
Lecture 4 
Page 1 

CS 111 
Fall 2015  

Modularity and Virtualization 
CS 111 

Operating Systems  
Peter Reiher 



Lecture 4 
Page 2 

CS 111 
Fall 2015  

Introduction 

•  Most useful abstractions an OS wants to offer 
can’t be directly realized by hardware 
– The hardware doesn’t do exactly what the 

abstraction requires 
– Multiple pieces of hardware are needed to achieve 

the abstraction 
– The hardware must be shared by multiple instances 

of the abstraction 
•  How do we provide the abstraction to users? 



Lecture 4 
Page 3 

CS 111 
Fall 2015  

Virtualization and Modularity 
•  Use software to make the hardware we have 

look like the abstraction we want 
– That’s virtualization 

•  Divide up the overall system you want into 
well-defined communicating pieces 
– That’s modularity 

•  Using the two techniques allows us to build 
powerful systems from simple components 
– Without making the resulting system 

unmanageably complex  



Lecture 4 
Page 4 

CS 111 
Fall 2015  

What Does An OS Do? 
•  At minimum, it enables one to run applications 
•  Preferably multiple applications on the same 

machine 
•  Preferably several at the same time 
•  At an abstract level, what do we need to do 

that? 
–  Interpreters (to run the code) 
– Memory (to store the code and data) 
– Communications links (to communicate between 

apps and pieces of the system)  



Lecture 4 
Page 5 

CS 111 
Fall 2015  

What Have We Got To Work With? 

•  A processor 
– Maybe multicore 
– Maybe also some device controllers 

•  RAM 
•  Hard disks and other storage devices 
•  Busses and network hardware 
•  Other I/O devices 



Lecture 4 
Page 6 

CS 111 
Fall 2015  

How to Get From What We’ve  
Got to What We Want? 

•  Build abstractions for what we want 
•  Out of the hardware we’ve actually got 
•  Use those abstractions to: 
– Hide messiness 
– Share resources 
– Simplify use 
– Provide safety and security 

•  From one point of view, that’s what an 
operating system is all about 



Lecture 4 
Page 7 

CS 111 
Fall 2015  

Real Hardware Vs. Desirable 
Abstractions 

•  In the last lecture, we looked at some real 
hardware issues 
– With relation to OS requirements 

•  Now let’s see how those can be used to provide 
some useful OS abstractions 



Lecture 4 
Page 8 

CS 111 
Fall 2015  

Starting Simple 
•  We want to run multiple programs 
– Without interference between them 
– Protecting one from the faults of another 

•  We’ve got a multicore processor to do so 
– More cores than programs 

•  We have RAM, a bus, a disk, other simple 
devices 

•  What abstractions should we build to ensure 
that things go well? 



Lecture 4 
Page 9 

CS 111 
Fall 2015  

A Simple System 

Processor	
  1	
   Processor	
  2	
   Processor	
  3	
   Processor	
  4	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Memory	
  

Disk	
  

Network	
  

A machine boundary 



Lecture 4 
Page 10 

CS 111 
Fall 2015  

Things To Be Careful About 

•  Interference between different user tasks 
•  User task failure causing failure of other user 

tasks 
– Worse, causing failure of the overall system 

•  User tasks improperly overusing or misusing 
system resources 
– Need to be sure each task gets a fair share 



Lecture 4 
Page 11 

CS 111 
Fall 2015  

Exploiting Modularity 
•  We’ll obviously have several SW elements to 

support the different user programs 
•  Desirable for each to be modular and self-

contained 
– With controlled interactions 

•  Gives cleaner organization 
•  Easier to prevent problems from spreading 
•  Easier to understand what’s going on  
•  Easier to control each program’s behavior 



Lecture 4 
Page 12 

CS 111 
Fall 2015  

Subroutine Modularity 

•  Why not just organize the system as a set of 
subroutines? 
– All in the same address space 

•  A simplifying assumption 
•  Allowing easy in-memory communication 

•  System subroutines call user program 
subroutines as needed 
– And vice versa 

•  Soft modularity 



Lecture 4 
Page 13 

CS 111 
Fall 2015  

How Would This Work? 
•  Each program would be a self-contained set of 

subroutines 
– Subroutines in the program call each other 
– But not subroutines in other programs 

•  Shared services would be offered by other 
subroutines 
– Which any program can call 
– But which mostly don’t call programs 

•  Perhaps some “master routine” that calls 
subroutines in the various programs 



Lecture 4 
Page 14 

CS 111 
Fall 2015  

What’s Soft About This 
Modularity? 

•  Vital resources are shared 
– Like the RAM 

•  Proper behavior would prevent one program 
from treading on another’s resources 

•  But no system or hardware features prevent it 
•  Maintaining module boundaries requires 

programs to all follow the rules 
– Even if they intend to, they might fail to do so 

because of programming errors 



Lecture 4 
Page 15 

CS 111 
Fall 2015  

Illustrating the Problem 

Processor	
  1	
   Processor	
  2	
   Processor	
  3	
   Processor	
  4	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Memory	
  

Disk	
  

Network	
  

Stack for 
Program 

1 

Stack for 
Program 

4 

Stack for 
Program 

2 

Stack for 
Program 

3 

Now Program 4 is in trouble 
Even though it did nothing wrong itself 



Lecture 4 
Page 16 

CS 111 
Fall 2015  

Hardening the Modularity 
•  How can we more carefully separate the 

several competing programs? 
•  If each were on its own machine, the problem 

is easier 
•  No program can touch another’s resources 
– Except via network messages 

•  Each program would have complete control 
over a full machine 
– No need to worry if some resource is yours or not 



Lecture 4 
Page 17 

CS 111 
Fall 2015  

Illustrating Hard Modularity 

Processor	
  1	
   Processor	
  2	
   Processor	
  3	
   Processor	
  4	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Memory	
  
1	
  

Memory	
  
2	
  

Memory	
  
3	
  

Memory	
  
4	
  

Four separate machines 
Perhaps in very different places 

Each program has its own machine 



Lecture 4 
Page 18 

CS 111 
Fall 2015  

Communications Across Machines 

•  Each machine would send messages to the 
others to communicate 

•  A machine receiving a message would take 
action as it saw fit 
– Typically doing what the sender requested 
– But with no opportunity for sender’s own code to 

run 
•  Obvious opportunities for parallelism 
– And obvious dangers 



Lecture 4 
Page 19 

CS 111 
Fall 2015  

Illustrating Communications 

Processor	
  1	
   Processor	
  2	
   Processor	
  3	
   Processor	
  4	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Memory	
  
1	
  

Memory	
  
2	
  

Memory	
  
3	
  

Memory	
  
4	
  

Network	
  Network	
  Network	
  Network	
  

If Program 1 needs to communicate with Program 4,  

This can’t 
happen! 



Lecture 4 
Page 20 

CS 111 
Fall 2015  

System Services In This Model 
•  Some activities are local to each program 
•  Other services are intended to be shared 
– Like a file system 

•  This functionality can be provided by a client/
server model 

•  The system services are provided by the server 
•  The user programs are clients 
•  The client sends a message to the server to get 

help 



Lecture 4 
Page 21 

CS 111 
Fall 2015  

A Storage Example 

•  A server keeps data persistently for all user 
programs 
– E.g., a file system 

•  User programs act as clients 
– Sending read/write messages to the server 

•  The server responds to reads with the 
requested data 

•  And to writes with acknowledgements of 
completion 



Lecture 4 
Page 22 

CS 111 
Fall 2015  

Advantages of This Modularity  
For a Storage Subsystem 

•  Everyone easily sees the same persistent 
storage 

•  The server performs all actual data accesses 
– So no worries about concurrent writes or read/

write inconsistencies 
•  Server can ensure fair sharing 
•  Clients can’t accidentally/intentionally corrupt 

the entire data store 
– Only things they are allowed to write 



Lecture 4 
Page 23 

CS 111 
Fall 2015  

Benefits of Hard Modularity 
•  With hard modularity, something beyond good 

behavior enforces module boundaries 
•  Here, the physical boundaries of the machine 
•  A client machine literally cannot touch the 

memory of the server 
– Or of another client machine 

•  No error or attack can change that 
– Though flaws in the server can cause problems 

•  Provides stronger guarantees all around 



Lecture 4 
Page 24 

CS 111 
Fall 2015  

Downsides of Hard Modularity 
•  The hard boundaries prevent low-cost 

optimizations 
•  In client/server organizations, doing anything 

with another program requires messages 
–  Inherently more expensive than simple memory 

accesses 
•  If the boundary sits between components 

requiring fast interactions, possibly very bad 
•  A lot of what we do in operating systems 

involves this tradeoff 



Lecture 4 
Page 25 

CS 111 
Fall 2015  

One Other Problem 

•  What if I don’t have enough hardware? 
– Not enough machines to give one to each client 

and server 
– Not enough memory, network capacity, etc. 

•  Am I forced to fall back on sharing machines 
and using soft modularity? 



Lecture 4 
Page 26 

CS 111 
Fall 2015  

Virtualization 

•  A different alternative to providing harder 
modularity 

•  Provide the illusion of a complete machine to 
each program 

•  Use shared hardware to instantiate the various 
virtual machines 

•  System software (i.e., the operating system) 
and perhaps special hardware handle it 



Lecture 4 
Page 27 

CS 111 
Fall 2015  

The Virtualization Concept 
Program	
  1	
  

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Program	
  2	
   Program	
  3	
   Program	
  4	
  

Virtual 
machines  A single 

physical 
machine 



Lecture 4 
Page 28 

CS 111 
Fall 2015  

The Trick in Virtualization 

•  All the virtual machines share the same 
physical hardware 

•  But each thinks it has its own machine 
•  Must be sure that one virtual machine doesn’t 

affect behavior of the others 
–  Intentionally or accidentally 

•  With the least possible performance penalty 
– Given that there will be a penalty merely for 

sharing at all 



Lecture 4 
Page 29 

CS 111 
Fall 2015  

Returning To Our Simple System 

•  We could build a system in which each 
program gets its own virtualized resources 

•  Providing stronger modularity than soft 
– But maybe not quite as hard as true separate 

hardware 
•  If we did that, what abstractions will our 

system need to support? 
– To provide the illusion of exclusive hardware 



Lecture 4 
Page 30 

CS 111 
Fall 2015  

Abstractions for Virtualizing 
Computers 

•  Some kind of interpreter abstraction 
– A thread 

•  Some kind of communications abstraction 
– Bounded buffers 

•  Some kind of memory abstraction 
– Virtual memory 

•  For a virtualized architecture, the operating 
system provides these kinds of abstractions 



Lecture 4 
Page 31 

CS 111 
Fall 2015  

Threads 
•  Encapsulates the state of a running 

computation 
•  So what does it need? 
– Something that describes what computation is to 

be performed 
– Something that describes where it is in the 

computation 
– Something that maintains the state of the 

computation’s data 



Lecture 4 
Page 32 

CS 111 
Fall 2015  

OS Handling of Threads 
•  There will be one (or more) threads for each 

program that is running 
•  The OS must choose which thread to run on 

which of its several processors 
–  If more threads than processors, some threads will 

need to share processors 
– Which implies the OS must be able to cleanly stop 

and start threads 
•  While one thread is using a processor, no other 

thread should interfere with its use 



Lecture 4 
Page 33 

CS 111 
Fall 2015  

Running One Thread 
•  The OS loads its executable code into memory 
•  The OS chooses a processor for the thread 
•  The OS creates control structures for the thread 
– A program counter to point to its first instruction 
– A stack to keep track of its various subroutine calls 
– Possibly other data areas for dynamic memory 

allocations 
•  The OS then transfers control of the processor 

to the thread 



Lecture 4 
Page 34 

CS 111 
Fall 2015  

Time Slicing Virtualization 

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  



Lecture 4 
Page 35 

CS 111 
Fall 2015  

Wait a Minute . . .? 
•  How does the OS do all that? 
•  It’s just a program itself 
– Which implies it needs its own interpreter, 

memory, and communications 
•  It must use the same physical resources as all 

the other threads 
•  Basically, the OS itself is a thread 
– We’ll worry about where it comes from later 

•  It creates and manages other threads 



Lecture 4 
Page 36 

CS 111 
Fall 2015  

The OS and Virtualization 

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Opera9ng	
  
System	
  



Lecture 4 
Page 37 

CS 111 
Fall 2015  

Wait Another Minute . . .? 

•  Weren’t threads supposed to live in separate 
virtual machines? 
– Without interfering with each other? 

•  How can an OS thread set up and handle other 
threads if it can’t touch their virtual machines? 

•  It can’t 
•  The OS is a special thread, with special rights 

and responsibilities 



Lecture 4 
Page 38 

CS 111 
Fall 2015  

Remember Supervisor Mode? 
•  From the last lecture 
•  One of modern processors’ two modes 
•  Supervisor mode has special privileges 
– Which the other user mode does not 

•  Those privileges allow the OS thread to reach 
inside other threads’ virtual machines 

•  Which allows the OS thread to set up and 
control them 
– That’s why controlling who gets to be in 

supervisor mode is very important 



Lecture 4 
Page 39 

CS 111 
Fall 2015  

The Thread Manager 

•  An OS component 
•  Its job is to handle the multiple current threads 

to be run 
•  Primary responsibilities: 
– Starting new threads 
– Ensuring each thread has its own contained 

environment 
– Ensuring fair treatment of all running threads 



Lecture 4 
Page 40 

CS 111 
Fall 2015  

Providing Contained Environments 

•  What must a thread manager control to keep 
each thread isolated from the others? 

•  Well, what can each thread do? 
– Run instructions 

•  Make sure it can only run its own 

– Access some memory 
•  Make sure it can only access its own 

– Communicate to other threads 
•  Make sure communication uses a safe abstraction 



Lecture 4 
Page 41 

CS 111 
Fall 2015  

What Does This Boil Down To? 
•  Running threads have access to certain processor 

registers 
–  Program counter, stack pointer, others 
–  Thread manager must ensure those are all set correctly 

•  Running threads have access to some or all pieces of 
physical memory 
–  Thread manager must ensure that a thread can only touch 

its own physical memory 

•  Running threads can request services (like 
communications) 
–  Thread manager must provide safe access to those services 



Lecture 4 
Page 42 

CS 111 
Fall 2015  

Setting Up a User-Level VM 

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Opera9ng	
  
System	
  

PC PC 

SP 

Status 
info 

What about 
the disk? 

That’s 
handled 

differently, 
and we’ll 
get to that 

later 



Lecture 4 
Page 43 

CS 111 
Fall 2015  

Protecting Threads From  
Each Other 

•  Each thread is supposed to be independent 
•  Other threads should be unable to interfere 

with this one 
– And this one should not interfere with them 

•  Virtualization implies one or more forms of 
sharing of the hardware 
– Sharing makes interference more likely 

•  So how do we keep them safe from each other? 



Lecture 4 
Page 44 

CS 111 
Fall 2015  

Protection via Execution Modes 
•  Normal threads usually run in user mode 
•  Which means they can’t touch certain things 
–  In particular, each others’ stuff 

•  For certain kinds of resources, that’s a problem 
– What if two processes both legitimately need to 

write to the screen? 
– Do we allow unrestricted writing and hope for the 

best? 
– Don’t allow them to write at all? 

•  Instead, trap to supervisor mode 



Lecture 4 
Page 45 

CS 111 
Fall 2015  

Trapping to Supervisor Mode 
•  To allow a program safe access to shared 

resources 
•  The trap goes to trusted code 
– Not under control of the program 

•  And performs well-defined actions 
–  In ways that are safe 

•  E.g., program not allowed to write to the 
screen directly 
– But traps to OS code that writes it safely 



Lecture 4 
Page 46 

CS 111 
Fall 2015  

Modularity and Memory 
•  Clearly, programs must have access to memory 
•  We need abstractions that give them the 

required access 
– But with appropriate safety 

•  What we’ve really got (typically) is RAM 
•  RAM is pretty nice 
– But it has few built-in protections 

•  So we want an abstraction that provides RAM 
with safety 



Lecture 4 
Page 47 

CS 111 
Fall 2015  

What’s the Safety Issue? 

•  We have multiple threads running 
•  Each requires some memory 
•  Modern architectures typically have one big 

pool of RAM 
•  How can we share the same pool of RAM 

among multiple processes? 
– Giving each what it needs 
– Not allowing any to harm the others 



Lecture 4 
Page 48 

CS 111 
Fall 2015  

Domains 

•  A simple memory abstraction 
•  Give each process access to some range of the 

physical memory 
–  Its domain 
– Different domain for each process 

•  Allow process to read/write/execute memory 
in its domain 

•  And not touch any memory outside its domain 



Lecture 4 
Page 49 

CS 111 
Fall 2015  

Mapping Domains 
Program	
  1	
   Program	
  2	
   Program	
  3	
   Program	
  4	
  

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Every process 
gets its own 

piece of memory 

No process can 
interfere with 

other processes’ 
memory 



Lecture 4 
Page 50 

CS 111 
Fall 2015  

What Do Domains Require? 

•  Threads will issue instructions 
– Perhaps using arbitrary memory addresses 

•  Only addresses in the thread’s domain should 
be honored 
–  Issuing any other address should be caught as an 

error 
•  Can’t trust threads to police their own 

addresses 
– System must enforce that 



Lecture 4 
Page 51 

CS 111 
Fall 2015  

Making It Work 
•  Generally requires hardware support 
•  In a simple way, a domain register 
– A processor has perhaps just one 
–  It specifies the domain associated with the thread 

currently using the processor 
– By listing the low and high addresses that bound 

the domain 
•  OK, so we know what the thread’s domain is 
•  Now what? 



Lecture 4 
Page 52 

CS 111 
Fall 2015  

The Memory Manager 

•  Hardware or software that enforces the bounds 
of the domain register 

•  When thread reads or writes an address, 
memory manager checks the domain register 

•  If within bounds, do the memory operation 
•  If not, throw an exception 
•  Only trusted code (i.e., the OS) can change the 

domain register 



Lecture 4 
Page 53 

CS 111 
Fall 2015  

Illegal Memory Reference 
Exceptions 

•  The exception that gets thrown when a thread 
asks for memory not in its domain 
– Giving access might screw up another program 

•  What happens then? 
•  Trap to supervisor mode 
– To handle the problem safely 



Lecture 4 
Page 54 

CS 111 
Fall 2015  

The Domain Register Concept 

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Program	
  1	
   Program	
  4	
  

Domain 
Register 

All Program 1 
references 

must be within 
these bounds 

All Program 4 
references 

must be within 
these bounds 

Enforced 
by 

hardware 



Lecture 4 
Page 55 

CS 111 
Fall 2015  

Multiple Domains 

•  Limiting a process to a single domain is not 
too convenient 

•  The concept is easy to extend 
– Simply allow multiple domains per process 

•  Obvious way to handle this is with multiple 
domain registers 
– One per allocated domain 



Lecture 4 
Page 56 

CS 111 
Fall 2015  

The Multiple Domain Concept 
Program	
  1	
  

Processor	
  	
  

Memory	
  	
  

Disk	
  

Network	
  

Domain 
Registers 



Lecture 4 
Page 57 

CS 111 
Fall 2015  

Handling Multiple Domains  
•  Programs can request more domains 
– But the OS must set them up 

•  What does the program get to ask for? 
– A specific range of addresses? 
– Or a domain of a particular size? 

•  Latter is easier  
– What if requested set of addresses are already used 

by another program? 
– Memory manager can choose a range of addresses 

of requested size 



Lecture 4 
Page 58 

CS 111 
Fall 2015  

Domains and Access Permissions 
•  One can typically do three types of things with a 

memory address 
–  Read its contents 
–  Write a new value to it 
–  Execute an instruction located there 

•  System can provide useful effects if it does not allow 
all modes of use to all addresses 

•  Typically handled on a per-domain basis 
–  E.g., read-only domains 

•  Requires extra bits in domain registers 
•  And other hardware support 



Lecture 4 
Page 59 

CS 111 
Fall 2015  

What If Program Uses a Domain 
Improperly? 

•  E.g., it tries to write to a read-only domain 
•  A permission error exception 
– Different than an illegal memory reference 

exception 
•  But also handled by a similar mechanism 
•  Probably want it to be handled by somewhat 

different code in the OS 
•  Remember discussion of trap handling in 

previous lecture? 



Lecture 4 
Page 60 

CS 111 
Fall 2015  

Do We Really Need to Switch 
Processes for OS Services? 

•  When we trap or make a request for a domain, 
must we change processes? 
– We lose context doing so 

•  Instead, run the OS code for the process 
– Which requires changing to supervisor mode 
– Context for process is still available 

•  But what about safety? 
– Use domain access modes to ensure safety 

•  We don’t do this for all OS services . . . 



Lecture 4 
Page 61 

CS 111 
Fall 2015  

Domains in Kernel Mode 
•  Allow user threads to access certain privileged 

domains 
– Such as code to handle hardware traps 
– Such code must be in a domain accessible to the 

user thread 
•  But can’t allow arbitrary access to those 

privileged domains 
•  A supervisor (AKA kernel) mode access bit is 

set on such domains 
– So thread only accesses them when in kernel mode 



Lecture 4 
Page 62 

CS 111 
Fall 2015  

How Does a Thread Get  
to Kernel Mode? 

•  Can’t allow thread to arbitrarily put itself in 
kernel mode any time 
– Since it might do something unsafe 

•  Instead, allow entry to kernel mode only in 
specific ways 
–  In particular, only at specific instructions 
– These are called gates 
– Typically implemented in hardware using 

instruction like SVC (supervisor call) 
– Remember trapping to supervisor mode? 


