-

Modularity and Virtualization
CS 111
Operating Systems
Peter Rether

\

eeeeee

/ Introduction| \

e Most useful abstractions an OS wants to offer
can’t be directly realized by hardware

— The hardware doesn’t do exactly what the
abstraction requires

— Multiple pieces of hardware are needed to achieve
the abstraction

— The hardware must be shared by multiple instances
of the abstraction

* How do we provide the abstraction to users?)

CS 111 Lecture 4
Fall 2015 Page 2

/ Virtualization and Modularity \

e Use software to make the hardware we have
look like the abstraction we want

— That’s virtualization

* Divide up the overall system you want into
well-defined communicating pieces
— That’s modularity

* Using the two techniques allows us to build
powerful systems from simple components

— Without making the resulting system y
... unmanageably complex y

Fall 2015

/ What Does An OS Do? \

* At minimum, 1t enables one to run applications

* Preferably multiple applications on the same
machine

* Preferably several at the same time

At an abstract level, what do we need to do
that?

— Interpreters (to run the code)

— Memory (to store the code and data)

— Communications links (to communicate between)
.., apps and pieces of the system) o

Fall 2015 Page 4

KV hat Have We Got To Work Witl‘ﬁ

* A processor
— Maybe multicore

— Maybe also some device controllers
« RAM
* Hard disks and other storage devices
* Busses and network hardware

e Other I/0O devices

CS 111 Lecture 4
Fall 2015 Page 5

/ How to Get From What We’ve \
Got to What We Want?

 Build abstractions for what we want
* Out of the hardware we’ve actually got
e Use those abstractions to:

— Hide messiness
— Share resources
— Simplify use

— Provide safety and security

* From one point of view, that’s what an
operating system is all about /

CS 111 Lecture 4
Fall 2015 Page 6

/ Real Hardware Vs. Desirable \

Abstractions
* In the last lecture, we looked at some real
hardware 1ssues
— With relation to OS requirements

* Now let’s see how those can be used to provide
some useful OS abstractions

CS 111 c
Fall 2015 Page 7

/ Starting Simple]

* We want to run multiple programs

— Without interference between them
— Protecting one from the faults of another

* We’ve got a multicore processor to do so
— More cores than programs

* We have RAM, a bus, a disk, other simple
devices

 What abstractions should we build to ensure
\ that things go well?

CS 111

\

Fall 2015

A Simple System

-

Program 1

Processor 1

Processor 2

Processor 3

Processor 4

~

~_ " Memory [Network]
Disk
N
Cs 111 A machine boundary Lecture 4
Fall 2015 Page 9

/ Things To Be Careful About \

e Interference between different user tasks

* User task failure causing failure of other user
tasks

— Worse, causing failure of the overall system

* User tasks improperly overusing or misusing
system resources

— Need to be sure each task gets a fair share

Lecture 4

CS 111
Page 10

Fall 2015

" (Exploiting Modularity]

* We’ll obviously have several SW elements to
support the different user programs

e Desirable for each to be modular and self-
contained

— With controlled interactions
* (1ves cleaner organization

* Easier to prevent problems from spreading

* Easier to understand what’s going on

\- Easier to control each program’s behavior /

CS 111 Lecture 4
Fall 2015 Page 11

/ Subroutine Modularity \

* Why not just organize the system as a set of
subroutines?
— All 1n the same address space
* A simplifying assumption
* Allowing easy in-memory communication
* System subroutines call user program
subroutines as needed

— And vice versa

* Soft modularity)

CS 111 Lecture 4
Fall 2015 Page 12

/" How Would This Work?

* Each program would be a self-contained set of
subroutines
— Subroutines in the program call each other
— But not subroutines in other programs

* Shared services would be offered by other
subroutines

— Which any program can call
— But which mostly don’t call programs

* Perhaps some “master routine” that calls
subroutines in the various programs

CS 111 Lecture 4
Fall 2015 Page 13

/ What’s Soft About This \
Modularity?

e Vital resources are shared
— Like the RAM

* Proper behavior would prevent one program
from treading on another’s resources

* But no system or hardware features prevent it

* Maintaining module boundaries requires
programs to all follow the rules

— Even 1f they 1ntend to, they might fail to do so
because of programming errors

CS 111 Lecture 4
Fall 2015 Page 14

/ [llustrating the Problem \

Processor 1 Processor 2 Processor 3 Processor 4

Stack for
Program
") 1 [Network]
Stack for Stack for
Disk Program Program
N —
.
Now Program 4 is in trouble /
Even though it did nothing wrong itself
CS 111 Lecture 4

Fall 2015 Page 15

/ Hardening the Modularity \

 How can we more carefully separate the
several competing programs?

* If each were on its own machine, the problem
1S easier

* No program can touch another’s resources

— Except via network messages

* Each program would have complete control
over a full machine

— No need to worry 1f some resource 1s yours or not /

CS 111 Lecture 4
Fall 2015 Page 16

/ Illustratmg Hard Modularlty \

Processor 1 " | Processor 2 .| Processor 3 ' | Processor 4
Memory Memory Memory Memory
1 2 3 4

__

Four separate machines
Perhaps in very different places

Each program has its own machine /

CS 111 Lecture 4
Fall 2015 Page 17

/Communications ACross MachineR

* Each machine would send messages to the
others to communicate

* A machine receiving a message would take
action as 1t saw fit
— Typically doing what the sender requested

— But with no opportunity for sender’s own code to
run

* Obvious opportunities for parallelism

— And obvious dangers /

CS 111 Lecture 4
Fall 2015 Page 18

/ Illustratmg Commumcatlons \

Processor 2 ThlS can’t E)cessor 4
happen!

[‘ocessor 1

Memory Memory Memory R ory
1 B 2 1 3 1 4
[Net—ork | [Network | [Network | [Network |

1 1
@ i i
1 1
1!
1 1
1 1
1 1
7 \
Vi \
7’ Y

__

If Program 1 needs to communicate with Program 4, . m/ A
CS 111 g 16

Fall 2015 Page 19

/ System Services In This Model\

* Some activities are local to each program

Other services are intended to be shared

— Like a file system

This functionality can be provided by a client/

server model

Tl
T
Tl

e user programs are clients

\ help

CS 111

Fall 2015

e system services are provided by the server

ne client sends a message to the server to get

/

Lecture 4
Page 20

/ A Storage Example \

* A server keeps data persistently for all user
programs

—E.g., a file system
* User programs act as clients

— Sending read/write messages to the server

* The server responds to reads with the
requested data

* And to writes with acknowledgements of
completion

CS 111 Lecture 4
Fall 2015 Page 21

/ Advantages of This Modularity \

For a Storage Subsystem

* Everyone easily sees the same persistent
storage

* The server performs all actual data accesses

— So no worries about concurrent writes or read/
write 1nconsistencies

* Server can ensure fair sharing

* Clients can’t accidentally/intentionally corrupt
the entire data store

— Only things they are allowed to write /

CS 111 Lecture 4
Fall 2015 Page 22

/ Benefits of Hard Modularity \

* With hard modularity, something beyond good
behavior enforces module boundaries

* Here, the physical boundaries of the machine

* A client machine literally cannot touch the
memory of the server
— Or of another client machine

* No error or attack can change that

— Though flaws 1n the server can cause problems

* Provides stronger guarantees all around /

CS 111 Lecture 4
Fall 2015 Page 23

/ Downsides of Hard Modularity\

* The hard boundaries prevent low-cost
optimizations
* In client/server organizations, doing anything
with another program requires messages
— Inherently more expensive than simple memory
dCCCSSCS

* If the boundary sits between components
requiring fast interactions, possibly very bad

* A lot of what we do 1n operating systems
involves this tradeoff

CS 111 Lecture 4
Fall 2015 Page 24

/ One Other Problem \

* What if I don’t have enough hardware?

— Not enough machines to give one to each client
and server

— Not enough memory, network capacity, etc.

 Am I forced to fall back on sharing machines
and using soft modularity?

CS 111 Lecture 4
Fall 2015 Page 25

4 (Virtualization | N\

* A different alternative to providing harder
modularity

* Provide the 1llusion of a complete machine to
each program

 Use shared hardware to instantiate the various
virtual machines

* System software (1.e., the operating system)
and perhaps special hardware handle it

CS 111 Lecture 4
Fall 2015 Page 26

/ The Virtualization Concept \

- ~ - ~ . .

~
\

~
\

. ! Processor :
Virtual ; ;
machines /L \ . Asingle
i . physical
. [Network] P :
' Memory 5 machine
Disk '
N ,, /
CS 111 B - Lecture 4

Fall 2015 Page 27

/ The Trick 1in Virtualization \

e All the virtual machines share the same
physical hardware

 But each thinks 1t has 1ts own machine

e Must be sure that one virtual machine doesn’t
affect behavior of the others

— Intentionally or accidentally

* With the least possible performance penalty

— Given that there will be a penalty merely for
sharing at all

CS 111 Lecture 4
Fall 2015 Page 28

/Returning To Our Simple System\

* We could build a system in which each
program gets its own virtualized resources
* Providing stronger modularity than soft

— But maybe not quite as hard as true separate
hardware

* [f we did that, what abstractions will our
system need to support?

— To provide the 1llusion of exclusive hardware

CS 111 Lecture 4
Fall 2015 Page 29

/ Abstractions for Virtualizing \

Computers
* Some kind of interpreter abstraction
— A thread
* Some kind of communications abstraction
— Bounded buffers
* Some kind of memory abstraction

— Virtual memory

* For a virtualized architecture, the operating
system provides these kinds of abstractions

CS 111 Lecture 4
Fall 2015 Page 30

a “Threads I

—— o e e o o o e e e e = -

- -

* Encapsulates the state of a running
computation

 So what does 1t need?

— Something that describes what computation 1s to
be performed

— Something that describes where it 1s 1n the
computation

— Something that maintains the state of the
computation’s data

/

CS 111 Lecture 4
Fall 2015 Page 31

/ OS Handling of Threads \

* There will be one (or more) threads for each
program that 1s running

* The OS must choose which thread to run on
which of 1ts several processors

— If more threads than processors, some threads will
need to share processors

— Which implies the OS must be able to cleanly stop
and start threads

* While one thread 1s using a processor, no other
thread should interfere with its use /

CS 111 Lecture 4
Fall 2015 Page 32

/ Running One Thread \

* The OS loads 1ts executable code into memory
* The OS chooses a processor for the thread

e The OS creates control structures for the thread

— A program counter to point to its first instruction

— A stack to keep track of its various subroutine calls

— Possibly other data areas for dynamic memory
allocations

* The OS then transfers control of the processor
to the thread /

CS 111 Lecture 4
Fall 2015 Page 33

/" Time Slicing Virtualization)

Program 3
U S

~ - ~ - -

__

Processor
v
[Nawmk]
Memory
Disk
o | /
CS 111 N - - Lecture 4

Fall 2015 Page 34

/ Wait a Minute . . .? \

 How does the OS do all that?
* It’s just a program itself

— Which implies 1t needs its own interpreter,
memory, and communications

* It must use the same physical resources as all
the other threads

* Basically, the OS 1tself 1s a thread

— We’ll worry about where it comes from later

* [t creates and manages other threads)

CS 111 Lecture 4
Fall 2015 Page 35

/ The OS and Virtualization \

Program 3
U S

~ - ~ - -

__

Operating
Svstem Processor

[Network]

Memory

/

CS 111 N e N e Lecture 4
Fall 2015 Page 36

/ Wait Another Minute . . .7 \

* Weren’t threads supposed to live 1n separate
virtual machines?

— Without interfering with each other?

* How can an OS thread set up and handle other
threads 1f 1t can’t touch their virtual machines?

e [tcan’t

* The OS 1s a special thread, with special rights
and responsibilities

CS 111 Lecture 4
Fall 2015 Page 37

/ Remember Supervisor Mode? \

* Supervis
— Which

e Which al

 From the last lecture

* One of modern processors’ two modes

or mode has special privileges

the other user mode does not

* Those privileges allow the OS thread to reach
inside ot

her threads’ virtual machines

lows the OS thread to set up and

control t

1CIMN

— That’s why controlling who gets to be in

cs supervisor mode 1s very important

Fall 2015

Lecture 4
Page 38

/ The Thread Manager \

* An OS component

* Its job 1s to handle the multiple current threads
to be run

* Primary responsibilities:
— Starting new threads

— Ensuring each thread has its own contained
environment

— Ensuring fair treatment of all running threads

CS 111 Lecture 4
Fall 2015 Page 39

@oviding Contained Environmen@

* What must a thread manager control to keep
each thread 1solated from the others?

 Well, what can each thread do?

— Run 1nstructions

* Make sure it can only run its own

— Access some memory

* Make sure 1t can only access its own

— Communicate to other threads

e Make sure communication uses a safe abstraction

CS 111

Fall 2015

Lecture 4
Page 40

/ What Does This Boil Down To?\

* Running threads have access to certain processor
registers
— Program counter, stack pointer, others

— Thread manager must ensure those are all set correctly

* Running threads have access to some or all pieces of
physical memory
— Thread manager must ensure that a thread can only touch
its own physical memory
* Running threads can request services (like
communications)

— Thread manager must provide safe access to those services /)
CS 111 Lecture

Fall 2015 Page 41

/ Setting Up a User-Level VM \

What about
the disk?

Processz SP

That’s
handled
I—I saws | differently,

f i
- Netwo rk " 5 and we’ll
Memory get to that
Disk o later /
CS 111 e Lecture 4

Fall 2015 — o s - Page 42

/ Protecting Threads From \
Each Other

* Each thread 1s supposed to be independent

e Other threads should be unable to interfere
with this one

— And this one should not interfere with them

* Virtualization implies one or more forms of
sharing of the hardware

— Sharing makes interference more likely

* So how do we keep them safe from each other?

CS 111 Lecture 4
Fall 2015 Page 43

/ Protection via Execution Modes\

* Normal threads usually run 1n user mode

* Which means they can’t touch certain things

— In particular, each others’ stuff

* For certain kinds of resources, that’s a problem

— What 1f two processes both legitimately need to
write to the screen?

— Do we allow unrestricted writing and hope for the
best?

— Don’t allow them to write at all?

\'Cslnrllstead, trap to supervisor mode /

Lecture 4
Fall 2015 Page 44

/ Trapping to Supervisor Mode \

* To allow a program safe access to shared
resources

* The trap goes to trusted code
— Not under control of the program
* And performs well-defined actions

— In ways that are safe

* E.g., program not allowed to write to the
screen directly

— But traps to OS code that writes it safely /

CS 111 Lecture 4
Fall 2015 Page 45

/ \

' Modularity and Memory

e e o o e e e R M e e R M M e REm Mmm M R REm M S R MEm M M M MEm M M e MEm M e e M M e e e e

* Clearly, programs must have access to memory

* We need abstractions that give them the
required access

— But with appropriate safety
* What we’ve really got (typically) 1s RAM
* RAM 1s pretty nice

— But 1t has few built-in protections

* So we want an abstraction that provides RAM
\ with safety /

CS 111 Lecture 4
Fall 2015 Page 46

/ What’s the Safety Issue? \

* We have multiple threads running
* Each requires some memory

* Modern architectures typically have one big
pool of RAM

* How can we share the same pool of RAM
among multiple processes?

— G1ving each what 1t needs

— Not allowing any to harm the others

CS 111 Lecture 4
Fall 2015 Page 47

/ Domains \

* A simple memory abstraction

* (1ve each process access to some range of the
physical memory
— Its domain

— Different domain for each process

* Allow process to read/write/execute memory
in 1ts domain

* And not touch any memory outside 1ts domain

CS 111 Lecture 4
Fall 2015 Page 48

P : ______ ~
’ \
1 \
1 1
1 1
1 1

Every process
gets itsown
piece of memory |

CS 111

Mapping Domains

Program 2

P : _______ ~
’ \
1 \
1 1
1 1
1 1

Processor

ork

Fall 2015

e

No process can
: interfere with

- other processes’
' memory

/

Lecture 4

Page 49

/ What Do Domains Require? \

* Threads will 1ssue instructions
— Perhaps using arbitrary memory addresses

* Only addresses in the thread’s domain should
be honored

— Issuing any other address should be caught as an
error

* Can’t trust threads to police their own
addresses

— System must enforce that /

CS 111 Lecture 4
Fall 2015 Page 50

/ Making It Work \

* Generally requires hardware support
* In a sitmple way, a domain register

— A processor has perhaps just one

— It specifies the domain associated with the thread
currently using the processor

— By listing the low and high addresses that bound
the domain
 OK, so we know what the thread’s domain 1s

\° Now what?

CS 111
Fall 2015

Lecture 4
Page 51

/ The Memory Manager \

e Hardware or software that enforces the bounds
of the domain register

 When thread reads or writes an address,
memory manager checks the domain register

* If within bounds, do the memory operation
* If not, throw an exception

* Only trusted code (1.e., the OS) can change the
domain register

CS 111 Lecture 4
Fall 2015 Page 52

/~ lllegal Memory Reference ™\

Exceptions

* The exception that gets thrown when a thread
asks for memory not 1n its domain

— (G1ving access might screw up another program
* What happens then?

* Trap to supervisor mode
— To handle the problem safely

CS 111 Lecture 4
Fall 2015 Page 53

/ The Domain Register Concept \

All Program 1
references
must be within
these bounds

CS 111

o prgama

Program 4
.V

Enforced
by
hardware
Domai
Processc Regis tI:*
// All Program 4
. references
| < ' must be within
ork . these bounds
D
o /

Fall 2015

____________ -7 Lecture 4

Page 54

/ Multiple Domains

* Limiting a process to a single domain 1s not
too convenient

* The concept 1s easy to extend

— Simply allow multiple domains per process

* Obvious way to handle this 1s with multiple
domain registers

— One per allocated domain

CS 111

\

Lecture 4

Fall 2015

Page 55

/ The Multiple Domain Concept \

<£:l7 Domain
U - . Registers

Processor
—
\ 1
<€ - :
D E :
CS 111 S o -7 Lecture 4

Fall 2015 Page 56

/ Handling Multiple Domains \

* Programs can request more domains
— But the OS must set them up

* What does the program get to ask for?
— A specific range of addresses?
— Or a domain of a particular size?
 Latter 1s easier

— What if requested set of addresses are already used
by another program?

\ — Memory manager can choose a range of addresses)
., of requested size ol

Fall 2015 Page 57

/Domains and Access Permissions\

* One can typically do three types of things with a
memory address
— Read its contents
— Write a new value to it

— Execute an instruction located there

* System can provide useful effects 1f 1t does not allow
all modes of use to all addresses

* Typically handled on a per-domain basis
— E.g., read-only domains

* Requires extra bits in domain registers

\° And other hardware support /

CS 111 Lecture 4
Fall 2015 Page 58

ﬁV hat If Program Uses a Domain\
Improperly?
* E.g., 1t tries to write to a read-only domain

* A permission error exception

— Different than an illegal memory reference
exception

* But also handled by a similar mechanism

* Probably want 1t to be handled by somewhat
different code 1n the OS

* Remember discussion of trap handling in
revious lecture? e
CSH11 ecture

Fall 2015 Page 59

/ Do We Really Need to Switch \

Processes tfor OS Services?

* When we trap or make a request for a domain,
must we change processes?

— We lose context doing so

* Instead, run the OS code for the process
— Which requires changing to supervisor mode

— Context for process i1s still available

* But what about safety?

— Use domain access modes to ensure safety

\°CSW6 don’t do this for all OS services . . . /

Lecture 4
Fall 2015 Page 60

/ Domains in Kernel Mode \

* Allow user threads to access certain privileged
domains
— Such as code to handle hardware traps
— Such code must be 1n a domain accessible to the
user thread
* But can’t allow arbitrary access to those
privileged domains

* A supervisor (AKA kernel) mode access bit 1s
set on such domains

— So thread only accesses them when 1n kernel mode /

CS 111 Lecture 4
Fall 2015 Page 61

/ How Does a Thread Get
to Kernel Mode?

* Can’t allow thread to arbitrarily put itself in
kernel mode any time

— Since i1t might do something unsafe
* Instead, allow entry to kernel mode only 1n
specific ways
— In particular, only at specific instructions
— These are called gates

— Typically implemented in hardware using
instruction like SVC (supervisor call)

— Remember trapping to supervisor mode? Lecture 4

CS 111
Fall 2015 Page 62

