
Lecture 1
Page 1

CS 111
Fall 2015

Introduction
CS 111

Operating System Principles
Peter Reiher

Lecture 1
Page 2

CS 111
Fall 2015

Outline

•  Administrative materials
•  Introduction to the course

– Why study operating systems?
– Basics of operating systems

Lecture 1
Page 3

CS 111
Fall 2015

Administrative Issues

•  Instructor and TAs
•  Load and prerequisites
•  Web site, syllabus, reading, and lectures
•  Exams, homework, projects
•  Grading
•  Academic honesty

Lecture 1
Page 4

CS 111
Fall 2015

Instructor: Peter Reiher

•  UCLA Computer Science department faculty
member

•  Long history of research in operating systems
•  Email: reiher@cs.ucla.edu
•  Office: 3532F Boelter Hall

– Office hours: TTh 1-2
– Often available at other times

Lecture 1
Page 5

CS 111
Fall 2015

My OS Background

•  My Ph.D. dissertation was on the Locus
operating system

•  Much research on file systems
– Ficus, Rumor, Truffles, Conquest

•  Research on OS security issues
– Data Tethers, recently

Lecture 1
Page 6

CS 111
Fall 2015

TAs
•  Tuan Le

–  tuanle@cs.ucla.edu

•  Muhammad Mehdi
–  taqi@cs.ucla.edu

•  Guanya Yang
–  guayang@g.ucla.edu

•  Lab sessions:
–  Lab 1A, Fridays 8-10 AM, Boelter 9436
–  Lab 1B, Fridays 10 AM - 12 PM, Boelter 9436
–  Lab 1C, Fridays 10 AM - 12 PM, Boelter 5272

•  Office hours to be announced

Lecture 1
Page 7

CS 111
Fall 2015

Instructor/TA Division of
Responsibilities

•  Instructor handles all lectures, readings, and
tests
– Ask me about issues related to these

•  TAs handle projects
– Ask them about issues related to these

•  Generally, instructor won’t be involved with
project issues
– So direct those questions to the TAs

Lecture 1
Page 8

CS 111
Fall 2015

Web Site
•  http://www.lasr.cs.ucla.edu/classes/111_fall15
•  What’s there:

– Schedules for reading, lectures, exams, projects
– Copies of lecture slides (Powerpoint)
– Announcements
– Sample midterm and final problems

Lecture 1
Page 9

CS 111
Fall 2015

Prerequisite Subject Knowledge

•  CS 32 programming
–  Objects, data structures, queues, stacks, tables, trees

•  CS 33 systems programming
–  Assembly language, registers, memory
–  Linkage conventions, stack frames, register saving

•  CS 35L Software Construction Laboratory
–  Useful software tools for systems programming

•  If you haven’t taken these classes, expect to
have a hard time in 111

Lecture 1
Page 10

CS 111
Fall 2015

Course Format

•  Two weekly (average 20 page) reading assignments
–  Mostly from the primary text
–  A few supplementary articles available on web

•  Two weekly lectures
•  Four (10-25 hour) team projects

–  Exploring and exploiting OS features

•  One design project (10-25 hours)
–  Working off one of the team projects

Lecture 1
Page 11

CS 111
Fall 2015

Course Load
•  Reputation: THE hardest undergrad CS class

– Fast pace through much non-trivial material

•  Expectations you should have
–  lectures 4-6 hours/week
–  reading 3-6 hours/week
– projects 3-20 hours/week
– exam study 5-15 hours (twice)

•  Keeping up (week by week) is critical
– Catching up is extremely difficult

Lecture 1
Page 12

CS 111
Fall 2015

Primary Text for Course

•  Saltzer and Kaashoek: Principles of Computer
Systems Design
– Background reading for most lectures
– Available on line (for free) at

http://www.sciencedirect.com/science/book/9780123749574

•  Probably only on-campus or through the UCLA VPN

•  Supplemented with web-based materials

Lecture 1
Page 13

CS 111
Fall 2015

Course Grading
•  Basis for grading:

–  1 midterm exam 25%
–  Final exam 30%
–  Projects 45%

•  I do look at distribution for final grades
– But don’t use a formal curve

•  All scores available on MyUCLA
– Please check them for accuracy

Lecture 1
Page 14

CS 111
Fall 2015

Midterm Examination

•  When: Second lecture of the 5th week (in class
section)

•  Scope: All lectures up to the exam date
–  Approximately 60% lecture, 40% text

•  Format:
–  Closed book
–  10-15 essay questions, most with short answers

•  Goals:
–  Test understanding of key concepts
–  Test ability to apply principles to practical problems

Lecture 1
Page 15

CS 111
Fall 2015

Final Exam

•  When: Friday, December11, 3-6 PM
•  Scope: Entire course
•  Format:

–  6-8 hard multi-part essay questions
–  You get to pick a subset of them to answer

•  Goals:
–  Test mastery of key concepts
–  Test ability to apply key concepts to real problems
–  Use key concepts to gain insight into new problems

Lecture 1
Page 16

CS 111
Fall 2015

Lab Projects
•  Format:

– 4 regular projects
– 2 mini-projects
– May be done solo or in teams (of two)

•  Goals:
– Develop ability to exploit OS features
– Develop programming/problem solving ability
– Practice software project skills

•  Lab and lecture are fairly distinct
–  Instructor cannot help you with projects
– TAs can’t help with lectures, exams

Lecture 1
Page 17

CS 111
Fall 2015

Design Problems

•  Each lab project contains suggestions for
extensions

•  Each student is assigned one design project
from among the labs
–  Individual or two person team

•  Requires more creativity than labs
– Usually requires some coding

•  Handled by the TAs

Lecture 1
Page 18

CS 111
Fall 2015

Late Assignments & Make-ups

•  Labs
– Due dates set by TAs
– TAs also sets policy on late assignments
– The TAs will handle all issues related to labs

•  Ask them, not me
•  Don’t expect me to overrule their decisions

•  Exams
– Alternate times or make-ups only possible with

prior consent of the instructor

Lecture 1
Page 19

CS 111
Fall 2015

Academic Honesty
•  It is OK to study with friends

–  Discussing problems helps you to understand them
•  It is OK to do independent research on a subject

–  There are many excellent treatments out there
•  But all work you submit must be your own

–  Do not write your lab answers with a friend
–  Do not copy another student's work
–  Do not turn in solutions from off the web
–  If you do research on a problem, cite your sources

•  I decide when two assignments are too similar
–  And I forward them immediately to the Dean

•  If you need help, ask the instructor

Lecture 1
Page 20

CS 111
Fall 2015

Academic Honesty – Projects
•  Do your own projects

–  Work only with your team-mate
–  If you need additional help, ask the TA

•  You must design and write all your own code
–  Other than cooperative work with your team-mate
–  Do not ask others how they solved the problem
–  Do not copy solutions from the web, files or listings
–  Cite any research sources you use

•  Protect yourself
–  Do not show other people your solutions
–  Be careful with old listings

Lecture 1
Page 21

CS 111
Fall 2015

Academic Honesty and the Internet
•  You might be able to find existing answers to

some of the assignments on line
•  Remember, if you can find it, so can we
•  It IS NOT OK to copy the answers from other

people’s old assignments
– People who tried that have been caught and

referred to the Office of the Dean of Students
•  ANYTHING you get off the Internet must be

treated as reference material
–  If you use it, quote it and reference it

Lecture 1
Page 22

CS 111
Fall 2015

Introduction to the Course

•  Purpose of course and relationships to other
courses

•  Why study operating systems?
•  Major themes & lessons in this course

Lecture 1
Page 23

CS 111
Fall 2015

What Will CS 111 Do?
•  Build on concepts from other courses

–  Data structures, programming languages, assembly
language programming, computer architectures, ...

•  Prepare you for advanced courses
–  Data bases and distributed computing
–  Security, fault-tolerance, high availability
–  Network protocols, computer system modeling, queueing

theory

•  Provide you with foundation concepts
–  Processes, threads, virtual address space, files
–  Capabilities, synchronization, leases, deadlock

Lecture 1
Page 24

CS 111
Fall 2015

Why Study Operating Systems?
•  Few of you will actually build OSs
•  But many of you will:

–  Set up, configure, manage computer systems
–  Write programs that exploit OS features
–  Work with complex, distributed, parallel software
–  Work with abstracted services and resources

•  Many hard problems have been solved in OS context
–  Synchronization, security, integrity, protocols, distributed

computing, dynamic resource management, ...
–  In this class, we study these problems and their solutions
–  These approaches can be applied to other areas

Lecture 1
Page 25

CS 111
Fall 2015

Why Are Operating Systems
Interesting?

•  They are extremely complex
–  But try to appear simple enough for everyone to use

•  They are very demanding
–  They require vision, imagination, and insight
–  They must have elegance and generality
–  They demand meticulous attention to detail

•  They are held to very high standards
–  Performance, correctness, robustness,
–  Scalability, extensibility, reusability

•  They are the base we all work from

Lecture 1
Page 26

CS 111
Fall 2015

Recurring OS Themes
•  View services as objects and operations

–  Behind every object there is a data structure
•  Separate policy from mechanism

–  Policy determines what can/should be done
–  Mechanism implements basic operations to do it
–  Mechanisms shouldn’t dictate or limit policies
–  Policies must be changeable without changing mechanisms

•  Parallelism and asynchrony are powerful and
necessary
–  But dangerous when used carelessly

•  Performance and correctness are often at odds

Lecture 1
Page 27

CS 111
Fall 2015

More Recurring Themes
•  An interface specification is a contract

– Specifies responsibilities of producers &
consumers

– Basis for product/release interoperability

•  Interface vs. implementation
– An implementation is not a specification
– Many compliant implementations are possible
–  Inappropriate dependencies cause problems

•  Modularity and functional encapsulation
– Complexity hiding and appropriate abstraction

Lecture 1
Page 28

CS 111
Fall 2015

Life Lessons From Studying
Operating Systems

•  There Ain’t No Such Thing As A Free Lunch! (TANSTAAFL)
–  Everything has a cost, there are always trade-offs
–  But there are bad, expensive lunches . . .

•  Keep It Simple, Stupid!
–  Avoid complex solutions, and being overly clever
–  Both usually create more problems than they solve

•  Be very clear what your goals are
–  Make the right trade-offs, focus on the right problems

•  Responsible and sustainable living
–  Understand the consequences of your actions
–  Nothing must be lost, everything must be recycled
–  It is all in the details

Lecture 1
Page 29

CS 111
Fall 2015

Moving on To Operating
Systems . . .

•  What is an operating system?
•  What does an OS do?
•  How does an OS appear to its clients?

– Abstracted resources
•  Simplifying, generalizing
•  Serially reusable, partitioned, sharable

•  A brief history of operating systems

Lecture 1
Page 30

CS 111
Fall 2015

What Is An Operating System?

•  Many possible definitions
•  One is:

–  It is low level software . . .
– That provides better, more usable abstractions of

the hardware below it
– To allow easy, safe, fair use and sharing of those

resources

Lecture 1
Page 31

CS 111
Fall 2015

What Does an OS Do?

•  It manages hardware for programs
– Allocates hardware and manages its use
– Enforces controlled sharing (and privacy)
– Oversees execution and handles problems

•  It abstracts the hardware
– Makes it easier to use and improves s/w portability
– Optimizes performance

•  It provides new abstractions for applications
– Powerful features beyond the bare hardware

Lecture 1
Page 32

CS 111
Fall 2015

What Does An OS Look Like?
•  A set of management & abstraction services

–  Invisible, they happen behind the scenes
•  Applications see objects and their services

–  CPU supports data-types and operations
•  bytes, shorts, longs, floats, pointers, ...
•  add, subtract, copy, compare, indirection, ...

–  So does an operating system, but at a higher level
•  files, processes, threads, devices, ports, ...
•  create, destroy, read, write, signal, ...

•  An OS extends a computer
–  Creating a much richer virtual computing platform

•  Supporting richer objects, more powerful operations

Lecture 1
Page 33

CS 111
Fall 2015

Where Does the OS Fit In?

Operating System

 System Call Interface

Hardware

 Standard instruction setPrivileged instruction set

(arithmetic, logical, copy, test, flow-control operations, ...)

System Services/Libraries

 Application Binary Interface

(e.g. string, random #s, encryption, graphics ...)

Applications Software
(e.g. word processor, compiler, VOIP program, ...)

Lecture 1
Page 34

CS 111
Fall 2015

What’s Special About the OS?
•  It is always in control of the hardware

–  Automatically loaded when the machine boots
–  First software to have access to hardware
–  Continues running while apps come & go

•  It alone has complete access to hardware
–  Privileged instruction set, all of memory & I/O

•  It mediates applications’ access to hardware
–  Block, permit, or modify application requests

•  It is trusted
–  To store and manage critical data
–  To always act in good faith

•  If the OS crashes, it takes everything else with it
–  So it better not crash . . .

Lecture 1
Page 35

CS 111
Fall 2015

What Functionality Is In the OS?
•  As much as necessary, as little as possible

–  OS code is very expensive to develop and maintain
•  Functionality must be in the OS if it ...

–  Requires the use of privileged instructions
–  Requires the manipulation of OS data structures
–  Must maintain security, trust, or resource integrity

•  Functions should be in libraries if they ...
–  Are a service commonly needed by applications
–  Do not actually have to be implemented inside OS

•  But there is also the performance excuse
–  Some things may be faster if done in the OS

Lecture 1
Page 36

CS 111
Fall 2015

Where To Offer a Service?

•  Hardware, OS, library or application?
•  Increasing requirements for stability as you

move through these options
•  Hardware services rarely change
•  OS services can change, but it’s a big deal
•  Libraries are a bit more dynamic
•  Applications can change services much more

readily

Lecture 1
Page 37

CS 111
Fall 2015

Another Reason For This Choice

•  Who uses it?
•  Things literally everyone uses belong lower in

the hierarchy
– Particularly if the same service needs to work the

same for everyone
•  Things used by fewer/more specialized parties

belong higher
– Particularly if each party requires a substantially

different version of the service

Lecture 1
Page 38

CS 111
Fall 2015

The OS and Speed

•  One reason operating systems get big is based
on speed

•  It’s faster to offer a service in the OS than
outside it

•  Thus, there’s a push to move services with
strong performance requirements down to the
OS

Lecture 1
Page 39

CS 111
Fall 2015

Why Is the OS Faster?

•  Than something at the application level, above
it?
–  If it involves processes communicating, working at

app level requires scheduling and swapping them
– The OS has direct access to many pieces of state

and system services
•  If an operation requires such things, application has to

pay the cost to enter and leave OS, anyway

– The OS can make direct use of privileged
instructions

Lecture 1
Page 40

CS 111
Fall 2015

Is An OS Implementation
Always Faster?

•  Not always
•  Running standard instructions no faster from

the OS than from applications
•  Entering the OS involves some fairly elaborate

state saving and mode changing
•  If you don’t need special OS services, may be

cheaper to manipulate at the app level
– Maybe by an order of magnitude

Lecture 1
Page 41

CS 111
Fall 2015

The OS and Abstraction

•  One major function of an OS is to offer
abstract versions of resources
– As opposed to actual physical resources

•  Essentially, the OS implements the abstract
resources using the physical resources
– E.g., processes (an abstraction) are implemented

using the CPU and RAM (physical resources)
– And files (an abstraction) are implemented using

disks (a physical resource)

Lecture 1
Page 42

CS 111
Fall 2015

Why Abstract Resources?
•  The abstractions are typically simpler and better

suited for programmers and users
–  Easier to use than the original resources

•  E.g., don’t need to worry about keeping track of disk interrupts

–  Compartmentalize/encapsulate complexity
•  E.g., need not be concerned about what other executing code is

doing and how to stay out of its way

–  Eliminate behavior that is irrelevant to user
•  E.g., hide the sectors and tracks of the disk

–  Create more convenient behavior
•  E.g., make it look like you have the network interface entirely for

your own use

Lecture 1
Page 43

CS 111
Fall 2015

Generalizing Abstractions
•  Make many different types appear to be same

–  So applications can deal with single common class
•  Usually involves a common unifying model

–  E.g., portable document format (pdf) for printers
–  Or SCSI standard for disks, CDs and tapes

•  Usually involves a federation framework
–  Per sub-type implementations of standard functions

•  For example:
–  Printer drivers make different printers look the same
–  Browser plug-ins to handle multi-media data

Lecture 1
Page 44

CS 111
Fall 2015

Why Do We Want This Generality?

•  For example, why do we want all printers to
look the same?
– So we could write applications against a single

model, and have it “just work” with all printers
•  What’s the alternative?

– Program our application to know about all possible
printers

–  Including those that were invented after we had
written our application!

Lecture 1
Page 45

CS 111
Fall 2015

Does a General Model Limit Us?

•  Does it stick us with the “least common denominator”
of a hardware type?
–  Like limiting us to the least-featureful of all printers?

•  Not necessarily
–  The model can include “optional features”

•  If present, implemented in a standard way
•  If not present, test for them and do “something” if they’re not there

•  Many devices will have features not in the common
model
–  There are arguments for and against the value of such

features

Lecture 1
Page 46

CS 111
Fall 2015

Common Types of OS Resources

•  Serially reusable resources
•  Partitionable resources
•  Sharable resources

Lecture 1
Page 47

CS 111
Fall 2015

Serially Reusable Resources

•  Used by multiple clients, but only one at a time
– Time multiplexing

•  Require access control to ensure exclusive use
•  Require graceful transitions from one user to

the next
•  Examples: printers, bathroom stalls

Lecture 1
Page 48

CS 111
Fall 2015

What Is A Graceful Transition?

•  A switch that totally hides the fact that the
resource used to belong to someone else
–  Don’t allow the second user to access the

resource until the first user is finished with it
•  No incomplete operations that finish after the

transition

–  Ensure that each subsequent user finds the
resource in “like new” condition

•  No traces of data or state left over from the first user

Lecture 1
Page 49

CS 111
Fall 2015

Partitionable Resources

•  Divided into disjoint pieces for multiple clients
– Spatial multiplexing

•  Needs access control to ensure:
– Containment: you cannot access resources outside

of your partition
– Privacy: nobody else can access resources in your

partition
•  Examples: disk space, hotel rooms

Lecture 1
Page 50

CS 111
Fall 2015

Shareable Resources
•  Usable by multiple concurrent clients

– Clients do not have to “wait” for access to resource
– Clients don’t “own” a particular subset of resource

•  May involve (effectively) limitless resources
– Air in a room, shared by occupants
– Copy of the operating system, shared by processes

•  May involve under-the-covers multiplexing
– Cell-phone channel (time and frequency

multiplexed)
– Shared network interface (time multiplexed)

Lecture 1
Page 51

CS 111
Fall 2015

A Brief History of the
Evolution of Operating Systems

•  Early computers
•  Batch processing
•  Time sharing
•  Work stations, PCs
•  Embedded systems
•  Client/server computing

Lecture 1
Page 52

CS 111
Fall 2015

Early Computers (1940s-1950s)
•  Usage

–  Scheduled for use by one user at a time
•  Input

–  Paper cards, paper tape, magnetic tape, dip switches
•  Output

–  Paper cards, paper tape, print-outs, magnetic tape, lights
•  Software

–  Compilers, assemblers, math packages
–  No “resident” operating system
–  Typically one program resident at a time

•  Debugging
–  In binary, via lights and switches

Lecture 1
Page 53

CS 111
Fall 2015

Batch Computing (1960s)
•  Typified by the IBM System/360 (mid 1960s)

–  Programs submitted and picked up later
–  Input and output spooling to tape and disk

•  Goals: efficient CPU use, maximize throughput
–  Computer was an expensive resource to be shared
–  I/O able to proceed with minimal CPU
–  Overlapped execution and I/O maximize CPU usage
–  Limited multi-tasking ability to minimize idle time

•  Software
–  Batch monitor … to move from one job to the next
–  I/O supervisor … to manage background I/O

•  Debugging (in hex or octal via paper core dumps)
–  Long analysis cycle between test runs

Lecture 1
Page 54

CS 111
Fall 2015

Time Sharing (1970s)

•  Typified by IBM/CMS, Multics, UNIX
– Multi-user, interaction through terminals
– All programs and data stored on disk

•  Goals: sharing for interactive users
–  Interactive apps demand short response time
– Enhanced security required to ensure privacy

•  OS and system services expanded greatly
– Terminal I/O, synchronization, inter-process

communication, networking, protection, etc.

Lecture 1
Page 55

CS 111
Fall 2015

How Do Batch and
Multitasking Differ?

1.  No interaction between tasks in a batch system
•  Each thinks it has the whole computer to itself
•  Parallel tasks in a timesharing system can interact

2.  A timesharing system wants to provide good
interactive response time to every task

•  Which probably means preemptive scheduling
•  Batch systems run each job to completion

–  Queueing theory tells us this can greatly increase average
response time

–  But gives us great utilization of the CPU

Lecture 1
Page 56

CS 111
Fall 2015

Workstations and PCs (1980s)
•  PCs returned to single user paradigm

–  Initially minimal I/O and system services
–  File systems & interactivity from timesharing systems

•  Advent of personal productivity applications
–  High end applications gave rise to workstations

•  Advent of local area networking
–  File transfer and e-mail led to group collaboration
–  The evolution of work groups and work-group servers

•  PCs and workstations “grew together”

•  OS worked for one user, but ran multiple processes
for him

Lecture 1
Page 57

CS 111
Fall 2015

Embedded Systems (1990s)

•  General purpose systems vs. appliances
–  Running software vs. performing a service

•  Many appliances based on computers
–  Video games, CD players, TV signal decoders
–  Telephone switches, avionics, medical imaging

•  Appliances require increasingly powerful OSs
–  Multi-tasking, networking, plug-n-play devices

•  General purpose OS becoming more appliance-like
–  Ultra-high availability, more automation
–  Easier to use, less management intensive

Lecture 1
Page 58

CS 111
Fall 2015

Client/Server Computing (1990s)
•  Computing specifically designed to provide services

across the network
–  To multiple distinct users, but using the same service
–  Centralized file and print servers for work groups
–  Centralized mail, database servers for organizations
–  World Wide Web for everybody
–  Clients got thinner, servers became necessary

•  Wide-Area Networking
–  No longer just on a LAN
–  e-mail, HTML/HTTP and the World Wide Web
–  Electronic business services

Lecture 1
Page 59

CS 111
Fall 2015

Distributed and Cloud
Computing (2000s)

•  Distributed Computing Platforms
–  Single servers couldn’t handle required loads
–  So services offered by/among groups of systems

•  Sometimes load balancing, sometimes functionally divided

–  System services must enable distributed applications

•  More recently, move to general remote
distributed pools of computers
–  Cloud computing
–  Providing arbitrary distributed computing for many users

Lecture 1
Page 60

CS 111
Fall 2015

Ubiquitous and Mobile Computing
•  Modern devices put great computing power in

everyone’s hands
– E.g., a typical tablet or smart phone

•  Networking available in most places
– But at varying qualities
– Perhaps other local sensing and computation, too

•  Most activities require some remote access
– The “powerful” computer may not be able to do

much on its own
– Often primarily an interface device

Lecture 1
Page 61

CS 111
Fall 2015

A Certain Irony

•  Today’s smart phone is immensely more
powerful than 1960s mainframes

•  But we used the mainframes for the biggest
computing tasks we had

•  While we use our powerful smart phones to
move information around and display stuff

•  Which has implications for their operating
systems . . .

Lecture 1
Page 62

CS 111
Fall 2015

General OS Trends
•  They have grown larger and more sophisticated
•  Their role has fundamentally changed

–  From shepherding the use of the hardware
–  To shielding the applications from the hardware
–  To providing powerful application computing platform
–  To becoming a sophisticated “traffic cop”

•  They still sit between applications and hardware
•  Best understood through services they provide

–  Capabilities they add
–  Applications they enable
–  Problems they eliminate

Lecture 1
Page 63

CS 111
Fall 2015

Another Important OS Trend
•  Convergence

– There are a handful of widely used OSs
– New ones come along very rarely

•  OSs in the same family (e.g., Windows or
Linux) are used for vastly different purposes
– Making things challenging for the OS designer

•  Most OSs are based on pretty old models
– Linux comes from Unix (1970s vintage)
– Windows from the early 1980s

Lecture 1
Page 64

CS 111
Fall 2015

Operating Systems for Mobile
Devices

•  What’s down at the bottom for our smart
phones and other devices?

•  For Apple devices, ultimately XNU
– Based on Mach (an 80s system), with some

features from other 80s systems (like BSD Unix)
•  For Android, ultimately Linux
•  For Microsoft, ultimately Windows CE

– Which has its origins in the 1990s
•  None of these is all that new, either

Lecture 1
Page 65

CS 111
Fall 2015

A Resulting OS Challenge

•  We are basing the OS we use today on an
architecture designed 20-40 years ago

•  We can make some changes in the architecture
•  But not too many

– Due to compatibility
– And fundamental characteristics of the architecture

•  Requires OS designers and builders to
shoehorn what’s needed today into what made
sense yesterday

