
Lecture 3
Page 1

CS 111
Fall 2015

Hardware Issues for Operating
Systems
CS 111

Operating Systems
Peter Reiher

Lecture 3
Page 2

CS 111
Fall 2015

Outline

•  Hardware and the operating system
•  Processor issues
•  Buses and devices

– Disk drives
•  We’ll talk about memory later

Lecture 3
Page 3

CS 111
Fall 2015

Hardware and the
Operating System

•  One of the major roles of the operating system
is to hide details of the hardware
– Messy and difficult details
– Specifics of particular pieces of hardware
– Details that prevent safe operation of the computer

•  OS abstractions are built on the hardware, at
the bottom
– Everything ultimately relies on hardware

•  A major element of OS design concerns HW

Lecture 3
Page 4

CS 111
Fall 2015

OS Abstractions and the Hardware
•  Many important OS abstractions aren’t supported

directly by the hardware
•  Virtual machines

–  There’s one real machine
•  Virtual memory

–  There’s one set of physical memory
–  And it often isn’t as big as even one process thinks it is

•  Typical file abstractions
•  Many others
•  The OS works hard to make up the differences

Lecture 3
Page 5

CS 111
Fall 2015

Hiding Grubby Details
•  Maybe I don’t have floating point hardware
•  Maybe I have a RAID instead of a single hard

disk
•  I might have two printers with different

capabilities
•  I might periodically switch between using

Ethernet or 802.11 for my network
•  My users don’t want to know any of this
•  And couldn’t handle it if they did

Lecture 3
Page 6

CS 111
Fall 2015

Safety Issues

•  If the machine is doing multiprocessing,
failures in one process shouldn’t hurt another

•  If process A divides by zero, that’s not process
B’s problem

•  If process C and process D both ask to get
data off the disk, they should only see their
own data

•  Only the OS knows enough and is trusted
enough to handle safety issues

Lecture 3
Page 7

CS 111
Fall 2015

Processor Issues

•  Execution mode
•  Handling exceptions

Lecture 3
Page 8

CS 111
Fall 2015

Execution Modes

•  Modern CPUs can execute in two different
modes:
– User mode
– Supervisor mode

•  User mode is to run ordinary programs
•  Supervisor mode is for OS use

– To perform overall control
– To perform unsafe operations on the behalf of

processes

Lecture 3
Page 9

CS 111
Fall 2015

User Mode

•  Allows use of all the “normal” instructions
– Load and store general registers from/to memory
– Arithmetic, logical, test, compare, data copying
– Branches and subroutine calls

•  Able to address some subset of memory
– Controlled by a Memory Management Unit

•  Not able to perform privileged operations
–  I/O operations, update the MMU
– Enable interrupts, enter supervisor mode

Lecture 3
Page 10

CS 111
Fall 2015

Why Only a Subset of Memory?
•  Why do we limit user-mode execution to a

sub-set of memory?
•  What if a user mode process could access all of

memory?
–  It could see or even potentially corrupt data

belonging to other processes
–  It could even crash the operating system

•  The subset it sees relates to its own data and
program
– So it can only screw itself

Lecture 3
Page 11

CS 111
Fall 2015

Supervisor Mode
•  Allows execution of privileged instructions

– To perform I/O operations
–  Interrupt enable/disable/return, load PC
–  Instructions to change processor mode

•  Can access privileged address spaces
– Data structures inside the OS
– Other process's address spaces
– Can change and create address spaces

•  May have alternate registers, alternate stack

Lecture 3
Page 12

CS 111
Fall 2015

Controlling the Processor Mode
•  Typically controlled by the Processor Status

Register (AKA PS)
•  PS also contains condition codes

– Set by arithmetic/logical operations (0,+,-,ovflo)
– Tested by conditional branch instructions

•  Describes which interrupts are enabled
•  May describe which address space to use
•  May control other processor features/options

– Word length, endian-ness, instruction set, ...

Lecture 3
Page 13

CS 111
Fall 2015

How Do Modes Get Set?
•  The computer boots up in supervisor mode

– Used by bootstrap and OS to initialize the system

•  Applications run in user mode
– OS changes to user mode before running user code

•  User programs cannot do I/O, restricted address space

– They can’t arbitrarily enter supervisor mode
•  Because instructions to change the mode are privileged

•  Re-entering supervisor mode is strictly
controlled
– Only in response to traps and interrupts

Lecture 3
Page 14

CS 111
Fall 2015

So When Do We Go Back To
Supervisor Mode?

•  In several circumstances
•  When a program needs OS services

–  Invokes system call that causes a trap
– Which returns system to supervisor mode

•  When an error occurs
– Which requires OS to clean up

•  When an interrupt occurs
– Clock interrupts (often set by OS itself)
– Device interrupts

Lecture 3
Page 15

CS 111
Fall 2015

Asynchronous Exceptions
and Handlers

•  Most program errors can be handled “in-line”
–  Overflows may not be errors, noted in condition codes
–  If concerned, program can test for such conditions

•  Some errors must interrupt program execution
–  Unable to execute last instruction (e.g. illegal op)
–  Last instruction produced non-results (e.g. divide by zero)
–  Problem unrelated to program (e.g. power failure)

•  Most computers use traps to inform OS of problems
–  Define a well specified list of all possible exceptions
–  Provide means for OS to associate handler with each

Lecture 3
Page 16

CS 111
Fall 2015

Why Not Check It
All In User Mode?

•  Can’t my program handle all its own errors?
•  Sometimes an instruction couldn’t be executed

at all
– A failure of the virtual execution engine

•  Can’t check all possible errors after each and
every instruction
– Would require dozens of checks per instruction
– When the failures are extremely rare, it makes

more sense to raise an exception condition

Lecture 3
Page 17

CS 111
Fall 2015

Control of Supervisor
Mode Transitions

•  All user-to-supervisor changes via traps/interrupts
–  These happen at unpredictable times

•  There is a designated handler for each trap/interrupt
–  Its address is stored in a trap/interrupt vector table
–  The operating system sets up all of the handler vectors

•  Ordinary programs can't access these vectors
–  Vectors are not in the process' address spaces

•  The OS controls all supervisor mode transitions
–  By carefully controlling all of the trap/interrupt “gateways”

Lecture 3
Page 18

CS 111
Fall 2015

Transition Into Supervisor Mode
•  Due to either hardware or software trap
•  Hardware trap handling

–  Trap cause provides index into trap vector table
–  Load new processor status word, switch to supervisor mode
–  Push PC/PS of program that caused trap onto stack
–  Load new program counter from trap vector table entry

•  Software trap handling
–  1st level handler pushes all other registers onto stack
–  1st level handler gathers info, selects 2nd level handler
–  2nd level handler deals with the exception condition

Lecture 3
Page 19

CS 111
Fall 2015

Software Trap Handling

1st level trap handler
(saves registers and

selects 2nd level handler)

2nd level handler
(actually deals

with the problem)

return to
user mode

Application Program

user mode
supervisor mode PS/PC

TRAP vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; instr ; instr ; instr ;

Lecture 3
Page 20

CS 111
Fall 2015

Dealing With the Cause of a Trap
•  Some exceptions are handled by the OS

– E.g. page faults, alignment, floating point
emulation

– OS simulates expected behavior and returns

•  Some exceptions may be fatal to running task
– E.g. zero divide, illegal instruction, invalid address
– OS reflects the failure back to the running process

•  Some exceptions may be fatal to the system
– E.g. power failure, cache parity, stack violation
– OS cleanly shuts down the affected hardware

Lecture 3
Page 21

CS 111
Fall 2015

Returning To User Mode
•  Return is opposite of interrupt/trap entry

– 2nd level handler returns to 1st level handler
– 1st level handler restores all registers from stack
– Use privileged return instruction to restore PC/PS
– Resume user-mode execution after trapped

instruction
•  Saved registers can be changed before return

– To set entry point for newly loaded programs
– To deliver signals to user-mode processes
– To set return codes from system calls

Lecture 3
Page 22

CS 111
Fall 2015

Stacking and Unstacking a Trap

stack frames
 from

application
computation

User-mode Stack Supervisor-mode Stack

direction
of growth

user mode
PC & PS

saved
user mode
registers

parameters
to 2nd level
trap handler

return PC

2nd level
trap handler
stack frame

resumed
computation

TRAP!

Lecture 3
Page 23

CS 111
Fall 2015

Traps While In Supervisor Mode
•  Nearly identical to traps while in user mode

– Trap saves interrupted PC/PS on supervisor stack
– Trap goes to same vector & 1st level handler
– Same register saving, restoring, and return

•  There are very few differences
– Saved PS at interrupt time shows supervisor mode
– 2nd level handler knows trap was from supervisor

mode
– May be more or less severe than the same trap

from user mode

Lecture 3
Page 24

CS 111
Fall 2015

Traps and Protection
•  The OS is very careful in protecting trap

vectors
•  Why?
•  The trap vector specifies the code and mode to

be executed when an exception occurs
•  If a user-mode program could change these

vectors, it could execute arbitrary code
–  In supervisor mode
– Bypassing all of the built-in protections

Lecture 3
Page 25

CS 111
Fall 2015

I/O Architecture
•  I/O is:

– Varied
– Complex
– Error prone

•  A bad place for the typical user to be
wandering around

•  The operating system really needs to make I/O
a lot friendlier

Lecture 3
Page 26

CS 111
Fall 2015

Important Elements of I/O
Architecture

•  Types of I/O devices
•  Busses

– Types, arbitration, bus-mastering

•  Device controllers
– Controller registers
– A sample device
– Direct I/O

Lecture 3
Page 27

CS 111
Fall 2015

What Counts as an I/O Device?
•  Storage devices (hard drives, flash drives,

DVD/CD drives, tape drives)
•  Displays (monitors and speakers)
•  Input devices (keyboards, mice, microphones

and cameras)
•  Network devices (wired and wireless,

including 802.11, Bluetooth, maybe infrared)
•  Sensor devices (GPS, accelerometers, etc.)
•  And sometimes exotic stuff

Lecture 3
Page 28

CS 111
Fall 2015

Sequential vs. Random
Access Devices

•  Sequential access devices
–  Byte/block N must be read/written before byte/block N+1
–  May be read/write once, or may be rewindable
–  Examples: magnetic tape, printer, keyboard

•  Random access devices
–  Possible to directly request any desired byte/block
–  Getting to that byte/block may or may not be instantaneous
–  Examples: memory, magnetic disk, graphics adaptor

•  They are used very differently
–  Requiring different handling by the OS

Lecture 3
Page 29

CS 111
Fall 2015

Busses

•  Something has to hook together the
components of a computer
– The CPU, memory, various devices

•  Allowing data to flow between them
•  That is a bus
•  A type of communication link abstraction

Lecture 3
Page 30

CS 111
Fall 2015

A Simple Bus

main bus

controller

controller

device

CPU

memory

control
address

data
interrupts

Lecture 3
Page 31

CS 111
Fall 2015

Memory Type Busses

•  Initially back-plane memory-to-CPU interconnects
–  A few “bus masters”, and many “slave devices”
–  Arbitrated multi-cycle bus transactions

•  Request, grant, address, respond, transfer, ack
•  Operations: read, write, read/modify/write, interrupt

•  Originally most busses were of this sort
–  ISA, EISA, PCMCIA, PCI, cPCI, video busses, ...
–  Distinguished by

•  Form-factor, speed, data width, hot-plug, maximum length, ...
•  Bridging, self identifying, dynamic resource allocation, …

Lecture 3
Page 32

CS 111
Fall 2015

Bus Masters, Slaves,
and Arbitration

•  Bus master
– Any device (or CPU) that can request the bus
– One can also speak of the “current bus master”

•  Bus slave
– A device that can only respond to bus requests

•  Bus arbitration
– Process of deciding to whom to grant the bus

•  May be based on time, geography or priority
•  May also clock/choreograph steps of bus cycles
•  Bus arbitrator may be part of CPU or separate

Lecture 3
Page 33

CS 111
Fall 2015

Network Type Busses
•  Evolved as peripheral device interconnects

– SCSI, USB, 1394 (Firewire), Infiniband, ...
– Cables and connectors rather than back-planes
– Designed for easy and dynamic extensibility
– Originally slower than back-plane, but no longer

•  Much more like a general purpose network
– Packet switched, topology, routing, node identity
– May be master/slave (USB) or peer-to-peer (1394)
– May be implemented by controller or by host

Lecture 3
Page 34

CS 111
Fall 2015

Devices and Controllers
•  I/O devices

–  Peripheral devices that interface between the computer and
other media

•  Disks, tapes, networks, serial ports, keyboards, displays, pointing
devices, etc.

•  Device controllers connect a device to a bus
–  Communicate control operations to device
–  Relay status information back to the bus
–  Manage DMA transfers for the device
–  Generate interrupts for the device

•  Controller usually specific to a device and a bus

Lecture 3
Page 35

CS 111
Fall 2015

Device Controller Registers
•  Device controllers export registers to the bus

– Registers in controller can be addressed from bus
– Writing into registers controls device or sends data
– Reading from registers obtains data/status

•  Register access method varies with CPU type
– May use special instructions (e.g., x86 IN/OUT)

•  Privileged instructions restricted to supervisor mode
– May be mapped onto bus like memory

•  Accessed with normal (load/store) instructions
•  I/O address space not accessible to most processes

Lecture 3
Page 36

CS 111
Fall 2015

Direct Polled I/O
•  One way of moving data into/out of computer

–  Common in very old peripheral devices
•  All transfers happen under direct control of CPU

–  CPU transfers data to/from device controller registers
–  Transfers are typically one byte or word at a time
–  May be accomplished with normal or I/O instructions

•  CPU polls device until it is ready for data transfer
–  Received data is available to be read
–  Previously initiated write operations are completed

•  Advantages
–  Very easy to implement (both hardware and software)

Lecture 3
Page 37

CS 111
Fall 2015

Disadvantage of Direct Polled I/O
•  CPU-intensive data transfers

–  Each byte/word requires multiple instructions
•  CPU wasted while awaiting completion

–  Busy-wait polling ties up CPU until I/O is completed

•  Devices are idle while we are running other tasks
–  I/O can only happen when an I/O task is running

•  How can these problems be dealt with?
–  Let controller transfer data without attention from CPU
–  Let application block pending I/O completion
–  Let controller interrupt CPU when I/O is finally done

•  Requires OS support

Lecture 3
Page 38

CS 111
Fall 2015

Handling I/O Performance Issues

•  Various techniques are possible
•  Direct Memory Access (DMA)

– Non-CPU bus-masters
– Completion interrupts
– Typical DMA programming

•  Enhanced Techniques
– Memory Mapped I/O
– Smart Device Controllers
–  I/O Channel Controllers

Lecture 3
Page 39

CS 111
Fall 2015

Direct Memory Access
•  Essentially, use the bus without CPU control

–  Move data between memory and device controller
•  Bus facilitates data flow in all directions between:

–  CPU, memory, and device controllers

•  CPU can be the bus-master
–  Initiating data transfers with memory, device controllers

•  But device controllers can also master the bus
–  CPU instructs controller what transfer is desired

•  What data to move to/from what part of memory

–  Device controller does transfer w/o CPU assistance
–  Device controller generates interrupt at end of transfer

Lecture 3
Page 40

CS 111
Fall 2015

DMA Interrupts

•  CPU usually needs to know when DMA is done
•  Handled by sending interrupt on the bus

–  Devices signal controller when they are done/ready
–  When device finishes, controller puts interrupt on bus

•  CPUs and interrupts
–  Interrupts look very much like traps

•  Traps come from CPU, interrupts are caused externally

–  Unlike traps, interrupts can be enabled/disabled
•  A device can be told it can or cannot generate interrupts
•  Special instructions can enable/disable interrupts to CPU

Lecture 3
Page 41

CS 111
Fall 2015

Interrupt Handling

1st level
 interrupt handler

2nd level handler
(device driver

interrupt routine)

return to
user mode

Application Program

user mode
supervisor mode PS/PC

interrupt vector table

PS/PC
PS/PC
PS/PC

instr ; instr ; instr ; instr ; instr ; instr ;

driver
driver
driver
driver

list of
device

interrupt
handlers

device
requests
interrupt

Lecture 3
Page 42

CS 111
Fall 2015

Interrupts vs. Traps
•  Most traps caused by an instantaneous condition

–  Triggered in response to illegal program actions
–  Related to something CPU was doing

•  Interrupts are caused a device being in some state
–  Triggered when the device enters a particular state

•  E.g., device state changes from BUSY to DONE

–  They are asserted as long as device is in that state
•  E.g., until the device is BUSY again

•  Once delivered, an interrupt must be disabled
–  CPU must ignore continuing request for that interrupt
–  Cause must be cleared, and interrupt acknowledged

Lecture 3
Page 43

CS 111
Fall 2015

Performing I/O Using Interrupts
•  Requesting process checks to see if device is busy

–  If idle, start the I/O operation, and await its completion
–  Meanwhile, CPU does something else (for this process or

another one)
–  If busy, wait for the device to become idle

•  I/O interrupt handler
–  Gathers completion information from the device
–  Awakes requester to handle the interrupt

•  When current owner finishes using the device
–  Wake up the next requester

•  We'll talk about waiting and waking up soon

Lecture 3
Page 44

CS 111
Fall 2015

Problems With DMA

•  DMA is designed for fairly large data transfers
•  What if you want to move a rather small

amount of data?
– Frequently and efficiently
– E.g., consider a video game display adaptor
– Lots of data in the display, but maybe only a few

bytes get updated
•  DMA is rather heavyweight for that

Lecture 3
Page 45

CS 111
Fall 2015

Memory Mapped I/O

•  CPU treats control and data registers of I/O
devices as if they were memory addresses

•  Reads/writes to them just like memory
•  Makes everything the processor works with

look just like memory
– No special instructions to read/write I/O devices

•  Applications themselves can write to the
memory locations
– Avoiding traps to the OS

Lecture 3
Page 46

CS 111
Fall 2015

A Memory Mapping Example
•  A bit-mapped display adaptor

– 1Mpixel display controller, on the CPU memory
bus

– Each word of display memory corresponds to one
pixel

– Application uses ordinary stores to update display
– Device always has access to the data without

interrupts or polling
•  Low overhead per update, no interrupts
•  Relatively easy to program

Lecture 3
Page 47

CS 111
Fall 2015

Memory Mapping Devices and
Security

•  Memory mapped I/O from ordinary instructions gives
user-mode processes direct access to an I/O device

•  Isn’t this a security problem?
–  Yes, but perhaps the device does not contain anybody else’s

data
•  E.g., the device is a graphics adaptor and the program is a video

game

–  Memory mapping devices is a protected operation
–  OS controls which processes can use which devices when

Lecture 3
Page 48

CS 111
Fall 2015

DMA vs. Memory Mapping
•  DMA performs large transfers efficiently

–  Better utilization of both the devices and the CPU
•  Device doesn't have to wait for CPU to do transfers

–  But there is considerable per transfer overhead
•  Setting up the operation, processing completion interrupt

•  Memory-mapped I/O has no start/finish overhead
–  But every byte is transferred by a CPU instruction

•  No waiting because device accepts data at memory speed

•  DMA better for occasional large transfers
•  Memory-mapped better for frequent small transfers
•  Memory-mapped devices more difficult to share
•  Memory mapping can be used to set up DMA

Lecture 3
Page 49

CS 111
Fall 2015

Smart Device Controllers

•  Smarter controllers can improve on basic DMA
•  They can queue multiple input/output requests

–  When one finishes, automatically start next one
–  Reduce completion/start-up delays
–  Eliminate need for CPU to service interrupts

•  They can relieve CPU of other I/O responsibilities
–  Request scheduling to improve performance
–  They can do automatic error handling & retries

•  Abstract away details of underlying devices

Lecture 3
Page 50

CS 111
Fall 2015

Disk Drives
•  An especially important and complex form of

I/O device
•  Still the primary method of providing stable

storage
– Storage meant to last beyond a single power cycle

of the computer
•  A place where physics meets computer science

– Somewhat uncomfortably

Lecture 3
Page 51

CS 111
Fall 2015

Some Important Disk
Characteristics

•  Disks are random access devices (mostly . . .)
– With complex usage, performance, and scheduling

•  Key OS services depend on disk I/O
– Program loading, file I/O, paging
– Disk performance drives overall performance

•  Disk I/O operations are subject to overhead
– Higher overhead means fewer operations/second
– Careful scheduling can reduce overhead
– Clever scheduling can improve throughput, delay

Lecture 3
Page 52

CS 111
Fall 2015

Disk Drives – A Physical View

Lecture 3
Page 53

CS 111
Fall 2015

Disk Drives – A Logical View

cylinder
(10 corresponding tracks)

platter

surface

track

sectors

Lecture 3
Page 54

CS 111
Fall 2015

Disk Drive Terms
•  Spindle

–  A mounted assembly of circular platters
•  Head assembly

–  Read/write head per surface, all moving in unison
•  Track

–  Ring of data readable by one head in one position
•  Cylinder

–  Corresponding tracks on all platters
•  Sector

–  Logical records written within tracks
•  Disk address = <cylinder / head / sector >

Lecture 3
Page 55

CS 111
Fall 2015

Seek Time
•  At any moment, the heads are over some track

– All heads move together, so all over the same track
on different surfaces

•  If you want to read another track, you must
move the heads

•  The time required to do that is seek time
•  Seek time is not constant

– Amount of time to move from one track to another
depends on start and destination

– Usually reported as an average

Lecture 3
Page 56

CS 111
Fall 2015

Rotational Delay
•  Once you have the heads over the right track,

you need to get them to the right sector
•  The head is over only one sector at a time
•  If it isn’t the right sector, you have to wait for

the disk to rotate over that one
•  Like seek time, not a constant

– Depends on which sector you’re over
– And which sector you’re looking for
– Also usually reported as an average

•  Also called latency

Lecture 3
Page 57

CS 111
Fall 2015

Transfer Time

•  Once you’re on the correct track and the head’s
over the right sector, you need to transfer data

•  You don’t read/write an entire sector at a time
•  There is some delay associated with reading

every byte in the sector
•  All sectors are usually the same size
•  So transfer time is usually constant

Lecture 3
Page 58

CS 111
Fall 2015

Disk Drives and Controllers

•  The disk drive is not directly connected to the
bus

•  It is connected to a disk drive controller
– Special hardware designed for this task

•  There may be several disk drives attached to
the same controller
– Which then multiplexes its attention between them

•  Many disks have their controller bundled with
them (e.g., SCSI disks)

Lecture 3
Page 59

CS 111
Fall 2015

Typical Disk Drive Performance
heads 10 platters 5
cylinders 17,000 tracks/inch 18,000
sectors/track 400 bytes/sector 512
RPM 7200 speed 196Mb/sec
seek time 0-15 ms latency 0-8ms

Time to read one 8192 byte block
seek rotate transfer total

best case 0ms 0ms 333us 333us

worst case 15ms 8ms 333us 23.3ms (70X)

average 9ms 4ms 333us 13.3ms (40X)

Lecture 3
Page 60

CS 111
Fall 2015

Why Is This An Issue
For the OS?

•  When you go to disk, it could be fast or slow
–  If you go to disk a lot, that matters

•  The OS can make choices that make it faster or
slower
– Deciding where to put a piece of data on disk
– Deciding when to perform an I/O
– Reordering multiple I/Os to minimize seek time

and latency
– Perhaps optimistically performing I/Os that

haven’t been requested

Lecture 3
Page 61

CS 111
Fall 2015

Optimizing Disk I/O
•  Don't start I/O until disk is on-cylinder or near sector

–  I/O ties up the controller, locking out other operations
–  Other drives seek while one drive is doing I/O

•  Minimize head motion
–  Do all possible reads in current cylinder before moving
–  Make minimum number of trips in small increments

•  Encourage efficient data requests
–  Have lots of requests to choose from
–  Encourage cylinder locality
–  Encourage largest possible block sizes
–  All by OS design choices, not influencing programs/users

Lecture 3
Page 62

CS 111
Fall 2015

Algorithms to Control
Head Movement

•  First come, first served
– Just do them in the order they happen

•  Shortest seek time first
– Always go with the request that’s closest to the

current head position
– Since requests keep arriving, can cause starvation

•  Scan/Look (AKA the Elevator Algorithm)
– Service all requests in one direction, then go in the

other direction
– No starvation, but may take longer

Lecture 3
Page 63

CS 111
Fall 2015

Head Travel With Various
Algorithms

Scan/Look (elevator algorithm)
76 124 137 201 269 29 17 12

48 13 64 68 240 12 5

total head motion: 450 cylinders

First Come First Served
76 124 17 269 201 29 137 12

48 107 252 68 172 108 125

total head motion: 880 cylinders

Shortest Seek First
76 29 17 12 124 137 201 269

47 12 5 112 13 64 68

total head motion: 321 cylinders

Lecture 3
Page 64

CS 111
Fall 2015

Disks as an Example of
the Memory Abstraction

•  They support the read and write operations
•  But, unlike RAM, they are not word-

addressable
– You read and write sectors

•  Also unlike RAM, they have variable delays in
their operations
– Not just because of queued operations, either

•  Either the OS must expose these differences
– Or work to hide them

