4 N

Introduction
CS 111
Operating System Principles
Peter Rether

eeeeeee

/ Outline

 Administrative materials

* Introduction to the course
— Why study operating systems?

— Basics of operating systems

\

CS 111

Fall 2015

/ Administrative Issues \

* Instructor and TAs

* Load and prerequisites

* Web site, syllabus, reading, and lectures
* Exams, homework, projects

* Grading

* Academic honesty

\ /

CS 111 Lecture
Fall 2015 Page 3

/ Instructor: Peter Reilher \

* UCLA Computer Science department faculty
member

* Long history of research in operating systems
* Email: rether(@cs.ucla.edu

e Oftice: 3532F Boelter Hall
— Oftice hours: TTh 1-2

— Often available at other times

\ /

CS 111 Lecture 1
Fall 2015 Page 4

/ My OS Background

* My Ph.D. dissertation was on the Locus
operating system

* Much research on file systems
— Ficus, Rumor, Truffles, Conquest

* Research on OS security 1ssues
— Data Tethers, recently

\

CS 111

Fall 2015

/ TAs \

e Tuan Le

— tuanle(@cs.ucla.edu

e Muhammad Mehdi

— tagi(@cs.ucla.edu

* Guanya Yang
— guayang@g.ucla.edu

* Lab sessions:
— Lab 1A, Fridays 8-10 AM, Boelter 9436
— Lab 1B, Fridays 10 AM - 12 PM, Boelter 9436
— Lab 1C, Fridays 10 AM - 12 PM, Boelter 5272 /

% Office hours to be announced Lecture 1

Fall 2015 Page 6

/ Instructor/TA Division of \
Responsibilities

* Instructor handles all lectures, readings, and
tests

— Ask me about 1ssues related to these

* TAs handle projects

— Ask them about issues related to these

* Generally, instructor won’t be involved with
project 1ssues

— So direct those questions to the TAs

\

Cs 111 Lecture 1
Fall 2015 Page 7

/ Web Site \

* http://www.lasr.cs.ucla.edu/classes/111 falll5

e What’s there:

— Schedules for reading, lectures, exams, projects
— Copies of lecture slides (Powerpoint)
— Announcements

— Sample midterm and final problems

\ /

CS 111 Lecture 1
Fall 2015 Page 8

/ Prerequisite Subject Knowledge\

* CS 32 programming

— Objects, data structures, queues, stacks, tables, trees
* CS 33 systems programming

— Assembly language, registers, memory

— Linkage conventions, stack frames, register saving

* CS 35L Software Construction Laboratory
— Useful software tools for systems programming

* If you haven’t taken these classes, expect to
have a hard time 1n 111

\ /

CS 111 Lecture 1
Fall 2015 Page 9

/ Course Format \

Two weekly (average 20 page) reading assignments

— Mostly from the primary text
— A few supplementary articles available on web

* Two weekly lectures

Four (10-25 hour) team projects
— Exploring and exploiting OS features

* One design project (10-25 hours)

— Working off one of the team projects

\ /

CS 111 Lecture 1
Fall 2015 Page 10

/ Course Load \

* Reputation: THE hardest undergrad CS class

— Fast pace through much non-trivial material

* Expectations you should have

— lectures 4-6 hours/week

— reading 3-6 hours/week

— projects 3-20 hours/week
— exam study 5-15 hours (twice)

* Keeping up (week by week) is critical

\ — Catching up 1s extremely difficult

CS 111

Fall 2015

Lecture 1
Page 11

/ Primary Text for Course \

* Saltzer and Kaashoek: Principles of Computer
Systems Design
— Background reading for most lectures

— Available on line (for free) at
http://www.sciencedirect.com/science/book/9780123749574

* Probably only on-campus or through the UCLA VPN

* Supplemented with web-based materials

\ /

Cs 111 Lecture 1
Fall 2015 Page 12

/ Course Grading

* Basis for grading:
— 1 midterm exam 25%

— Final exam 30%
— Projects 45%

* I do look at distribution for final grades

— But don’t use a formal curve

* All scores available on MyUCLA

— Please check them for accuracy

\

CS 111

Fall 2015

Lecture 1
Page 13

/ Midterm Examination \

* When: Second lecture of the 5th week (in class
section)

* Scope: All lectures up to the exam date
— Approximately 60% lecture, 40% text

* Format:
— Closed book
— 10-15 essay questions, most with short answers

e Goals:

— Test understanding of key concepts

\ — Test ability to apply principles to practical problems /

Cs 111 Lecture 1
Fall 2015 Page 14

/ Final Exam \

When: Friday, Decemberl1, 3-6 PM

* Scope: Entire course

* Format:

— 6-8 hard multi-part essay questions

— You get to pick a subset of them to answer
* Goals:

— Test mastery of key concepts
— Test ability to apply key concepts to real problems

— Use key concepts to gain insight into new problems

\ /

CS 111 Lecture 1
Fall 2015 Page 15

/ Lab Projects \

* Format:
— 4 regular projects
— 2 mini-projects
— May be done solo or in teams (of two)
* Goals:
— Develop ability to exploit OS features
— Develop programming/problem solving ability
— Practice software project skills

* Lab and lecture are fairly distinct
\ — Instructor cannot help you with projects)

.., — TAs can’t help with lectures, exams Lot |

Fall 2015 Page 16

/ Design Problems \

* Each lab project contains suggestions for
extensions

* Each student 1s assigned one design project
from among the labs

— Individual or two person team

* Requires more creativity than labs

— Usually requires some coding

* Handled by the TAs

CS 111 Lecture 1
Fall 2015 Page 17

/ Late Assignments & Make-ups \

* Labs
— Due dates set by TAs
— TAs also sets policy on late assignments

— The TAs will handle all 1ssues related to labs
e Ask them, not me
* Don’t expect me to overrule their decisions

e Exams

— Alternate times or make-ups only possible with
\ prior consent of the instructor /

Cs 111 Lecture 1
Fall 2015 Page 18

/ Academic Honesty \

* It1s OK to study with friends
— Discussing problems helps you to understand them

* [It1s OK to do independent research on a subject
— There are many excellent treatments out there

* But all work you submit must be your own
— Do not write your lab answers with a friend
— Do not copy another student's work
— Do not turn in solutions from off the web

— If you do research on a problem, cite your sources

* I decide when two assignments are too similar
— And I forward them immediately to the Dean

\° If you need help, ask the instructor /

Cs 111 Lecture 1
Fall 2015 Page 19

/ Academic Honesty — Projects \

\

CS 111
Fall 2015

* Do your own projects

— Work only with your team-mate
— If you need additional help, ask the TA

* You must design and write all your own code

— Other than cooperative work with your team-mate
— Do not ask others how they solved the problem
— Do not copy solutions from the web, files or listings

— Cite any research sources you use

* Protect yourself

— Do not show other people your solutions
— Be careful with old listings

/

Lecture 1
Page 20

ﬁcademic Honesty and the Interne]

* You might be able to find existing answers to
some of the assignments on line

 Remember, 1f you can find 1it, so can we

* It IS NOT OK to copy the answers from other
people’s old assignments

— People who tried that have been caught and
referred to the Office of the Dean of Students

* ANYTHING you get off the Internet must be
treated as reference material

\ — [f you use it, quote 1t and reference it Leoture |

CS 111
Fall 2015 Page 21

\

CS 111
Fall 2015

/ [Introduction to the Course] \

* Purpose of course and relationships to other

Courscs

* Why study operating systems?
* Major themes & lessons 1n this course

Lecture 1
Page 22

/ What Will CS 111 Do? \

* Build on concepts from other courses

— Data structures, programming languages, assembly
language programming, computer architectures, ...

* Prepare you for advanced courses
— Data bases and distributed computing
— Security, fault-tolerance, high availability

— Network protocols, computer system modeling, queueing
theory

* Provide you with foundation concepts

— Processes, threads, virtual address space, files

\ — Capabilities, synchronization, leases, deadlock

CS 111
Fall 2015

/

Lecture 1
Page 23

——

Why Study Operating Systems?

\ /

* Few of you will actually build OSs

———— —

* But many of you will:
— Set up, configure, manage computer systems
— Write programs that exploit OS features
— Work with complex, distributed, parallel software

— Work with abstracted services and resources

* Many hard problems have been solved in OS context

— Synchronization, security, integrity, protocols, distributed
computing, dynamic resource management, ...

— In this class, we study these problems and their solutions
\ — These approaches can be applied to other areas /

CS 111 Lecture 1
Fall 2015 Page 24

/" Why Are Operating Systems ™\
Interesting?

* They are extremely complex

— But try to appear simple enough for everyone to use
* They are very demanding

— They require vision, imagination, and insight

— They must have elegance and generality

— They demand meticulous attention to detail

* They are held to very high standards

— Performance, correctness, robustness,

— Scalability, extensibility, reusability
* They are the base we all work from /

Cs 111 Lecture 1
Fall 2015 Page 25

\

CS 111
Fall 2015

/ Recurring OS Themes \

View services as objects and operations

— Behind every object there 1s a data structure

Separate policy from mechanism

— Policy determines what can/should be done

— Mechanism implements basic operations to do it

— Mechanisms shouldn’t dictate or limit policies

— Policies must be changeable without changing mechanisms

Parallelism and asynchrony are powerful and
necessary

— But dangerous when used carelessly

Performance and correctness are often at odds /

Lecture 1
Page 26

/ More Recurring Themes \

* An interface specification 1s a contract

— Specifies responsibilities of producers &
consumers

— Basis for product/release interoperability

* Interface vs. implementation
— An 1implementation 1s not a specification
— Many compliant implementations are possible
— Inappropriate dependencies cause problems

* Modularity and functional encapsulation

\

-, — Complexity hiding and appropriate abstraction ...

Fall 2015 Page 27

/ Life Lessons From Studying \
Operating Systems

There Ain’t No Such Thing As A Free Lunch! (TANSTAAFL)

— Everything has a cost, there are always trade-offs

— But there are bad, expensive lunches . . .

Keep It Simple, Stupid!
— Avoid complex solutions, and being overly clever

— Both usually create more problems than they solve

Be very clear what your goals are
— Make the right trade-offs, focus on the right problems

Responsible and sustainable living

— Understand the consequences of your actions

\ — Nothing must be lost, everything must be recycled /

— It 1s all in the details
CS 111 Lecture 1

Fall 2015 Page 28

/ Moving on To Operating \
Systems . . .

* What 1s an operating system?
* What does an OS do?

* How does an OS appear to its clients?

— Abstracted resources
* Simplifying, generalizing
* Serially reusable, partitioned, sharable

* A brief history of operating systems

\ /

CS 111 Lecture 1
Fall 2015 Page 29

\

CS 111
Fall 2015

* Many possible definitions
* One 1s:

— It 1s low level software . . .

— That provides better, more usable abstractions of
the hardware below it

— To allow easy, safe, fair use and sharing of those
resources

Lecture 1

Page 30

/ What Does an OS Do? \

* It manages hardware for programs
— Allocates hardware and manages its use
— Enforces controlled sharing (and privacy)
— Oversees execution and handles problems

* It abstracts the hardware
— Makes it easier to use and improves s/w portability

— Optimizes performance

* It provides new abstractions for applications
\ — Powertul features beyond the bare hardware /

CS 111 Lecture 1
Fall 2015 Page 31

* A set of management & abstraction services
— Invisible, they happen behind the scenes

* Applications see objects and their services
— CPU supports data-types and operations

* bytes, shorts, longs, floats, pointers, ...

* add, subtract, copy, compare, indirection, ...

— So does an operating system, but at a higher level
* files, processes, threads, devices, ports, ...

* create, destroy, read, write, signal, ...

* An OS extends a computer

\ — Creating a much richer virtual computing platform

s 111 * Supporting richer objects, more powerful operations

/ What Does An OS Look Like? \

Fall 2015

/

Lecture 1
Page 32

/ Where Does the OS Fit In? \

Applications Software

(e.g. word processor, compiler, VOIP program, ...)

Application Binary Interface B EOTR—

System Services/Libraries

(e.g. string, random #s, encryption, graphics ...)

Privilegedlinstruction set l Standard instruction pet

Hardware (arithmetic, logical, copy, test, flow-control operations, ...)

CS 111 Lecture 1
Fall 2015 Page 33

/ What’s Special About the OS? \

* [t 1s always in control of the hardware
— Automatically loaded when the machine boots
— First software to have access to hardware
— Continues running while apps come & go

It alone has complete access to hardware

— Privileged instruction set, all of memory & 1/0

It mediates applications’ access to hardware

— Block, permit, or modify application requests

It 1s trusted

— To store and manage critical data

— To always act in good faith

\° If the OS crashes, 1t takes everything else with it /

— So 1t better not crash . . .
CS 111 Lecture 1

Fall 2015 Page 34

/ What Functionality Is In the OS’.N

* As much as necessary, as little as possible

— OS code 1s very expensive to develop and maintain

* Functionality must be 1in the OS 1f 1t ...
— Requires the use of privileged instructions
— Requires the manipulation of OS data structures

— Must maintain security, trust, or resource integrity

* Functions should be 1n libraries if they ...
— Are a service commonly needed by applications

— Do not actually have to be implemented inside OS

\° But there 1s also the performance excuse)

1, — Some things may be faster if done in the OS Lecture 1
Fall 2015 Page 35

/ Where To Offer a Service? \

\

CS 111
Fall 2015

Hardware, OS, library or application?

Increasing requirements for stability as you
move through these options

Hardware services rarely change
OS services can change, but 1t’s a big deal
Libraries are a bit more dynamic

Applications can change services much more
readily

Lecture 1
Page 36

/Another Reason For This Choice\

e Who uses 1t?

* Things literally everyone uses belong lower 1n
the hierarchy

— Particularly if the same service needs to work the
same for everyone

* Things used by fewer/more specialized parties
belong higher

— Particularly if each party requires a substantially
\ different version of the service Y,

CS 111 Lecture 1
Fall 2015 Page 37

/ The OS and Speed \

* One reason operating systems get big 1s based
on speed

e |t’s faster to offer a service in the OS than
outside 1t

* Thus, there’s a push to move services with
strong performance requirements down to the

OS

\ /

CS 111 Lecture 1
Fall 2015 Page 38

/ Why Is the OS Faster?

\

CS 111
Fall 2015

1t?

— If 1t involves processes communicating, working at
app level requires scheduling and swapping them

— The OS has direct access to many pieces of state

— The OS can make direct use of privileged

* Than something at the application level, above

and system services

* If an operation requires such things, application has to

pay the cost to enter and leave OS, anyway

instructions

\

/

Lecture 1

Page 39

/ Is An OS Implementation \

Always Faster?
* Not always

* Running standard instructions no faster from
the OS than from applications

* Entering the OS involves some fairly elaborate
state saving and mode changing

* If you don’t need special OS services, may be
cheaper to manipulate at the app level

— Maybe by an order of magnitude

\ /

CS 111 Lecture 1
Fall 2015 Page 40

* One major function of an OS 1s to offer
abstract versions of resources

— As opposed to actual physical resources
* Essentially, the OS implements the abstract
resources using the physical resources

— E.g., processes (an abstraction) are implemented
using the CPU and RAM (physical resources)

— And files (an abstraction) are implemented using
\ disks (a physical resource)

CS 111
Fall 2015

Lecture 1
Page 41

/ Why Abstract Resources? \

* The abstractions are typically simpler and better
suited for programmers and users
— Easier to use than the original resources
* E.g., don’t need to worry about keeping track of disk interrupts

— Compartmentalize/encapsulate complexity

* E.g., need not be concerned about what other executing code is
doing and how to stay out of its way

— Eliminate behavior that is irrelevant to user
* E.g., hide the sectors and tracks of the disk

— Create more convenient behavior

\ * E.g., make it look like you have the network interface entirely for /

your own use
CS 111 Lecture 1

Fall 2015 Page 42

/ Generalizing Abstractions \

* Make many different types appear to be same

— So applications can deal with single common class

* Usually involves a common unifying model

— E.g., portable document format (pdf) for printers
— Or SCSI standard for disks, CDs and tapes

* Usually involves a federation framework

— Per sub-type implementations of standard functions

* For example:

— Printer drivers make different printers look the same

\ — Browser plug-ins to handle multi-media data /

CS 111 Lecture 1
Fall 2015 Page 43

KV hy Do We Want This Generalitﬁ

* For example, why do we want all printers to
look the same?

— So we could write applications against a single
model, and have 1t “just work™ with all printers

e What’s the alternative?

— Program our application to know about all possible
printers

— Including those that were invented after we had
\ written our application!)

Cs 111 Lecture 1
Fall 2015 Page 44

/Does a General Model Limit Us’.ﬁ

e Does i1t stick us with the “least common denominator”
of a hardware type?
— Like limiting us to the least-featureful of all printers?

* Not necessarily

— The model can include “optional features™

* If present, implemented in a standard way
* If not present, test for them and do “something” 1f they’re not there

* Many devices will have features not 1n the common
model

\ — There are arguments for and against the value of such /

features
CS 111 Lecture 1

Fall 2015 Page 45

/Common Types of OS Resources\

* Serially reusable resources
* Partitionable resources

 Sharable resources

\ /

CS 111 Lecture 1
Fall 2015 Page 46

/ Serially Reusable Resources \

* Used by multiple clients, but only one at a time

— Time multiplexing
* Require access control to ensure exclusive use

* Require graceful transitions from one user to
the next

* Examples: printers, bathroom stalls

\ /

Cs 111 Lecture 1
Fall 2015 Page 47

/ What Is A Gracetul Transition? \

* A switch that totally hides the fact that the
resource used to belong to someone else

— Don’t allow the second user to access the
resource until the first user is finished with it

* No incomplete operations that finish after the
transition
— Ensure that each subsequent user finds the
resource 1n “like new” condition

e No traces of data or state left over from the first user

\ /

CS 111 Lecture 1
Fall 2015 Page 48

/ Partitionable Resources \

* Divided into disjoint pieces for multiple clients
— Spatial multiplexing

e Needs access control to ensure:

— Containment: you cannot access resources outside
of your partition

— Privacy: nobody else can access resources in your
partition

* Examples: disk space, hotel rooms

\ /

CS 111 Lecture 1
Fall 2015 Page 49

/ Shareable Resources \

» Usable by multiple concurrent clients

— Clients do not have to “wait” for access to resource

— Clients don’t “own” a particular subset of resource

* May nvolve (effectively) limitless resources
— Air 1n a room, shared by occupants
— Copy of the operating system, shared by processes

* May involve under-the-covers multiplexing

— Cell-phone channel (time and frequency
multiplexed)

\ — Shared network interface (time multiplexed) Lecture |

CS 111
Fall 2015 Page 50

/ _____ A Brief History of the \
Evolutlon of Operating Systems;

N e e o e m e M M e MEm M M e MEm M M e MEm MEm M R MEm M M e MEm M M R Rmm M M e Rmm M M e Mmm M M e M M e e

. Early computers

* Batch processing

* Time sharing

 Work stations, PCs

* Embedded systems

* Client/server computing

\ /

CS 111 Lecture 1
Fall 2015 Page 51

/ Early Computers (1940s-195 OS)\

* Usage
— Scheduled for use by one user at a time
* Input
— Paper cards, paper tape, magnetic tape, dip switches
* Qutput
— Paper cards, paper tape, print-outs, magnetic tape, lights
* Software
— Compilers, assemblers, math packages

— No “resident” operating system
— Typically one program resident at a time

\° Debugging)
w1, — Inbinary, via lights and switches Lecture 1
Fall 2015 Page 52

/ Batch Computing (1960s) \

* Typified by the IBM System/360 (mid 1960s)

— Programs submitted and picked up later
— Input and output spooling to tape and disk

* @Goals: efficient CPU use, maximize throughput
— Computer was an expensive resource to be shared
— 1/O able to proceed with minimal CPU
— Opverlapped execution and I/O maximize CPU usage
— Limited multi-tasking ability to minimize idle time

* Software

— Batch monitor ... to move from one job to the next
— I/O supervisor ... to manage background I/O

* Debugging (in hex or octal via paper core dumps)

\ — Long analysis cycle between test runs /
CS 111 Lecture 1

Fall 2015 Page 53

/ Time Sharing (1970s) \

* Typified by IBM/CMS, Multics, UNIX

— Multi-user, interaction through terminals

— All programs and data stored on disk

* Goals: sharing for interactive users
— Interactive apps demand short response time
— Enhanced security required to ensure privacy

* OS and system services expanded greatly

— Terminal I/O, synchronization, inter-process
\ communication, networking, protection, etc. /

CS 111 Lecture 1
Fall 2015 Page 54

/ How Do Batch and \

Multitasking Differ?

1. No interaction between tasks 1n a batch system
* Each thinks it has the whole computer to itself
* Parallel tasks in a timesharing system can interact

2. A timesharing system wants to provide good
interactive response time to every task
* Which probably means preemptive scheduling

* Batch systems run each job to completion

— Queueing theory tells us this can greatly increase average
response time

— But gives us great utilization of the CPU

\

CS 111
Fall 2015

/

Lecture 1
Page 55

/ Workstations and PCs (1980s) \

* PCs returned to single user paradigm
— Initially minimal I/O and system services
— File systems & interactivity from timesharing systems

* Advent of personal productivity applications

— High end applications gave rise to workstations

* Advent of local area networking
— File transfer and e-mail led to group collaboration
— The evolution of work groups and work-group servers

* PCs and workstations “grew together”

* OS worked for one user, but ran multiple processes)
\ for him

Cs 111 Lecture 1
Fall 2015 Page 56

/ Embedded Systems (1990s) \

* General purpose systems vs. appliances

— Running software vs. performing a service

* Many appliances based on computers
— Video games, CD players, TV signal decoders

— Telephone switches, avionics, medical imaging

* Appliances require increasingly powerful OSs
— Multi-tasking, networking, plug-n-play devices

* General purpose OS becoming more appliance-like

— Ultra-high availability, more automation

\ — Easier to use, less management intensive /
CS 111 Lecture 1

Fall 2015 Page 57

/Client/ Server Computing (19905)\

* Computing specifically designed to provide services
across the network
— To multiple distinct users, but using the same service
— Centralized file and print servers for work groups
— Centralized mail, database servers for organizations
— World Wide Web for everybody
— Clients got thinner, servers became necessary

* Wide-Area Networking
— No longer just on a LAN
— e-mail, HTML/HTTP and the World Wide Web

\ — Electronic business services /
CS 111 Lecture 1

Fall 2015 Page 58

/ Distributed and Cloud \

Computing (2000s)

* Distributed Computing Platforms

— Single servers couldn’t handle required loads
— So services offered by/among groups of systems

* Sometimes load balancing, sometimes functionally divided

— System services must enable distributed applications

* More recently, move to general remote
distributed pools of computers

— Cloud computing

— Providing arbitrary distributed computing for many users

\

CS 111
Fall 2015

/

Lecture 1
Page 59

/Ubiquitous and Mobile Computing\

* Modern devices put great computing power in
everyone’s hands

— E.g., a typical tablet or smart phone
* Networking available in most places

— But at varying qualities

— Perhaps other local sensing and computation, too

* Most activities require some remote access

— The “powerful” computer may not be able to do
\ much on its own)

«m — Often primarily an interface device Leture |

Fall 2015 Page 60

/ A Certain Irony

\

CS 111
Fall 2015

Today’s smart phone 1s immensely more
powerful than 1960s mainframes

But we used the mainframes for the biggest
computing tasks we had

While we use our powerful smart phones to
move information around and display stuff

Which has implications for their operating
systems . . .

\

Lecture 1

Page 61

/ General OS Trends

* They have grown larger and more sophisticated

* Their role has fundamentally changed
— From shepherding the use of the hardware
— To shielding the applications from the hardware
— To providing powerful application computing platform

— To becoming a sophisticated “traffic cop”
* They still sit between applications and hardware
* Best understood through services they provide

— Capabilities they add
— Applications they enable

— Problems they eliminate
CS 111

\

/

Lecture 1

Fall 2015

Page 62

/ Another Important OS Trend \

* Convergence
— There are a handful of widely used OSs

— New ones come along very rarely

* OSs 1n the same family (e.g., Windows or
Linux) are used for vastly different purposes

— Making things challenging for the OS designer
* Most OSs are based on pretty old models

— Linux comes from Unix (1970s vintage)
\ — Windows from the early 1980s /

CS 111 Lecture 1
Fall 2015 Page 63

/~ Operating Systems for Mobile ™\

Devices
e What’s down at the bottom for our smart
phones and other devices?
* For Apple devices, ultimately XNU

— Based on Mach (an 80s system), with some
features from other 80s systems (like BSD Unix)

* For Android, ultimately Linux
* For Microsoft, ultimately Windows CE
— Which has its origins in the 1990s
\e None of these 1s all that new, either /

CS 111 Lecture 1
Fall 2015 Page 64

/ A Resulting OS Challenge \

* We are basing the OS we use today on an
architecture designed 20-40 years ago

* We can make some changes 1n the architecture

* But not too many
— Due to compatibility

— And fundamental characteristics of the architecture

* Requires OS designers and builders to
shoehorn what’s needed today into what made
sense yesterday

CS 111 Lecture 1
Fall 2015 Page 65

