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* Hardware and the operating system

* Processor 1ssues

* Buses and devices
— Disk drives

* We’ll talk about memory later
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‘Hardware and the

_Operating System |

* One of the major roles of the operating system
1s to hide details of the hardware

— Messy and difficult details
— Specifics of particular pieces of hardware
— Details that prevent safe operation of the computer

e OS abstractions are built on the hardware, at
the bottom

— Everything ultimately relies on hardware

\

\- A major element of OS design concerns HW /
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/OS Abstractions and the Hardware\

* Many important OS abstractions aren’t supported
directly by the hardware

 Virtual machines
— There’s one real machine

* Virtual memory
— There’s one set of physical memory
— And 1t often 1sn’t as big as even one process thinks it 1s

* Typical file abstractions
* Many others

* The OS works hard to make up the differences
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/ Hiding Grubby Details

Maybe I don’t have floating point hardware

\

Maybe I have a RAID instead of a single hard

disk

I might have two printers with different
capabilities

I might periodically switch between using
Ethernet or 802.11 for my network

My users don’t want to know any of this

\ And couldn’t handle 1t 1f they did
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/ Safety Issues \

* If the machine 1s doing multiprocessing,
failures 1n one process shouldn’t hurt another

* If process A divides by zero, that’s not process
B’s problem

* If process C and process D both ask to get
data off the disk, they should only see their
own data

* Only the OS knows enough and 1s trusted
enough to handle safety 1ssues /
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/ 'Processor Issues |

e Execution mode

* Handling exce;
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/" [Execution Modes:

_______________________________

e Modern CPUs can execute 1n two different
modes:

— User mode
— Supervisor mode

* User mode 1s to run ordinary programs

* Supervisor mode 1s for OS use

— To perform overall control

— To perform unsafe operations on the behalf of
processes /
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/ User Mode \

* Allows use of all the “normal” instructions
— Load and store general registers from/to memory
— Arithmetic, logical, test, compare, data copying
— Branches and subroutine calls

* Able to address some subset of memory
— Controlled by a Memory Management Unit

* Not able to perform privileged operations
— I/O operations, update the MMU
— Enable interrupts, enter supervisor mode /
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/ Why Only a Subset of Memory?\

* Why do we limit user-mode execution to a
sub-set of memory?

* What if a user mode process could access all of
memory?

— It could see or even potentially corrupt data
belonging to other processes

— It could even crash the operating system

 The subset i1t sees relates to i1its own data and
program

— So 1t can only screw itself Lecture
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/ Supervisor Mode

* Allows execution of privileged instructions
— To perform I/O operations
— Interrupt enable/disable/return, load PC
— Instructions to change processor mode

* Can access privileged address spaces
— Data structures inside the OS

— Other process's address spaces
— Can change and create address spaces

* May have alternate registers, alternate stack
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/ Controlling the Processor Mode\

* Typically controlled by the Processor Status
Register (AKA PS)

* PS also contains condition codes
— Set by arithmetic/logical operations (0,+,-,0v{lo)
— Tested by conditional branch instructions

* Describes which interrupts are enabled
* May describe which address space to use

* May control other processor features/options

— Word length, endian-ness, instruction set, ... )
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/ How Do Modes Get Set? \

* The computer boots up in supervisor mode
— Used by bootstrap and OS to initialize the system

* Applications run in user mode

— OS changes to user mode before running user code
* User programs cannot do I/O, restricted address space

— They can’t arbitrarily enter supervisor mode
* Because instructions to change the mode are privileged
* Re-entering supervisor mode i1s strictly
controlled

— Only 1n response to traps and interrupts Lecture 3
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/ So When Do We Go Back To \

Supervisor Mode?
e In several circumstances

 When a program needs OS services
— Invokes system call that causes a trap

— Which returns system to supervisor mode

* When an error occurs
— Which requires OS to clean up

* When an interrupt occurs
— Clock interrupts (often set by OS itself)

— Device interrupts Lecture 3
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/ Asynchronous Exceptions \
and Handlers

* Most program errors can be handled “in-line”
— Overflows may not be errors, noted in condition codes
— If concerned, program can test for such conditions

* Some errors must interrupt program execution
— Unable to execute last instruction (e.g. i1llegal op)

— Last instruction produced non-results (e.g. divide by zero)
— Problem unrelated to program (e.g. power failure)

* Most computers use traps to inform OS of problems

— Define a well specified list of all possible exceptions

— Provide means for OS to associate handler with each /
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Why Not Check It
All In User Mode?

* Can’t my program handle all its own errors?

* Sometimes an instruction couldn’t be executed
at all
— A failure of the virtual execution engine

* Can’t check all possible errors after each and
every instruction

— Would require dozens of checks per instruction

— When the failures are extremely rare, it makes
more sense to raise an exception condition /
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/ Control of Supervisor \
Mode Transitions

* All user-to-supervisor changes via traps/interrupts
— These happen at unpredictable times
* There 1s a designated handler for each trap/interrupt

— Its address 1s stored in a trap/interrupt vector table
— The operating system sets up all of the handler vectors

* Ordinary programs can't access these vectors

— Vectors are not in the process' address spaces

The OS controls all supervisor mode transitions

— By carefully controlling all of the trap/interrupt “gateways”

/

CS 111 Lecture 3
Fall 2015 Page 17




ﬁf ransition Into Supervisor Mode\

* Due to either hardware or software trap

* Hardware trap handling
— Trap cause provides index into trap vector table
— Load new processor status word, switch to supervisor mode
— Push PC/PS of program that caused trap onto stack
— Load new program counter from trap vector table entry

* Software trap handling

— 1st level handler pushes all other registers onto stack

— Ist level handler gathers info, selects 2nd level handler

— 2nd level handler deals with the exception condition /
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/ Software Trap Handling \

Application Program

instr; instr; instr; instr; instr; instr;

A user mode

supervisor mode

PS/PC  <+—

15t level trép handler TRAP vector table return to

; user mode
(saves registers and
selects 2" level handler)
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/Dealing With the Cause of a Trap\

* Some exceptions are handled by the OS

— E.g. page faults, alignment, floating point
emulation

— OS simulates expected behavior and returns

* Some exceptions may be fatal to running task
— E.g. zero divide, illegal instruction, invalid address
— OS reflects the failure back to the running process

* Some exceptions may be fatal to the system

— E.g. power failure, cache parity, stack violation

/

— OS cleanly shuts down the affected hardware ...,
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/ Returning To User Mode \

* Return 1s opposite of interrupt/trap entry
— 2nd level handler returns to 1st level handler

— Ist level handler restores all registers from stack

— Use privileged return instruction to restore PC/PS

— Resume user-mode execution after trapped
instruction

* Saved registers can be changed before return

— To set entry point for newly loaded programs

— To deliver signals to user-mode processes

— To set return codes from system calls
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/ Stacking and Unstacking a Trap\

User-mode Stack
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direction
of growth

Supervisor-mode Stack

user mode
PC & PS

saved
user mode
registers

parameters
to 2 level
trap handler
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ﬁf raps While In Supervisor Mode\

* Nearly identical to traps while in user mode
— Trap saves mterrupted PC/PS on supervisor stack
— Trap goes to same vector & 1st level handler
— Same register saving, restoring, and return

* There are very few differences

— Saved PS at interrupt time shows supervisor mode

— 2nd level handler knows trap was from supervisor
mode

— May be more or less severe than the same trap
from user mode /
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/ Traps and Protection \

* The OS 1s very careful 1n protecting trap
vectors

* Why?
* The trap vector specifies the code and mode to
be executed when an exception occurs

 If a user-mode program could change these
vectors, 1t could execute arbitrary code

— In supervisor mode

— Bypassing all of the built-in protections /
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/ [ [/O Architecture ] \

e [/O 1s;
— Varied

— Complex

— Error prone

* A bad place for the typical user to be
wandering around

* The operating system really needs to make 1/0O
a lot friendlier
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/" Important Elements of /O ™\

Architecture
* Types of I/O devices

e Busses

— Types, arbitration, bus-mastering

* Device controllers
— Controller registers

— A sample device
— Direct 1/0
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/ What Counts as an I/0 Device?\

* Storage devices (hard drives, flash drives,
DVD/CD drives, tape drives)

* Displays (monitors and speakers)

* Input devices (keyboards, mice, microphones
and cameras)

* Network devices (wired and wireless,
including 802.11, Bluetooth, maybe infrared)

* Sensor devices (GPS, accelerometers, etc.)

* And sometimes exotic stuff Y,
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/ Sequential vs. Random \
Access Devices

* Sequential access devices
— Byte/block N must be read/written before byte/block N+1
— May be read/write once, or may be rewindable
— Examples: magnetic tape, printer, keyboard

e Random access devices

— Possible to directly request any desired byte/block
— Getting to that byte/block may or may not be instantaneous
— Examples: memory, magnetic disk, graphics adaptor

* They are used very differently
— Requiring different handling by the OS /
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a ‘Busses. I

_______________

* Something has to hook together the
components of a computer

— The CPU, memory, various devices
* Allowing data to flow between them
* That 1s a bus
* A type of communication link abstraction

Lecture 3
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A Simple Bus

~

control
address

interrupts
memory
Lecture 3
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/ Memory Type Busses

* Initially back-plane memory-to-CPU interconnects

— A few “bus masters”, and many “slave devices”

— Arbitrated multi-cycle bus transactions
* Request, grant, address, respond, transfer, ack

* Operations: read, write, read/modify/write, interrupt

* Originally most busses were of this sort
— ISA, EISA, PCMCIA, PCI, cPCI, video busses, ...
— Distinguished by

* Form-factor, speed, data width, hot-plug, maximum length, ...

* Bridging, self identifying, dynamic resource allocation, ...
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Bus Masters, Slaves,
and Arbitration

* Bus master
— Any device (or CPU) that can request the bus

— One can also speak of the “current bus master”
* Bus slave

— A device that can only respond to bus requests
* Bus arbitration

— Process of deciding to whom to grant the bus

* May be based on time, geography or priority
* May also clock/choreograph steps of bus cycles
* Bus arbitrator may be part of CPU or separate

\

/
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/ Network Type Busses \

* Evolved as peripheral device interconnects
— SCSI, USB, 1394 (Firewire), Infiniband, ...
— Cables and connectors rather than back-planes
— Designed for easy and dynamic extensibility
— Originally slower than back-plane, but no longer

* Much more like a general purpose network
— Packet switched, topology, routing, node 1dentity
— May be master/slave (USB) or peer-to-peer (1394)

— May be implemented by controller or by host )
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/" Devices and Controllers} |

 [/O devices

— Peripheral devices that interface between the computer and
other media

* Disks, tapes, networks, serial ports, keyboards, displays, pointing
devices, etc.

* Device controllers connect a device to a bus
— Communicate control operations to device
— Relay status information back to the bus
— Manage DMA transfers for the device
— Generate interrupts for the device

* Controller usually specific to a device and a bus Y,
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/ Device Controller Registers \

* Device controllers export registers to the bus
— Registers 1n controller can be addressed from bus
— Writing into registers controls device or sends data
— Reading from registers obtains data/status

* Register access method varies with CPU type
— May use special instructions (e.g., x86 IN/OUT)

* Privileged instructions restricted to supervisor mode

— May be mapped onto bus like memory

* Accessed with normal (load/store) instructions

* I/O address space not accessible to most processes /
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/ Direct Polled 1/0 \

* One way of moving data into/out of computer
— Common in very old peripheral devices
* All transfers happen under direct control of CPU
— CPU transfers data to/from device controller registers
— Transfers are typically one byte or word at a time
— May be accomplished with normal or I/O 1nstructions
* CPU polls device until 1t 1s ready for data transfer
— Received data 1s available to be read

— Previously initiated write operations are completed

* Advantages )
— Very easy to implement (both hardware and software)

CS 111 Lecture 3
Fall 2015 Page 36




/Disadvantage of Direct Polled I/O\

e CPU-intensive data transfers

— Each byte/word requires multiple instructions

CPU wasted while awaiting completion
— Busy-wait polling ties up CPU until I/O 1s completed

* Devices are 1dle while we are running other tasks

— I/O can only happen when an I/O task is running

How can these problems be dealt with?
— Let controller transfer data without attention from CPU
— Let application block pending I/O completion

— Let controller interrupt CPU when 1/O 1is finally done

Requires OS support
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/Handling I/O Performance Issues\

* Various techniques are possible

* Direct Memory Access (DMA)
— Non-CPU bus-masters
— Completion interrupts
— Typical DMA programming
* Enhanced Techniques
— Memory Mapped 1/O

— Smart Device Controllers
— I/O Channel Controllers /
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/ Direct Memory Access \

* Essentially, use the bus without CPU control
— Move data between memory and device controller

 Bus facilitates data flow 1n all directions between:
— CPU, memory, and device controllers

e CPU can be the bus-master

— Initiating data transfers with memory, device controllers

 But device controllers can also master the bus
— CPU instructs controller what transfer 1s desired

* What data to move to/from what part of memory

— Device controller does transfer w/o CPU assistance

— Device controller generates interrupt at end of transfer /
CS 111 Lecture 3
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/ DMA Interrupts \

* CPU usually needs to know when DMA 1s done

* Handled by sending interrupt on the bus
— Devices signal controller when they are done/ready
— When device finishes, controller puts interrupt on bus

* CPUs and interrupts
— Interrupts look very much like traps

* Traps come from CPU, interrupts are caused externally

— Unlike traps, interrupts can be enabled/disabled

* A device can be told it can or cannot generate interrupts

* Special instructions can enable/disable interrupts to CPU /
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/ Interrupt Handling

Application Program

~

instr ;

instr; instr; instr; instr; instr;

%

user mode

NS

1< level
interrupt handler

A

upervisor mode

device

PS/PC

list of

device

interrupt —»___ driver

interrupt vector table

handlers

CS 111

requests
interrupt

\

return to
user mode
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Interrupts vs. Traps

* Most traps caused by an instantaneous condition

— Triggered in response to illegal program actions
— Related to something CPU was doing

* Interrupts are caused a device being 1n some state

— Triggered when the device enters a particular state

* E.g., device state changes from BUSY to DONE

— They are asserted as long as device 1s in that state

* E.g., until the device 1s BUSY again

* Once delivered, an interrupt must be disabled
— CPU must 1gnore continuing request for that interrupt

— Cause must be cleared, and interrupt acknowledged
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/ Performing I/O Using Interrupts\

* Requesting process checks to see if device 1s busy

— If idle, start the I/O operation, and await its completion

— Meanwhile, CPU does something else (for this process or
another one)

— If busy, wait for the device to become 1dle

* I/O interrupt handler
— Gathers completion information from the device

— Awakes requester to handle the interrupt

* When current owner finishes using the device
— Wake up the next requester

\° We'll talk about waiting and waking up soon /
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/ Problems With DMA \

 DMA 1s designed for fairly large data transfers
* What if you want to move a rather small
amount of data?
— Frequently and efficiently
— E.g., consider a video game display adaptor

— Lots of data in the display, but maybe only a few
bytes get updated

* DMA 1s rather heavyweight for that
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/ Memory Mapped 1/0 \

* CPU treats control and data registers of I/0O
devices as 1f they were memory addresses

* Reads/writes to them just like memory

* Makes everything the processor works with
look just like memory

— No special nstructions to read/write I/O devices

* Applications themselves can write to the
memory locations

— Avoiding traps to the OS
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/ A Memory Mapping Example \

* A bit-mapped display adaptor

— I Mpixel display controller, on the CPU memory
bus

— Each word of display memory corresponds to one
pixel

— Application uses ordinary stores to update display

— Device always has access to the data without
interrupts or polling

* Low overhead per update, no interrupts

\- Relatively easy to program /
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/ Memory Mapping Devices and \
Security

* Memory mapped I/O from ordinary instructions gives
user-mode processes direct access to an I/O device

* Isn’t this a security problem?

— Yes, but perhaps the device does not contain anybody else’s
data

* E.g., the device 1s a graphics adaptor and the program 1s a video
game

— Memory mapping devices is a protected operation
— OS controls which processes can use which devices when
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/ DMA vs. Memory Mapping \

* DMA performs large transfers efficiently

— Better utilization of both the devices and the CPU
* Device doesn't have to wait for CPU to do transfers

— But there 1s considerable per transfer overhead
 Setting up the operation, processing completion interrupt

* Memory-mapped I/O has no start/finish overhead

— But every byte 1s transferred by a CPU instruction
* No waiting because device accepts data at memory speed

DMA better for occasional large transfers

* Memory-mapped better for frequent small transfers

* Memory-mapped devices more difficult to share

* Memory mapping can be used to set up DMA /
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/ Smart Device Controllers \

* Smarter controllers can improve on basic DMA

* They can queue multiple mnput/output requests
— When one finishes, automatically start next one
— Reduce completion/start-up delays

— Eliminate need for CPU to service interrupts

They can relieve CPU of other I/O responsibilities
— Request scheduling to improve performance
— They can do automatic error handling & retries

* Abstract away details of underlying devices
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© Disk Drives N

* An especially important and complex form of
I/O device

* Still the primary method of providing stable
storage

— Storage meant to last beyond a single power cycle
of the computer

* A place where physics meets computer science
— Somewhat uncomfortably
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Some Important Disk \

Characteristics
* Disks are random access devices (mostly . . .)

— With complex usage, performance, and scheduling

* Key OS services depend on disk I/0
— Program loading, file I/O, paging
— Disk performance drives overall performance

* Disk I/O operations are subject to overhead

— Higher overhead means fewer operations/second

— Careful scheduling can reduce overhead
— Clever scheduling can improve throughput, delayLecm/
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/ Disk Drives — A Physical View \

0

Spindle

10 heads

1I
[

5 platters

10 surfaces'

8
9
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/ Disk Drives — A Logical View \

sectors

latter
track P

—_— surface

cylinder T
/

(10 corresponding tracks)
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/ Disk Drive Terms

Spindle
— A mounted assembly of circular platters

* Head assembly

— Read/write head per surface, all moving in unison

e Track

— Ring of data readable by one head in one position
Cylinder
— Corresponding tracks on all platters

* Sector
— Logical records written within tracks

* Disk address = <cylinder / head / sector >
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/ Seek Time \

* At any moment, the heads are over some track

— All heads move together, so all over the same track
on different surfaces

* If you want to read another track, you must
move the heads

* The time required to do that 1s seek time
* Seek time 1s not constant

— Amount of time to move from one track to another
depends on start and destination

— Usually reported as an average
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/ Rotational Delay \

* Once you have the heads over the right track,
you need to get them to the right sector

* The head 1s over only one sector at a time

* If1tisn’t the right sector, you have to wait for
the disk to rotate over that one

* Like seek time, not a constant
— Depends on which sector you’re over

— And which sector you’re looking for

— Also usually reported as an average

\- Also called latency /
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/ Transfer Time \

* Once you’re on the correct track and the head’s
over the right sector, you need to transfer data

* You don’t read/write an entire sector at a time

* There 1s some delay associated with reading
every byte 1n the sector

* All sectors are usually the same size
* So transfer time 1s usually constant
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/ Disk Drives and Controllers \

* The disk drive 1s not directly connected to the
bus

e It 1s connected to a disk drive controller
— Special hardware designed for this task

* There may be several disk drives attached to
the same controller

— Which then multiplexes its attention between them

* Many disks have their controller bundled with
\_ them (e.g., SCSI disks)
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/ Typical Disk Drive Performance\

heads 10 platters 3
cylinders 17,000 tracks/inch 18,000
sectors/track 400 bytes/sector 512
RPM 7200 speed 196Mb/sec
seek time 0-15 ms latency 0-8ms

Time to read one 8192 byte block
seek rotate transfer total
best case Oms Oms 333us 333us
worst case 15ms 8ms 333us 23.3ms (70X)
\average 9ms 4ms 333us 13.3ms (40X) Y
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/ Why Is This An Issue
For the OS?

* When you go to disk, it could be fast or slow
— If you go to disk a lot, that matters

* The OS can make choices that make 1t faster or
slower
— Deciding where to put a piece of data on disk

— Deciding when to perform an I/0

— Reordering multiple I/0s to minimize seek time
and latency

— Perhaps optimistically performing I/Os that )
s haven’t been requested Lecture 3
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/" Optimizing Disk /O )\

* Don't start I/O until disk 1s on-cylinder or near sector
— I/0O ties up the controller, locking out other operations
— Other drives seek while one drive 1s doing I/0
* Minimize head motion
— Do all possible reads in current cylinder before moving
— Make minimum number of trips in small increments
* Encourage efficient data requests
— Have lots of requests to choose from

— Encourage cylinder locality

— Encourage largest possible block sizes

— All by OS design choices, not influencing programs/users /
CS 111 Lecture 3
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/ Algorithms to Control \

Head Movement
e First come, first served

— Just do them 1n the order they happen

e Shortest seek time first

— Always go with the request that’s closest to the
current head position

— Since requests keep arriving, can cause starvation

* Scan/Look (AKA the Elevator Algorithm)

— Service all requests 1n one direction, then go 1n the
other direction )

s r NO starvation, but may take longer Lecture 3
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/ Head Travel With Various

\

Algorithms
First Come First Served
76 124 17 269 201 29 137 12
48 107 252 68 172 108 125
total head motion: 880 cylinders
Shortest Seek First
76 29 17 12 124 137 201 269
47 12 ) 112 13 64 68
total head motion: 321 cylinders
Scan/Look (elevator algorithm)
76 124 137 201 269 29 17 12
48 13 64 68 240 12 5
total head motion: 450 cylinders /
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/~ Disks as an Example of ™\
the Memory Abstraction

* They support the read and write operations

* But, unlike RAM, they are not word-
addressable

— You read and write sectors

* Also unlike RAM, they have variable delays in
their operations

— Not just because of queued operations, either

* Either the OS must expose these differences

— Or work to hide them Lot 3
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