Processes
CS 111
Operating Systems
Peter Rether

eeeeee

/ ' Outline | \

 Processes and threads

* Going from conceptual to real systems

* How does the OS handle processes and
threads?

* Creating and destroying processes

CS 111 Lecture 5
Fall 2015 Page 2

/ 'Processes and Threads | \

* Threads are a simple concept
* They are used 1n real operating systems

* But they aren’t the actual key interpreter
abstraction of real operating systems

* Systems like Linux and Windows use another
abstraction

— The process

CS 111 Lecture 5
Fall 2015 Page 3

/ What Is a Process? \

* Essentially, a virtual machine for running a
single program

e So i1t contains state

* And resources required to do i1ts work
— Like threads, virtual memory, communications
primitives
* Most machines run multiple processes

— Serially and simultaneously

* A process 1s a running instance of some
program /

CS 111 Lecture 5
Fall 2015 Page 4

/ How Does a Process Differ \

From a Thread?
* Processes are a higher level abstraction

* They can contain multiple threads

— Implying that there can be simultaneous actions
within one program

— Which 1s not possible 1n a thread

* They typically encapsulate an entire running
program

* They are heavier weight

CS 111 Lecture 5
Fall 2015 Page 5

/ The OS and Processes

* There 1s one physical machine and multiple
virtual machines

virtual to physical
* That’s the operating system’s job
* Aspects of the job:

— Safety

— Fairness

— Performance

CS 111

\

* Something must handle proper multiplexing of

Fall 2015

/ What Must the OS Do

For Processes?
Set them up to run properly

Isolate them from other processes

Ensure that all processes get a chance to do
their work

Start and end processes

Share the physical resources properly

CS 111

\

Fall 2015

/ Multiplexing Processes \

* Similar 1n many ways to multiplexing states

* There are one or more physical cores that can
execute threads

* There are a bunch of processes to run
— Each with one or more threads

* The OS must assign processes (and their
threads) to cores

— Switching as necessary

\- This requires setting up process state /

CS 111 Lecture
Fall 2015 Page 8

/ Process State \

 Similar to thread state
e Need information on:

— What instruction to run next
— Where the process’ memory 1s located
— What are the contents of important registers

— What other resources (physical or virtual) are
available to the process

— Perhaps security-related information (like owner)

CS 111 Lecture 5
Fall 2015 Page 9

/ Process State and Registers \

* Several registers required for each process
* General registers

— Operands and results of arithmetic/logical
operations

— Addresses and indexes for operands in memory

* Program counter

— Address of the next instruction to fetch & execute

 Processor status word

— Condition codes, execution mode, other CPU state /

CS 111 Lecture 5
Fall 2015 Page 10

/ Process State and Memory \

I'he memory

I'he memory

N0

N0

I'he memory |

e Eacl
use

CS 111

N0

ding t
ding tl

ding tl

* Processes have several different types of
memory segments

helr code
helr stack

helr data

1 1s somewhat different in 1ts purpose and

Fall 2015

Lecture 5
Page 11

/ Process Code Memory \

 The instructions to be executed to run the
process

* Typically static
— Loaded when the process starts
— Then they never change

e Of known, fixed size

* Often, a lot of the program code will never be
executed by a given process running it

CS 111 Lecture 5
Fall 2015 Page 12

/ Implications for the OS \

* Obviously, memory object holding the code
must allow execution

— Need not be writeable
* Self-modifying code is a bad idea, usually

— Should it be readable?
e (Can use a fixed size domain

— Which can be determined before the process
executes

* Possibility of loading the code on demand y

CS 111 Lecture 5
Fall 2015 Page 13

/ Process Stack Memory \

* Memory holding the run-time state of the
process

* Modern languages and operating systems are
stack oriented
— Routines call other routines

— Expecting to regain control when the called routine
exits

— Arbaitrarily deep layers of calling
\- The stack encodes that Y,

CS 111 Lecture 5
Fall 2015 Page 14

-

CS 111
Fall 2015

Stack Frames

* Each routine that 1s called keeps its relevant
data 1n a stack frame

Its own piece of state

e Stack frames contain:

— Storage for procedure local (as opposed to global)

variables
Storage for invocation parameters
Space to save and restore registers

* Popped off stack when call returns

\

Lecture 5

Page 15

/Characteristics of Stack Memory\

* Of unknown and changing size
— Grows when functions are called

— Shrinks when they return

* Contents created dynamically

— Not the same from run to run
— Often data-dependent

* Not inherently executable

— Contains pointers to code, not code itself

\° A compact encoding of the dynamic state of y
~the process Lectne &

Fall 2015 Page 16

-

CS 111
Fall 2015

Implications for the OS

* The memory domain for the stack must be
readable and writeable

— But need not be executable

* OS must worry about stack overrunning the
memory area 1t’s 1n
— What to do 1f 1t does?

* Extend the domain?
* Kill the process?

\

Lecture 5

Page 17

-

* Al

CS 111
Fall 2015

Process Data Memory

1 the data the process 1s operating on

* Of highly varying size
— During a process run

— From run to run of a program

* Read/write access required
— Usually not execute access

— Few modern systems allow processes to create

new code for their own use

\

Lecture 5

Page 18

/ Implications for the OS \

* Must be prepared to give processes new
domains for dynamic data

— Since you can’t generally predict ahead of time
how much memory a process will need

— Need strategy 1f process asks for more memory
than you can give it

* Should give read/write permission to these
domains

— Usually not execute /

CS 111 Lecture 5
Fall 2015 Page 19

/ Layout of Process in Memory \

0x00000000 OXFFFFFFFF

CS 111 Lecture 5
Fall 2015 Page 20

/ Layout of Process in Memory \

0x00000000 OXFFFFFFFF
* In Unix systems, data segment grows up

* Stack segment grows down
* They aren’t allowed to meet

CS 111 Lecture 5
Fall 2015 Page 21

/Loading Programs Into Processes\

* The program represents a piece of code that
could be executed

* The process 1s the actual dynamic executing
version of the program

* To get from the code to the running version,
you need to perform the loading step

— Initializing the various memory domains we just
mentioned

CS 111

Fall 2015

Lecture 5
Page 22

/ Loading Programs \

* The load module (output of linkage editor)
— All external references have been resolved

— All modules combined into a few segments

— Includes multiple segments (code, data, symbol
table)

* A computer cannot “execute” a load module
— Computers execute instructions in memory

— Memory must be allocated for each segment

— Code must be copied from load module to memory)

CS 111 Lecture 5
Fall 2015 Page 23

/" {Shareable Executablos |)

* Often multiple programs share some code
— E.g., widely used libraries

* Do we need to load a different copy for each
process?
— Not 1f all they’re doing 1s executing the code

* OS can load one copy and make 1t available to
all processes that need it

— Obviously not 1n a writeable domain

CS 111 Lecture 5
Fall 2015 Page 24

/ Some Caveats \

* Code must be relocated to specific addresses

— All processes must use shared code at the same
address

* Only the code segments are sharable

— Each process requires 1ts own copy of writable
data

* Which may be associated with the shared code
— Data must be loaded into each process at start time

CS 111 Lecture 5
Fall 2015 Page 25

/ Shared Libraries \

* Commonly used pieces of code
— Like I/O routines or arithmetic functions

* Some obvious advantages:
— Reduced memory consumption

— Faster program start-ups, since library 1s often
already 1n memory

— Simplified updates

* All programs using it updated by just updating the
library /

CS 111 Lecture 5
Fall 2015 Page 26

/ Limitations of Shared Libraries\

* Not all modules will work 1n a shared library

— They cannot define/include static data storage

* They are read into program memory
— Whether they are actually needed or not

 Called routines must be known at compile-
time
— Only fetching the code 1s delayed until run-time

* Dynamically loaded libraries solve some of
these problems)

CS 111 Lecture 5
Fall 2015 Page 27

/" Layout With Shared Libraries

0x00000000 0x0100000 0x0110000

0x0120000
OXFFFFFFFF

/

CS 111 Lecture 5
Fall 2015 Page 28

/ Dynamically Loadable Libraries\
* DLLs

* Libraries that are not loaded when a process
starts

* Only made available to process if 1t uses them
— No space/load time expended 1f not used

* So action must be taken if a process does
request a DLL routine

* Essentially, need to make 1t look like the
\ library was there all along J

CS 111 Lecture 5
Fall 2015 Page 29

/ Making DLLs Work \

* The program load module includes a Procedure
Linkage Table

— Addresses for routines in DLL resolve to entries in PLT
— Each PLT entry contains a system call to a run-time loader
* First time a routine 1s called, we call run-time loader

— Which finds, loads, and 1nitializes the desired routine
— Changes the PLT entry to be a jump to loaded routine

— Then jumps to the newly loaded routine

* Subsequent calls through that PLT entry go directly

CS 111 Lecture 5
Fall 2015 Page 30

/ Shared Libraries Vs. DLLs \

* Both allow code sharing and run-time binding
* Shared libraries:

— Simple method of linking into programs

— Shared objects obtained at program load time

* Dynamically Loadable Libraries:
— Require more complex linking and loading
— Modules are not loaded until they are needed
— Complex, per-routine 1nitialization possible

* E.g., allocating private data area for persistent local /

variables
CS 111 Lecture 5

Fall 2015 Page 31

/" {How Do Threads Fit n?;

S e e e o e M M M R MEm M R e MEm M M R M M R REm M M R REm M M e m M M M e

* How do multiple threads in the same process
affect layout?

* Each thread has its own registers, PS, PC

 FEach thread must have 1ts own stack area

 Maximum size specified at thread creation

— A process can contain many threads

— They cannot all grow towards a single hole

— Thread creator must know max required stack size

— Stack space must be reclaimed when thread exits /

CS 111 Lecture 5
Fall 2015 Page 32

/ Thread Stack Allocation \

0x00000000

code data thread | thread | thread
stack 1|stack 2|stack 3

0x0120000
OXFFFFFFFF

/

CS 111 Lecture 5
Fall 2015 Page 33

Problems With Fixed Size \

Thread Stacks

Requires knowing exactly how deep a thread

stack can get

— Before we start running the thread
Problematic 1f we do recursion

How can developers handle this limitation?

— The use of threads 1s actually relatively rare

— Generally used to perform well-understood tasks

— Important to keep this limitation in mind when
writing multi-threaded algorithms

CS 111

Fall 2015

Lecture 5
Page 34

/ ‘How Does the OS® \
\Handle Processes?

* The system expects to handle multiple
Processcs
— Each with 1ts own set of resources
— Each to be protected from the others

* Memory management handles stomping on
each other’s memory

— E.g., use of domain registers
e How does the OS handle the other 1ssues?)

CS 111 Lecture 5
Fall 2015 Page 35

/ Basic OS Process Handling \

* The OS will assign processes (or their threads)
to cores

— If more processes than cores, multiplexing them as
needed
* When new process assigned to a core, that core
must be initialized

— To give the process 1llusion that 1t was always
running there

— Without interruption /

CS 111 Lecture 5
Fall 2015 Page 36

/ Process Descriptors \

* Basic OS data structure for dealing with
Processcs
* Stores all information relevant to the process
— State to restore when process 1s dispatched
— References to allocated resources

— Information to support process operations

* Kept in an OS data structure

* Used for scheduling, security decisions,
allocation 1ssues /

CS 111 Lecture 5
Fall 2015 Page 37

/ [L.inux Process Control Block \

* The data structure Linux (and other Unix
systems) use to handle processes

* An example of a process descriptor

* Keeps track of:
— Unique process ID
— State of the process (e.g., running)
— Parent process 1D
— Address space information

— Accounting information y

s And various other things Lecture 3

Fall 2015 Page 38

/ OS State For a Process \

* The state of process's virtual computer
* Registers
— Program counter, processor status word

— Stack pointer, general registers

* Virtual address space
— Text, data, and stack segments

— Sizes, locations, and contents

* All restored when the process 1s dispatched

— Creating the 1llusion of continuous execution /

CS 111 Lecture 5
Fall 2015 Page 39

o e REm R M R REm M R R REm M M R RN M M R REm M M Em R M M R R M M e e e e e ey

——

* OS needs to keep track of what system
resources the process has available

* Extremely important to get this right

— Process expects them to be available when it runs
next

— If OS gives something it shouldn’t, major problem

* OS maintains unforgeable capabilities for
allocated resources

— Encoding 1dentity and resource state
« i Also helpful for reclamation when process ends ecurs

Fall 2015 Page 40

/ Why Unforgeable Capabilities?\

* Process can ask for any resource
* But it shouldn’t always get 1t

* Process must not be able to create 1ts own OS-
level capability to access a resource
— OS must control which ones the process gets
— OS data structures not accessible from user-mode

— Only altered by trusted OS code
* So 1f it’s there, the OS put it there
* And 1t has not been modified by anyone else /

CS 111 Lecture 5
Fall 2015 Page 41

/ [Process Creation] \

* Processes get created (and destroyed) all the
time 1n a typical computer

* Some by explicit user command

* Some by invocation from other running
processes

* Some at the behest of the operating system

 How do we create a new process?

CS 111 Lecture 5
Fall 2015 Page 42

/ Creating a Process Descriptor \

* The process descriptor 1s the OS’ basic per-
process data structure

* So a new process needs a new descriptor
* What does the OS do with the descriptor?
* Typically puts 1t into a process table

— The data structure the OS uses to organize all
currently active processes

CS 111 Lecture 5
Fall 2015 Page 43

/ What Else Does a

New Process Need?
A virtual address space

To hold all of the segments 1t will need
So the OS needs to create one

— And allocate memory for code, data and stack

OS then loads program code and data into new

segments
Initializes a stack segment
Sets up 1nitial registers (PC, PS, SP)

CS 111

\

Lecture 5

Fall 2015

Page 44

/ Choices for Process Creation \

1. Start with a “blank™ process
— No 1nitial state or resources

— Have some way of filling in the vital stuff
* Code

* Program counter, etc.

— This 1s the basic Windows approach
2. Use the calling process as a template

— Give new process the same stuff as the old one
— Including code, PC, etc.

— This 1s the basic Unix/Linux approach /

CS 111 Lecture 5
Fall 2015 Page 45

/ Starting With a Blank Process \

* Basically, create a brand new process

* The system call that creates it obviously needs
to provide some information
— Everything needed to set up the process properly
— At the mimimum, what code 1s to be run
— Generally a lot more than that

* Other than bootstrapping, the new process 1s
created by command of an existing process

CS 111 Lecture 5
Fall 2015 Page 46

/ Windows Process Creation \

* The CreateProcess () system call
* A very flexible way to create a new process

— Many parameters with many possible values

* Generally, the system call includes the name of
the program to run

— In one of a couple of parameter locations

* Different parameters fill out other critical
information for the new process

— Environment information, priorities, etc. L
CS 111 e

Fall 2015 Page 47

/ Process Forking \

* The way Unix/Linux creates processes
* Essentially clones the existing process

* On assumption that the new process is a lot
like the old one

— Most likely to be true for some kinds of parallel
programming

— Not so likely for more typical user computing

CS 111 Lecture 5
Fall 2015 Page 48

/ Why Did Unix Use Forking? \

* Avoids costs of copying a lot of code
— If 1t’s the same code as the parents’. . .
* Historical reasons
— Parallel processing literature used a cloning fork
— Fork allowed parallelism before threads invented
* Practical reasons

— Easy to manage shared resources
» [ike stdin, stdout, stderr

— Easy to set up process pipe-lines (e.g. Is | more)

— Share exclusive-access resources (€.g. tape drives)ecmrz 5

CS 111
Fall 2015 Page 49

/ What Happens After a Fork? \

* There are now two processes
— With different IDs

— But otherwise mostly exactly the same
* How do I profitably use that?
* Program executes a fork

* Now there are two programs

— With the same code and program counter

* Write code to figure out which 1s which

— Usually, parent goes “one way” and child goes)
CS 111 “the Other” Lecture 5

Fall 2015 Page 50

/ Forking and the Data Segments\

* Forked child shares the parent’s code
* But not its stack

— It has 1ts own stack, initialized to match the
parent’s

— Just as 1f a second process running the same
program had reached the same point in 1ts run
* Child should have its own data segment,
though

— Forked processes do not share their data segments |

CS 111 Lecture 5
Fall 2015 Page 51

/ Forking and Copy on Write \

* If the parent had a big data area, setting up a
separate copy for the child 1s expensive

— And fork was supposed to be cheap

* If neither parent nor child write the parent’s
data area, though, no copy necessary

* So set 1t up as copy-on-write

* If one of them writes 1t, then make a copy and
let the process write the copy

— The other process keeps the original /

CS 111 Lecture 5
Fall 2015 Page 52

/ Sample Use of Fork \

if (fork()) {
/* I'm the parent! */
execute parent code

} else {
/* I'm the child! */

execute the child code

}
* Parent and child code could be very different

* In fact, often you want the child to be a totally
different program

—And maybe not share the parent’s resources /

CS 111 Lecture 5
Fall 2015 Page 53

/ But Fork Isn’t What \
I Usually Want!

* Indeed, you usually don’t want another copy of
the same process

* You want a process to do something entirely
different

* Handled with exec
— A Unix system call to “remake” a process

— Changes the code associated with a process

— Resets much of the rest of its state, too
* Like open files /

CS 111 Lecture 5
Fall 2015 Page 54

/ The exec C(Call \

* A Linux/Unix system call to handle the
common case

* Replaces a process’ existing program with a
different one
— New code
— Different set of other resources

— Different PC and stack
* Essentially, called after you do a fork

CS 111 Lecture 5
Fall 2015 Page 55

/ Using exec

if (fork()) {
/* I'm the parent! */
continue with what I was doing before

} else {
/* I'm the child! */

exec (“new program”, <program arguments>);

}
* The parent goes on to whatever 1s next

* The child replaces 1ts code with “new
program”

CS 111

Fall 2015

Lecture 5
Page 56

/Is Exec Really All That Different?\

Fork without exec Fork with exec
if (fork()) { if (fork()) f{
/* I'm the parent! */ /* I'm the parent! */
<execute parent code> <execute parent code>
} else { } else {
/* I'm the child! */ /* I'm the child! */
<execute the child code> exec (‘new_program”,
} <program arguments>);
}
Here, the child code is Here, the child code is an
part of this program entirely separate program
Specified at compile time Potentially not specified
Not a different program until run time
at all A totally different program
cS 111 Lecture 5

Fall 2015 Page 57

/ How Does the OS Handle Exec?\

* Must get rid of the child’s old code
— And 1ts stack and data areas

— Latter 1s easy 1f you are using copy-on-write

e Must load a brand new set of code for that
Process

 Must 1initialize child’s stack, PC, and other
relevant control structure

— To start a fresh program run for the child process

/

CS 111 Lecture 5
Fall 2015 Page 58

New Processes and Threads! |

__

* All processes have at least one thread

— In some older OSes, never more than one

 In which case, the thread 1s not explicitly represented

— In newer OSes, processes typically start with one
thread

* As process executes, 1t can create new threads

 New thread stacks allocated as needed

CS 111 Lecture 5
Fall 2015 Page 59

/A Thread Implementation Choice\

* Threads can be implemented in one of two
ways

1. The kernel implements them
2. User code implements them

— In this case, kernel likely has no explicit notion of
a thread, like older OSes

e These alternatives have fundamental
differences

— Discussed 1n previous class /

CS 111 Lecture 5
Fall 2015 Page 60

/ [Process Termination] \

* Most processes terminate
— All do, of course, when the machine goes down
— But most do some work and then exit before that
— Others are killed by the OS or another process

* When a process terminates, the OS needs to
clean 1t up

— Essentially, getting rid of all of its resources
— In a way that allows simple reclamation

CS 111 Lecture 5
Fall 2015 Page 61

/ Ways That a Process Terminates\

* The process itself exits

* Another process kills 1t
— Typically only the parent can kill 1t

— Using an explicit system call

* The operating system kills it

— E.g., many systems kill all child processes when a
parent process dies

— Or OS can simply point to a process and shoot it
dead

\- The entire machine crashes /

CS 111 Lecture 5
Fall 2015 Page 62

/ Parents, Children, and Process \

Termination
* Often a parent needs to know when a child

terminates

* Parent can 1ssue a system call waiting on the
child’s termination
—E.g., Linux waitpid () system call

— Parent remains 1n a busy loop until child
terminates

* A little difficulty:

— What if the child already terminated before the /
s System call was made? Lecture 5

Fall 2015 Page 63

/ Z.ombie Processes \

* Some systems maintain minimal state for
terminated child processes
* Until parent waits on their termination

— Or parent itself terminates

e Since the zombie child has exited, 1t doesn’t
get run any more

— And 1t uses no resources

— Except an OS process control structure

Lecture 5

CS 111
Page 64

Fall 2015

a What If the Parent I
Doesn’t Clean Up?

* Zombie proliferation

* Each takes up very little state information

* But they can clutter the OS process table

* If the parent ever exits, the zombies go with
him

* Suggests that long-running processes need to
be careful about spawning temporary children

CS 111 Lecture 5
Fall 2015 Page 65

