintain a free list

— Systems data structure to keep track of pieces of
unallocated memory

* When a process requests more memory:
— Find a large enough chunk of memory
— Carve off a piece of the requested size
— Put the remainder back on a free [ist

* When a process frees memory
— Put 1t back on the free list /

CS 111 Lecture 10
Fall 2015 Page 24

/ Managing the Free List \

* Fixed sized blocks are easy to track
— A bit map indicating which blocks are free

* Variable chunks require more information
— A linked list of descriptors, one per chunk

— Each descriptor lists the size of the chunk and
whether it 1s free

— Each has a pointer to the next chunk on list
— Descriptors often kept at front of each chunk

\' Allocated memory may have descriptors too /

CS 111 Lecture 10
Fall 2015 Page 25

/ The Free List \
e A

List might
contain all
memory

fragments

...or only
fragments

that are
free /

1h'h

CS 111 Lecture 10
Fall 2015 Page 26

/ Free Chunk Carving

1. Find a large enough free -

chunk

2. Reduce 1ts len to
requested size
3.Create a new
header for
residual chunk

4. Insert the new chunk
into the list

N

5. Mark the carved piece
as 1n use

CS 111

~

/

Lecture 10
Page 27

Fall 2015

-

to

Variable Domain and \

Fragmentation

* Variable sized domains not as subject to
internal fragmentation
— Unless requestor asked for more than he will use
— Which is actually pretty common

— But at least memory manager gave him no more

than he requested

* Unlike fixed sized partitions, though, subject

another kind of fragmentation

— External fragmentation

CS 111
Fall 2015

Lecture 10
Page 28

/ External Fragmentation \

We gradually build up small, unusable memory
chunks scattered through memory /

CS 111 Lecture 10
Fall 2015 Page 29

/External Fragmentation: Causes

e So

CS 111
Fall 2015

and Effects

 Each allocation creates lett-over chunks

— Over time they become smaller and smaller

* The small left-over fragments are useless
— They are too small to satisfy any request
— A second form of fragmentation waste

'utions:

Try not to create tiny fragments

Try to recombine fragments into big chunks

Lecture 10
Page 30

/ How To Avoid Creating Small \

Fragments?
* Be smart about which free chunk of memory
you use to satisfy a request

* But being smart costs time

e Some choices:
— Best fit
— Worst fit
— First fit
— Next fit

CS 111 Lecture 10
Fall 2015 Page 31

-

e Se

* D1

CS 111
Fall 2015

Best Fit

arch for the “best fit” chunk

— Smallest size greater than or equal to requested

S1Z¢e

* Advantages:
— Might find a perfect fit

sadvantages:

— Have to search entire list every time
— Quickly creates very small fragments

\

Lecture 10

Page 32

-

CS 111
Fall 2015

Worst Fit

e Search for the “worst fit” chunk

— Largest size greater than or equal to requested size

* Advantages:

— Tends to create very large fragments

... for a while at least

* Disadvantages:

— Still have to search entire list every time

\

Lecture 10

Page 33

/ First Fit

* Take first chunk you find that 1s big enough
* Advantages:

— Very short searches

— Creates random sized fragments

* Disadvantages:
— The first chunks quickly fragment

— Searches become longer

— Ultimately 1t fragments as badly as best fit

CS 111

\

Lecture 10

Fall 2015

Page 34

-~

After each
search, set
guess pointer
to chunk after
the one we
chose.

That is the
point at which
we will begin
our next
search.

CS 111

Next Fit

~

/

Lecture 10

Fall 2015

Page 35

/ Next Fit Properties \

* Tries to get advantages of both first and worst
fit

— Short searches (maybe shorter than first fit)
— Spreads out fragmentation (like worst fit)

* Guess pointers are a general technique

— Think of them as a lazy (non-coherent) cache
— If they are right, they save a lot of time
— If they are wrong, the algorithm still works

— They can be used 1n a wide range of problems /

CS 111 Lecture 10
Fall 2015 Page 36

/ Coalescing Domains \

* All variable sized domain allocation
algorithms have external fragmentation

— Some get 1t faster, some spread 1t out

* We need a way to reassemble fragments
— Check neighbors whenever a chunk is freed
— Recombine free neighbors whenever possible

— Free list can be designed to make this easier
* E.g., where are the neighbors of this chunk?

\- Counters forces of external fragmentation /

CS 111 Lecture 10
Fall 2015 Page 37

/ Free Chunk Coalescing \

PreVious !5
—>
—> o o o

chunk i1s free,
so coalesce

CS 111 Lecture 10

Fall 2015 Page 38

backwards.

-

Next chunk 1s also
free, so coalesce
forwards.

/ Fragmentation and Coalescing \

* Opposing processes that operate 1n parallel
— Which of the two processes will dominate?

* What fraction of space 1s typically allocated?
— Coalescing works better with more free space

* How fast is allocated memory turned over?
— Chunks held for long time cannot be coalesced

* How variable are requested chunk sizes?
— High variability increases fragmentation rate
* How long will the program execute?
— Fragmentation, like rust, gets worse with time)

CS 111 Lecture 10
Fall 2015 Page 39

/" Coalescing and Free List ™\
Implementation

* To coalesce, we must know whether the previous and
next chunks are also free

 If the neighbors are guaranteed to be in the free list,
we can look at them and see 1f they are free

e [f allocated chunks are not in the free list, we must
look at the free chunks before and after us
— And see if they are our contiguous neighbors

— This suggests that the free list must be maintained in
address order

/

CS 111 Lecture 10
Fall 2015 Page 40

/Variable S1zed Domain Summar}x

* Eliminates internal fragmentation

— Each chunk 1s custom-made for requestor

* Implementation 1s more expensive
— Long searches of complex free lists
— Carving and coalescing

* External fragmentation 1s inevitable

— Coalescing can counteract the fragmentation

e Must we choose the lesser of two evils?

CS 111 Lecture 10
Fall 2015 Page 41

/" Another Option N

___ -

* Fixed partition allocations result 1n internal
fragmentation

— Processes don’t use all of the fixed partition

* Dynamic domain allocations result in external
fragmentation

— The elements on the memory free list get smaller
and less useful

e Can we strike a balance 1n between?

CS 111 Lecture 10
Fall 2015 Page 42

/ A Special Case for Fixed | \
Allocations 5

frequency Internal fragmentation results from
mismatches between chunk sizes and request
sizes (which we have assumed to be randomly

distributed)

But if we look at what actually
happens, it turns out that memory

allocation requests aren’t random at
all.

64 256 1K 4K /

CS 111 Lecture 10
Fall 2015 Page 43

/ Why Aren’t Memory Request \
S1zes Randomly Distributed?

* In real systems, some sizes are requested much
more often than others

* Many key services use fixed-size buffers
— File systems (for disk 1/0)
— Network protocols (for packet assembly)

— Standard request descriptors

* These account for much transient use

— They are continuously allocated and freed

\' OS might want to handle them specially /

CS 111 Lecture 10
Fall 2015 Page 44

/ Butter Pools \

* If there are popular sizes,

— Reserve special pools of fixed size buffers
— Satisfy matching requests from those pools

* Benefit: improved efficiency

— Much simpler than variable domain allocation

* Eliminates searching, carving, coalescing
— Reduces (or eliminates) external fragmentation
* But we must know how much to reserve
— Too little, and the buffer pool will become a bottleneck
— Too much, and we will have a lot of unused buffer space

* Only satisfy perfectly matching requests

/

— Otherwise, back to internal fragmentation Lecture 10

CS 111
Fall 2015 Page 45

/ How Are Buffer Pools Used? \

* Process requests a piece of memory for a
special purpose
— E.g., to send a message

* System supplies one element from buffer pool

* Process uses it, completes, frees memory
— Maybe explicitly

— Maybe implicitly, based on how such buffers are
used

\ * E.g., sending the message will free the buffer “behind /

b 29 <
., theprocess’ back™ once the message is gone Lot 10
Fall 2015 Page 46

/Dynamically S1zing Buffer Pools\

* If we run low on fixed sized buffers
— Get more memory from the free list
— Carve 1t up into more fixed sized buffers

 If our free buffer list gets too large
— Return some buffers to the free list

If the free list gets dangerously low
— Ask each major service with a buffer pool to return space

* This can be tuned by a few parameters:
— Low space (need more) threshold
— High space (have too much) threshold
— Nominal allocation (what we free down to)

* Resulting system 1s highly adaptive to changing loads

/

CS 111 Lecture 10
Fall 2015 Page 47

/ Lost Memory \

* One problem with buffer pools 1s memory
leaks
— The process 1s done with the memory
— But doesn’t free it

* Also a problem when a process manages its
OWNn memory space

— E.g., 1t allocates a big area and maintains 1ts own
free list

* Long running processes with memory leaks
can waste huge amounts of memory

CS 111
Fall 2015

Lecture 10
Page 48

/ Garbage Collection

One solution to memory leaks
Don’t count on processes to release memory
Monitor how much free memory we’ve got

When we run low, start garbage collection
— Search data space finding every object pointer
— Note address/size of all accessible objects
— Compute the compliment (what 1s 1naccessible)

— Add all inaccessible memory to the free list

CS 111

\

Lecture 10

Fall 2015

Page 49

/ How Do We Find All \
Accessible Memory?

* Object oriented languages often enable this
— All object references are tagged

— All object descriptors include size information

* It 1s often possible for system resources

— Where all possible references are known
(E.g., we know who has which files open)

* How about for the general case?

CS 111 Lecture 10
Fall 2015 Page 50

/ General Garbage Collection \

* Well, what would you need to do?

* Find all the pointers in allocated memory

* Determine “how much™ each points to

* Determine what 1s and 1s not still pointed to

* Free what 1sn’t pointed to
 Why might that be difficult?

CS 111 Lecture 10
Fall 2015 Page 51

ﬁ’roblems With General Garbage\

Collection
* A location 1n the data or stack segments might
seem to contain addresses, but ...

— Are they truly pointers, or might they be other data
types whose values happen to resemble addresses?

— If pointers, are they themselves still accessible?

— We might be able to infer this (recursively) for
pointers in dynamically allocated structures ...

— But what about pointers 1n statically allocated
(potentially global) areas?

* And how much is “pointed to,” one word or a
million? /

CS 111 Lecture 10
Fall 2015 Page 52

\

* Garbage collection 1s just another way to free
memory
— Doesn’t greatly help or hurt fragmentation

* Ongoing activity can starve coalescing

— Chunks reallocated before neighbors become free

* We could stop accepting new allocations

— But resulting convoy on memory manager would trash
throughput

* We need a way to rearrange active memory

— Re-pack all processes in one end of memory /

CS
Fall 2015

— Create one big chunk of free space at other end

Lecture 10
Page 53

/ Memory Compaction \

N
N

Now let’s
/
swap device compact.
Largest
If est
bl

~.

An obvious /
; /
CS 111 lmp rovem en t' Lecture 10

Fall 2015 Page 54

block

ﬁll This Requires Is Relocation . \

* W

CS 111
Fall 2015

o All

References in the code segment

* The ability to move a process
— From region where 1t was 1nitially loaded

Into a new and different region of memory

hat’s so hard about that?
| addresses 1n the program will be wrong

* Calls and branches to other parts of the code
* References to variables in the data segment

— Plus new pointers created during execution

* That point into data and stack segments

/

Lecture 10
Page 55

/ The Relocation Problem \

* It 1s not generally feasible to re-relocate a
process
— Maybe we could relocate references to code

* If we kept the relocation information around

— But how can we relocate references to data?
* Pointer values may have been changed

* New pointers may have been created

e We could never find/fix all address references

— Like the general case of garbage collection

\° Can we make processes location independent? /

CS 111 Lecture 10
Fall 2015 Page 56

/ Virtual Address Spaces

0x00000000

shared code private data

Virtual address space
(as seen by process)

private stack

OxFFFFFFFF

address translation unit
(magical)

Physical address space
(as on CPU/memory bus)

CS 111

\

/

Lecture 10

Fall 2015

Page 57

/ Memory Segment Relocation \

* A natural model
— Process address space 1s made up of multiple segments

— Use the segment as the unit of relocation

— Long tradition, from the IBM system 360 to Intel x86
architecture

* Computer has special relocation registers
— They are called segment base registers

— They point to the start (in physical memory) of each
segment

— CPU automatically adds base register to every address

* OS uses these to perform virtual address translation
— Set base register to start of region where program is loaded
— If program 1s moved, reset base registers to new location /

« = Program works no matter where its segments are loaded 1coure 10
Fall 2015 Page 58

How Does Segment
Relocation Work?

0x00000000 Virtual address space

shared code private data

private stack

OxFFF! FFFF
code base register data base .egister
aux base rcaister stack base register P hySlC’l] memory
physicdlhs virtugl + base,,, stack
code data
DLL

/

CS 111 Lecture 10
Fall 2015 Page 59

/ Relocating a Segment \

The virtual address of the

stack doesn’t change]
000000000 Let’s say we need to

shared code o
move the stack 1in
physical memory

private data

private stack

OxFFF] FFFF

code base register data base .egister
aux base register stack base register P hySiCCl] memory
physical = virtual + base,, stack
We just change the - =
value 1n the stack P /
CS 111 base register Lecture 10

Fall 2015 Page 60

/ Relocation and Safety \

* Arelocation mechanism (like base registers) 1s good
— It solves the relocation problem
— Enables us to move process segments in physical memory
— Such relocation turns out to be insufficient

* We also need protection
— Prevent process from reaching outside its allocated memory
* E.g., by overrunning the end of a mapped segment
* Segments also need a length (or limit) register
— Specifies maximum legal offset (from start of segment)
— Any address greater than this 1s 1llegal (in the hole)
— CPU should report 1t via a segmentation exception (trap)

/

CS 111 Lecture 10
Fall 2015 Page 61

/ How Much of Our Problem \

Does Relocation Solve?
* We can use variable sized domains

— Cutting down on internal fragmentation

* We can move domains around
— Which helps coalescing be more effective

— But still requires contiguous chunks of data for
segments

— So external fragmentation i1s still a problem

* We need to get rid of the requirement of
contiguous segments /

CS 111 Lecture 10
Fall 2015 Page 62

